
MMURTL V1.0 Page 1 of 667

MMURTL V1.0

Richard A. Burgess

Previously published by MacMillan Publishing/SAMS Computer Books as
"Developing Your Own 32 Bit Computer Operating System"

Author: Richard A. Burgess

Copyright © 1995 Richard A. Burgess,
Copyright © 1999 Sensory Publishing, Inc. & Richard A. Burgess

All Rights Reserved

Portions of this electronic book were formatted with software produced by:

Adobe Corporation for the Acrobat Reader Version,
and Sensory Publishing, Inc. & Microsoft Corp. for the Word and HTML versions.

Copyright 1999, Sensory Publishing, Inc.

Please treat the electronic version of this book as you would a printed copy of any book.
You may pass this text on to another individual or institution when you are through with it

upon deleting your copy as if you no longer held a printed copy of the book.

No portion of this book may be made publicly available by electronic or
other means without the express written permission of Sensory Publishing, Inc.

MMURTL V1.0 Page 2 of 667

Forward

First of all, I thank all of you for the continued interest in MMURTL. When the first printed copies of this book
(then named Developing Your Own 32 Bit Computer Operating System) hit the bookstands, 32 bit was the buzz
word of the day. Five years later the buzzword is the New Millennium; 2000. But it still seems that operating system
development is a hot topic (look at Linux go! - you GO Mr. Penguin, you go!). Many people have tracked me down
to attempt to find more copies of the original edition of the book and I can tell you they are very scarce. Another
printing was denied by the original publisher which turned the rights to my book back over to me. Of the 10,000-
plus copies sold, I have 5 printed copies left (which needless to say, I’m holding on to for sentimental reasons.). But
if you’re reading this, the paper book itself isn’t what you’re interested in, it’s the information in the book.

I had initially intended to put up a web site for everyone to share their MMURTL interests and findings, but little
things like "earning a living" - "kids in college, etc." kept getting in the way. A friend of mine (an entrepreneur at
heart) was itching to start another online business and I had always been interested in publishing - the not so simple
art of information dissemination - and I offered some technical assistance. Electronic publishing is a new art - or
science as some would lead you to believe.

I have not had much time to work on MMURTL since the book was first published. As near as I can tell, a few
people have been playing with it and it has been used mostly as a learning tool. Sensory Publishing is willing to put
up a section on their servers for a BBS (Bulletin Board System) for MMURTL and other books that they will
publish for those that want a place to exchange information and ask questions. I will try to make as much time as
possible to answer questions there, and I would also like to see everyone that has something to share about
MMURTL to add their two cents.

The book is being sold online in several unprotected formats which some people think is risky. I don’t think so. I put
a little bit more faith in the human race than most. And besides, it will cut the cost of distribution in half and I may
actually be able to pay for all those computers and books I bought to support the original development effort - those
of you that think authors of books of this type make any money from them have a few lessons to learn. Of the
approximately one half million dollars the book grossed (between the publisher and book sellers - I got about $1.80
a book... pitiful. That translates to roughly 1/2 minimum wage for the hours invested to produce this book. That
hardly repays the creditors who will gladly lend you money to feed the "MEGAHERTZ habit" that is needed to stay
on top of the computing world. Remember when a 386 - 20 MHz cost $5000? I do, I bought one hot off the
assembly line to write MMURTL back in ‘83 (whoa - I'm getting old...).

Anyway, I hope you use MMURTL V1.0 to learn, enjoy and explore. You have my permission to use any of the
code (with the exception of the C compiler) for any project you desire - public or private - so long as you have
purchased a copy of the book. My way of saying thanks. The only requirement is that you give some visible credit
to MMURTL for the assistance with your project.

Most sincerely,
 Richard A. Burgess
 Alexandria Virginia, 1999

MMURTL V1.0 Page 3 of 667

Chapter 1, Introduction

Overview

Computer programmers and software engineers work with computer operating systems
every day. They use them, they work with them, and they even work "around" them to
get their jobs done. If you’re an experienced programmer, I’m willing to bet you’ve
pondered changes you would make to operating systems you use, or even thought about
what you would build and design into one if you were to write your own.

You don’t have to be Albert Einstein to figure out that many labor years go into writing a
computer operating system. You also don’t have to be Einstein to write one, although I’m
sure it would have increased my productivity a little while writing my own.
Unfortunately, I have Albert’s absent-mindedness, not his IQ.

Late in 1989 I undertook the task of writing a computer operating system. What I
discovered is that most of the books about operating system design are very heavy on
general theory and existing designs, but very light on specifics, code, and advice into the
seemingly endless tasks facing someone that really wants to sit down and create one. I’m
not knocking the authors of these books; I’ve learned a lot from all that I’ve read. It just
seemed there should be a more "down to earth" book that documents what you need to
know to get the job done.

Writing my own operating system has turned into a very personal thing for me. I have
been involved in many large software projects where others conceived the, and I was to
turn them into working code and documentation. In the case of my own operating
system, I set the ground rules. I decided what stayed and what went. I determined the
specifications for the final product.

When I started out, I thought the “specs” would be the easy part. I would just make a list,
do some research on each of the desirables, and begin coding. NOT SO FAST THERE,
BUCKO!

I may not have to tell you this if you've done some serious "code cutting," but the
simplest items on the wish list for a piece of software can add years to the critical path for
research and development, especially if you have a huge programming team of one
person.

My first list of desirables looked like a kid's wish list for Santa Claus. I hadn't been a
good-enough boy to get all those things (and the average life expectancy of a male human
being wouldn't allow it either). Realizing this, I whittled away to find a basic set of
ingredients that constitute the real make-up of the "guts" of operating systems. The most
obvious of these, as viewed by the outside programmer, are the tasking model, memory
model, and the programming interface. As coding began, certain not-so-obvious

MMURTL V1.0 Page 4 of 667

ingredients came into play such as the OS-to-hardware interface, portability issues size
and speed.

One of the single most obvious concerns for commercial operating system developers is
compatibility. If you write something that no one can use, it’s unlikely they’ll use it. Each
of the versions of MS-DOS that were produced had to be able to run software written for
previous versions. When OS/2 was first developed, the "DOS-BOX" was a bad joke. It
didn’t provide the needed compatibility to run programs that business depended on. In the
early days, Unix had a somewhat more luxurious life, because source-code compatibility
was the main objective; you were pretty much expected to recompile something if you
wanted it to run on your particular flavor of the system. I’m sure you’ve noticed that this
has changed substantially.

I did not intend to let compatibility issues drive my design decisions. I was not out to
compete with the likes of Microsoft, IBM, or Sun. You, however, may want compatibility
if you intend to write your own operating system. It’s up to you. One thing about desiring
compatibility is that the interfaces are all well documented. You don’t need to design your
own. But I wanted a small API. That was part of my wish list.

Along my somewhat twisted journey of operating-system design and implementation, I
have documented what it takes to really write one, and I’ve included the "unfinished"
product for you to use with very few limitations or restrictions. Even though I refer to it
as unfinished, it’s a complete system. It’s my belief that when a piece of software is
"finished" it’s probably time to replace it due to obsolescence or lack of maintenance.

What This Book Is About

In this book I discuss the major topics of designing your own OS: the tasking model, the
memory model, programming interfaces, hardware interface, portability issues, size and
speed. I back up these discussions showing you what I decided on (for my own system),
and then finally discuss my code in great detail. Your wish list may not be exactly like
mine. In fact, I’m sure it won’t. For instance, you’ll notice the ever so popular term "object
oriented" blatantly missing from any of my discussions. This was completely intentional.
It clouds far too many real issues these days. Don’t get me wrong - I’m an avid C++ and
OOP user. But that’s not what this book is about, so I’ve removed the mystique. Once
again, your goals may be different.

Throughout this book, I use the operating system I developed (MMURTL) to help
explain some of the topics I discuss. You can use pieces of it, ideas from it, or all of it if
you wish to write your own.

I have included the complete source code to my 32-bit; message based, multitasking,
real-time, operating system (MMURTL) which is designed for the Intel 386/486/Pentium
processors on the PC Industry Standard Architecture (ISA) platforms.

MMURTL V1.0 Page 5 of 667

The source code, written in 32-bit Intel based assembly language and C, along with all
the tools necessary to build, modify, and use the operating system are included on the
accompanying CD-ROM. The hardware requirement section below tells you what you
need to run MMURTL and use the tools I have developed. It’s not really required if you
decide on a different platform and simply use this book as a reference.

One thing I didn’t put on my wish list was documentation. I always thought that many
systems lacked adequate documentation (and most of it was poorly written). I wanted to
know more about how the system worked internally, which I felt, would help me write
better application software for it. For this reason, I have completely documented every
facet of my computer operating system and included it here. You may or may not want to
do this for your system, but it was a "must" for me. I think you will find that it will help
you if you intend to write your own. Well-commented code examples are worth ten
times their weight in generic theory or simple text-based pseudo-algorithms.

The “Architecture and General Theory” section of this book along with the sections that
are specific the MMURTL operating system, will provide the information for you to use
my system as is, redesign it to meet your requirements, or write your own. If you don't
like the way something in my system is designed or implemented, change it to suit your
needs. The only legal restriction placed on your use of the source code is that you may
not sell it or give it away.

Who Should Use This Book

This book is for you if you are a professional programmer or a serious hobbyist, and you
have an interest in any of the following topics:

• Writing a 32-bit microcomputer operating system
• 80386/486/Pentium 32 bit assembly language (an assembler is included).
• The C Programming language (a C compiler is included
• Intel 80386/486/Pentium Paged memory operation and management using the

processor paging hardware
• Intel 80386/486/Pentium 32-bit hardware and software task management using

the processor hardware task management facilities, Embedded or dedicated
systems using the 32 bit PC ISA architecture real-time, message based operating
systems

• PC Industry Standard Architecture hardware management including: DMA
Controllers, Hardware Timers, Priority Interrupt Controller Units, Serial and
Parallel Ports, Hard/Floppy disk controllers

• File systems (a DOS File Allocation Table compatible file system in C is
included)

You may note that throughout this book I refer to the 386, 486, and Pentium processors
as if they were all the same. If you know a fair amount about the Intel 32-bit processors,
you know that a quantum leap was made between the 286 and 386 processors. This was
the 16- to 32-bit jump.

MMURTL V1.0 Page 6 of 667

The 486 and Pentium series have maintained compatibility with the 386-instruction set.
Even though they have added speed, a few more instructions, and some serious "turbo"
modifications, they are effectively super-386 processors. In my opinion, the next
quantum leap really hasn’t been made, even though the Pentium provides 64-bit access.

My Basic Design Goals (yours may vary)

My initial desires that went into the design of my own operating system will help you
understand what I faced, and what my end result was. If you’re going to write your own, I
recommend you take care not to make it an "endless" list. You may start with my list and
modify it, or start one from scratch. You can also gather some serious insight to my wish
list in chapter 2, General Discussion and Background.

Here was my wish list:

• True Multitasking - Not just task switching between programs, or even sharing
the processor between multiple programs loaded in memory, but real multi-
threading - the ability for a single program to create several threads of execution
that could communicate and synchronize with each other while carrying out
individual tasks. I’ll discuss some of your options, and also what I decided on, in
chapters 3 (Tasking Model), and 4 (Interprocess Communications).

• Real-time operation - The ability to react to outside events in real time. This
design goal demanded MMURTL to be message based. The messaging system
would be the heart of the kernel. Synchronization of the messages would be the
basis for effective CPU utilization (the Tasking Model). Real-time operation may
not even be on your list of requirements, but I think you’ll see the push in industry
is towards real-time systems, and for a very good reason. We, the humans, are
outside events. We want the system to react to us. This is also discussed in
chapters 3 (Tasking Model), and 4 (Interprocess Communications).

• Client/Server design - The ability to share services with multiple client
applications (on the same machine or across a network). A message-based
operating system seemed the best way to do this. I added the Request and
Respond message types to the more common Send and Wait found on most
message based systems. Message agents could be added to any platform. If you
don’t have this requirement, the Request and Respond primitives could be
removed, but I don’t recommend it. I discuss this in chapter 4 (Interprocess
Communications).

• Common affordable hardware platform with minimal hardware
requirements - The most common 32-bit platform in the world is the PC ISA
platform. How many do you think are out there? Millions! How much does a
386SX cost these days? A little more than dirt, or maybe a little less? Of course,
you may have a different platform in mind. The hardware interface may radically
change based on your choice. I discuss this in chapter 6, “The Hardware
Interface.”

MMURTL V1.0 Page 7 of 667

• Flat 32-Bit Virtual Memory Model - Those of you that program on the Intel
processors know all about segmentation and the headaches it can cause (Not to
mention Expanded, Extended, LIM, UMBs, HIMEM, LOMEM,
YOURMOTHERSMEM, and who knows what other memory schemes and
definitions are out there). Computers using the Intel compatible 32-bit processors
are cheap, and most of them are grossly under used. MMURTL would use the
memory paging capabilities of 386/486 processors to provide an EASY 32-bit flat
address space for each application running on the system. Chapter 5 covers
memory management, but not all the options. Many detailed books have been
written on schemes for memory management, and I stuck with a very simple
paged model that made use of the Intel hardware. You could go nuts here and
throw in the kitchen sink if desired.

• Easy programming - The easiest way to interface to an operating system from a
procedural language, such as C or Pascal, is with a procedural interface. A
procedural interface directly into the operating system (with no intermediate
library) is the easiest there is. Simple descriptive names of procedures and
structures are used throughout the system. I also wanted to maintain a small,
uncluttered Applications Programming Interface (API) specification, adding only
the necessary calls to get the job done. Power without BLOAT... the right mix of
capability and simplicity. I would shoot for less than 200 basic public functions. I
discuss some of your options in chapter 8, “Programming Interfaces.”

• Protection from other programs - But not the programmer. I wanted an OS
that would prevent another program from taking the system down, yet allow us
the power to do what we wanted, if we knew how. This could be a function of the
hardware as well as the software, and the techniques may change based on your
platform and processor of choice.

• Use the CPU Instruction Set as Designed - Many languages and operating
systems ported between processors tend to ignore many of the finer capabilities of
the target processor. I didn't want to do this. I use the stack, calling conventions,
hardware paging, and task management native to the Intel 32-bit x86 series of
processors. I have attempted to isolate the API from the hardware as much as
possible (for future source code portability). You may want your operating system
to run on another platform or even another processor. If it is another processor,
many of the items that I use and discuss may not apply. I take a generic look at it
in chapter 6, “The Hardware Interface,” and chapter 8, “Programming Interfaces.”

• Simplicity - Keep the system as simple as possible, yet powerful enough to get
the job done. We also wanted to reduce the "jargon" level and minimize the
number of terse, archaic names and labels so often used in the computer industry.

A Brief Description of MMURTL

From my wish list above, I put together my own operating system. I will describe it to
you here so that you can see what I ended up with based on my list.

MMURTL V1.0 Page 8 of 667

MMURTL (pronounced like the girl’s name Myrtle) is a 32-bit, Message based,
Multitasking, Real-Time, operating system designed around the Intel 80386 and 80486
processors on the PC Industry Standard Architecture (ISA) platforms. The name is an
acronym for Message based MUltitasking, Real-Time, kerneL. If you don’t like my
acronym, make up your own! But, I warn you: Acronyms are in short supply in the
computer industry.

MMURTL is designed to run on most 32-bit ISA PCs in existence. Yes, this means it
will even run on an 80386SX with one megabyte of RAM (although I recommend 2Mb).
Then again, it runs rather well on a Pentium with 24 MB of RAM too. If you intend to
run MMURTL, or use any of the tools I included, see the “Hardware Requirements”
section later in this chapter.
MMURTL is not designed to be compatible with today's popular operating systems, nor
is it intended to directly replace them. It is RADICALLY different in that SIMPLICITY
was one of my prime design goals.

If you don't want to start from scratch, or you have an embedded application for
MMURTL, the tools, the code, and the information you need are all contained here so
you can make MMURTL into exactly what you want. Sections of the source code will,
no doubt, be of value in your other programming projects as well.

Uses for MMURTL

If you are not interested in writing your own operating system (it CAN be a serious time-
sink), and you want to use MMURTL as is (or with minor modifications), here's what I
see MMURTL being used for:

• MMURTL can be considered a general-purpose operating system and dedicated
vertical applications are an ideal use.

• It is an ideal learning and/or reference tool for programmers working in 32-bit

environments on the Intel 32-bit, x86/Pentium processors, even if they aren't on
ISA platforms or using message based operating systems.

• MMURTL can be the foundation for a powerful dedicated communications

system, or as a dedicated interface between existing systems. The real-time
nature of MMURTL makes it ideal to handle large numbers of interrupts and
communications tasks very efficiently.

• Dedicated, complex equipment control is not beyond MMURTL's capabilities.

• Vertical applications of any kind can use MMURTL where a character based

color or monochrome VGA text interface is suitable.

MMURTL V1.0 Page 9 of 667

• MMURTL would also be suitable for ROM based embedded systems (with a few
minor changes). One of the goals was to keep the basic system under 192Kb (a
maximum of 128K of code, and 64K of data), excluding dynamic allocation of
system structures after loading. The OS could be moved from ROM to RAM, and
the initialization entry point jumped to. If you’re not worried about memory
consumption, expand it to your heart’s desire.

• In the educational field, MMURTL can be used to teach multitasking theory. The

heavily commented source code and in-depth theory covered in this book makes it
ideal for a learning/teaching tool, or for general reference.

• And of course, MMURTL can be the basis or a good starting point for you very

own microcomputer operating system.

Similarities to Other Operating Systems

MMURTL is not really like any other OS that I can think of. It’s closest relative is CTOS
(Unisys), but only a distant cousin, and only because of the similar kernel messaging
schemes. Your creation will also take on a personality of it’s own, I’m sure.
The flat memory model implementation is a little like OS/2 2.x (IBM), but still not
enough that you could ever confuse the two. Some of the public and internal calls may
resemble UNIX a little, (or even MS-DOS), but still, not at all the same.

The file system included with MMURTL uses the MS-DOS disk structures, but only out
of convenience. It certainly wasn’t because I liked the design or file name limitations.
There are some 100 million+ disks out there with MS-DOS FAT formats. This makes it
easy to use MMURTL, and more importantly, eases the development burden. No
reformatting or partitioning your disks. You simply run the MMURTL OS loader from
DOS and the system boots. Rebooting back to DOS is a few keystrokes away. If you
want to run DOS, that is.

MMURTL has it’s own loader to boot from a disk to eliminate the need for MS-DOS
altogether. If you don’t want to write a completely new operating system, some serious
fun can had by writing a much better file system than I have included.

Hardware Requirements

This section describes the hardware required to run MMURTL (as included) and to work
with the code and tools I have provided. If you intend to build on a platform other that
described here, you can ignore this section.

The hardware (computer motherboard and bus design) must be PC ISA (Industry
Standard Architecture), or EISA. Other 16/32 bit bus designs may also work, but minor
changes to specialized interface hardware may be required.

MMURTL V1.0 Page 10 of 667

The processor must be an Intel 80386, 80486, Pentium, or one of the many clones in
existence that executes the full 80386 instruction set. This includes Cyrix, AMD, IBM
and other clone processors.

VGA videotext (monochrome or color) is required. MMURTL accesses the VGA text
memory in color text mode (which is the default mode set up in the boot ROM if you
have a VGA adapter).

One Megabyte of RAM is required, 2 MB (or more) is recommended. MMURTL will
handle up to 64 Megs of RAM. MMURTL itself uses about 300K after complete
initialization.

The Floppy disk controller must be compatible with the original IBM AT controller
specification (most are). Both 5.25" and 3.5" are supported. The hard disk controller
must be MFM or IDE (Integrated Drive Electronics). IDE is preferred. Some RLL
controllers will not work properly with the current hard disk device driver.

A standard 101 key AT keyboard and controller (or equivalent) is required.
The A20 Address Gate line must be controllable as documented in the IBM-PC AT
hardware manual, via the keyboard serial controller (most are, but a few are not). If yours
isn’t, you can change the code as needed, based on your system manufacturer’s
documentation (if you can get your hands on it).

8250, 16450 or 16550 serial controllers are required for the serial ports (if used).

The parallel port should follow the standard IBM AT parallel port specification. Most I
have found exceed this specification and are fully compatible.

MMURTL does NOT use the BIOS code on these machines. Full 32-bit device drivers
control all hardware. Hence, BIOS types and versions don’t matter.

MMURTL V1.0 Page 11 of 667

Chapter 2, General Discussion and Background

This section discusses the actual chore of writing an operating system, as well what may
influence your design. I wrote one over a period of almost 5 years. Things change a lot in the
industry in five years, but I’m happy to find that many of the concepts I was interested in have
become a little more popular (small tight kernels, simplified memory management, client server
designs, etc.). Reading this chapter will help you understand why I did things a certain way; my
methods may not seem obvious to the casual observer. I also give you an idea of the steps
involved in writing an operating system.

Where Does One Begin?

Where does one begin when setting out to write a computer operating system? It’s not really an
easy question to answer. But the history of MMURTL and why certain decisions were made can
be valuable to you if you intend to dig into the source code, write your own operating system, or
even just use MMURTL the way it is.

A friend of mine and I began by day dreaming over brown bag lunches in a lab environment. We
bantered back and forth about what we would build and design into a microcomputer operating
system if we had the time and inclination to write one. This lead to a fairly concrete set of
design goals that I whittled down to a size I thought I could accomplish in two years or so. That
was 1989. As you can see, Fud’s Law of Software Design Time Estimates came into play rather
heavily here. You know the adage (or a similar one): Take the time estimate, multiply by two
and add 25 percent for the unexpected. That worked out just about right. Five years later, here it
is. I hope this book will shave several years off of your development effort.

In Chapter 1, “Overview,” I covered what my final design goals were. I have tried to stick with
them as close as possible without scrimping on power or over-complicating it to the point of it
becoming a maintenance headache. Far too often, a piece of software becomes too complex to
maintain efficiently without an army of programmers. It usually also happens that software will
expand to fill all available memory (and more!). I would not let this happen.

You Are Where You Were When

The heading above sounds a little funny (it was the title of a popular book a few years back, and
borrowed with great respect, I might add). It does, however, make a lot of sense. MMURTL's
design is influenced by all of my experiences with software and hardware, my schooling, my
reading of various publications and periodicals, and what I have been introduced to by friends
and coworkers. Even a course titled Structured Programming with FORTRAN 77, which I took
on-line from the University of Minnesota in 1982, has had an effect. I have no doubt that your
background would have a major effect on your own design goals for such a system. Borrow from
mine, add, take away, improve, and just make it better if you have the desire. What I don't know

MMURTL V1.0 Page 12 of 667

fills the Library of Congress quite nicely, and "Where You Were When" will certainly give you a
different perspective on what you would want in your own system. Every little thing you’ve run
across will, no doubt, affect its design.

My first introduction to computers was 1976 onboard a ship in the US Coast Guard. I was trained
and tasked to maintain (repair and operate) a Honeywell DDP-516 computer system. It had a
"huge" 8K of hand-wound core memory and was as big as a refrigerator (including icemaker). It
was a 32-bit system, and it was very intriguing (even though punching in hundreds of octal codes
on the front panel made my fingers hurt). The term "register" has a whole new meaning when
you are looking for a bit that intermittently drops out in a piece of hardware that size. It whet my
whistle, and from there I did everything I could to get into the "computer science" end of life. I
bought many little computers (remember the Altair 8800 and the TRS-80 Model I? I know, you
might not want to). I spent 20 years in the military and took computer science courses when time
allowed (Uncle Sam has this tendency to move military people around every two or so years, for
no apparent reason).

In 1981 I was introduced to a computer system made by a small company named Convergent
Technologies (since swallowed by Unisys, a.k.a. Burroughs and Sperry, merged). It was an Intel
8086-based system and ran a multitasking, real-time operating system from the very start (called
CTOS). Imagine an 8086 based system with an eight-inch 10-MB hard drive costing $20,000.
This was a good while before I was ever introduced to PC-DOS or MS-DOS. In fact, the
convergent hardware and the CTOS operating system reached the market at about the same time.

After I got involved with the IBM PC, I kept looking for the rich set of kernel primitives I had
become accustomed to for interprocess communications and task management, but as you well
know, there was no such thing. This lack was disappointing because I wanted a multitasking OS
running on a piece of hardware I could afford to own! In this early introduction to CTOS, I also
tasted "real-time" operation in a multitasking environment. The ability for a programmer to
determine what was important while the software was running, and also the luxury of changing
tasks based on outside events in a timely manner, was a must. There was no turning back.
Nothing about my operating system is very new and exciting. The messaging is based on theory
that has been around since the early 1970’s. It is just now becoming popular. People are just now
seeing the advantages of message-based operating systems. Message-based, modular micro
kernels seem to be coming of age.

The Development Platform and the Tools

My desire to develop an operating system to run on an inexpensive, popular platform, combined
with my experience on the Intel X86 processors, clinched my decision on where to start: It would
definitely be ISA 386-based machines (the 486 was in it’s infancy). The next major decision was
the software development environment. Again, access and familiarity played a role in deciding
the tools that I would use. MS-DOS was everywhere, like a bad virus. I had two computers at
that time (386DX and a 386SX) still running MS-DOS and not enough memory or horsepower to
run UNIX, or even OS/2, which at the time was still 16-bits anyway. I thought about other
processors. I purchased technical documentation for Motorola’s 68000 series, National

MMURTL V1.0 Page 13 of 667

Semiconductor’s N80000 series, and a few others. The popularity of the Intel processor and the
PC compatible systems was, however, a lure that could not be suppressed.

As you may be aware, one of the first tools required on any new system is the assembler. It’s the
place to start. Utilities and compilers are usually the next things to be designed, or ported to a
system. Not having to start from scratch was a major advantage. Having assembler’s available for
the processor from the start made my job a lot easier. Of course, in the process of using these
other tools, I found some serious bugs in them when used for 32-bit development. The 32-bit
capabilities were added to these assemblers to take advantage of the capabilities of the new
processors, but not many people were using them for 32-bit development five or six years ago on
the Intel based platforms. Operating system developers, people porting UNIX systems and those
building 32-bit DOS extenders were the bulk of the users.

I began with Microsoft’s assembler (version 5.0) and later moved to 5.1. Two years later I ran
into problems with the Microsoft linker and even some of the 32-bit instructions with the
assembler, these problems pretty much forced the move to all Borland-tools. Then those were the
2.x assembler and 2.x linker. I’m not a Borland salesman, but the tools just worked better.

There were actually several advantages to using MS-DOS in real mode during development.
Being in real mode and not having to worry about circumventing protection mechanisms to try
out 32-bit processor instructions actually lead to a reduced development cycle in the early stages.

The Chicken and the Egg

The egg is first... maybe. Trying to see the exact development path was not always easy. In fact,
at times it was quite difficult. I wanted the finished product to have it’s own development
environment - including assembler, compiler, and utilities - yet I needed to have them in the MS-
DOS environment to build the operating system. I wanted to eventually port them to the finished
operating system. How many of you have heard of or remember ISIS or PLM-86? These were
some of the very first environments for the early Intel processors - all but ancient history now.

It was definitely a "chicken-and-egg" situation. You need the 32-bit OS to run the 32-bit tools,
yet you need the 32-bit tools to develop the 32-bit OS. It can be a little confusing and frustrating.
Once again, MS-DOS and the capability for the Intel processors to execute some 32-bit
instructions in real mode (while still in 16-bit code segments) made life a lot easier. I could
actually experiment with 32-bit instructions without having to move the processor into protected
mode and without having to define 32-bit segments. Memory access was limited, but the tools
worked. I even put a 32-bit C compiler in the public domain for MS-DOS as freeware. It was
limited to the small memory model, but it worked nonetheless.

I really do hate reinventing the wheel, however, in the case of having the source code to an
assembler I was comfortable with, I really had no choice. Some assemblers were available in the
"public domain" but came with restrictions for use, and they didn’t execute all the instructions I
needed anyway. I even called and inquired about purchasing limited source rights to some tools

MMURTL V1.0 Page 14 of 667

from the major software vendors. Needless to say, the cost was prohibitive (they mentioned
dollar figures with five and six digits in them... Now THAT’S a digital nightmare.)

This lead to the development of my own 32-bit assembler. Developing this assembler was, in
itself, a major task. That set me back four months, at least. But it gave me some serious insight
into the operation of the Intel processor. The source code to this assembler (DASM) is included
with this book on the CD-ROM. The prohibitive costs also led to the development of a 32-bit C
compiler, a disassembler, and a few other minor utilities. The C compiler produces assembly
language, which is fed to the assembler. There is no linker. That’s right, no linker. It’s simply not
needed. To fully understand this, you will need to read chapter 28, “DASM: A 32-Bit Intel-
Based Assembler.” Assembly language has its place in the world. But there is nothing like a
high level language to speed development and make maintenance easier.

I actually prefer Pascal and Modula over C from a maintenance standpoint. I was into Pascal
long before I was into C. I think many people started there. Those that have to maintain code or
read code produced by others understand the advantages if they get past the "popularity concept".
C can be made almost unreadable by the macros and some of the language constructs, even
though ANSI standards have fixed much of it. But C's big strength lies in its capability to be
ported easily. Most of the machine-dependent items are left completely external to the language
in libraries that you may, or may not, want or need. I don't like the calling conventions used by C
compilers; parameters passed from right to left and the fact that the caller cleans the stack. This
is obviously for variable length parameter blocks, but it leads to some serious trouble on
occasion. Nothing is harder to troubleshoot than a stack gone haywire. MMURTL uses the
Pascal conventions (refereed to as PLM calling conventions in the early Intel days). Parameters
are passed left to right, and the called function cleans the stack. I mention this now to explain my
need to do some serious C compiler work.

I started with a public-domain version of Small-C (which has been around quite a while), took a
good look at Dave Dunfield's excellent Micro-C compiler, but I pretty much built from scratch.
Some very important pieces are still missing from the compiler, but another port is in the works.
The details of CM-32 (C-Minus 32) are discussed in chapter 29, “CM32: A 32-Bit C Compiler.”

Early Hardware Investigation

I taught Computer Electronics Technology for two years at the Computer Learning Center of
Washington, DC. I have worked for years with various forms of hardware, including most of the
digital logic families (ECL, TTL, etc.). I dealt with both the electrical and timing characteristics,
as well as the software control of these devices. The thought of controlling all of the hardware
(Timers, DMA, Communications controllers, etc.) in the machine was actually a little exciting.
The biggest problem was accumulating all of the technical documentation in adequate detail to
ensure it was done right. If you've ever looked though technical manuals that are supposed to
give you "all" of the information you need to work with these integrated circuits, you know that
it's usually NOT everything you need. (Unless you were the person that wrote that particular
manual, in which case, you understood it perfectly)

MMURTL V1.0 Page 15 of 667

You will need to accumulate a sizable library of technical documentation for your target
hardware platform if you intend to write an operating system, or even port MMURTL to it.

I’m not going to tell you I did some disassembly of some BIOS code; I plead the "Fifth" on this.
Besides, IBM published theirs. BIOS code brings new meaning to the words "spaghetti code."
It’s not that the programmer’s that put it together aren’t top quality, it’s the limitations of size
(memory constraints) and possibly the need to protect trade secrets that create the spaghetti-code
effect. Following superfluous JMP instructions is not my idea of a pleasant afternoon.

Many different books, documents, articles, and technical manuals were used throughout the early
development of my operating system. The IBM PC-AT and Personal System/2 Technical
Reference Manuals were a must. They give you the overall picture of how everything in the
system ties together. Computer chip manufacturers, such as Chips & Technologies, supply
excellent little documents that give even finer details on their particular implementation of the
AT series ISA logic devices. These documents are usually free.

All of the ISA type computer systems use VLSI integrated circuits (Very Large Scale
Integration) that combine and perform most of the functions that were done with smaller,
discreet devices in the IBM AT system. I keep referring to the IBM AT system even though it
was only an 80286 (16-bit architecture). I do so because it’s bus, interface design, and ancillary
logic design form the basis for the 32-bit ISA internal architecture. In fact, as you may
understand, the external bus interface on the ISA machines is still 16 bits. It is tied to the internal
bus, which is 32 bits for the most part. SX machines still have 16-bit memory access limitations,
but this is transparent to the programmer, even the operating system writer. Many bus designs
now out take care of this problem (PCI, EISA, etc.).

This made the IBM designs the natural place to start. It was proven that "PC" style computer
manufacturers that deviated from this hardware design to the point of any real low-level software
incompatibility usually weren’t around too long. Even machines that were technically superior in
most every respect died horrible deaths (remember the Tandy 2000?).

MS-DOS didn’t really have to worry about the specific hardware implementation because the
BIOS software/firmware writers and designers took care of those details. But as you may be
aware, the BIOS code is not 32-bit (not even on 32-bit machines). It is also not designed to be of
any real value in most true multitasking environments. A variety of more recent operating
systems go directly to a lot of the hardware just to get things done more efficiently, anyway (e.g.,
OS/2 version 2.x, Windows version 3.x, all implementations of UNIX). I knew from the start that
this would be a necessity. "Thunking" was out of the question. [Thunking is when you interface
32- and 16-bit code and data. An example would be making a call to a 32-bit section of code,
from a 16-bit code segment. This generally involves manipulating the stack or registers
depending on the calling conventions used in the destination code, as well as the stack storage.
Some processors (such as the Intel 32-bit X86 series) force a specific element size for the stack.]

Much of the early development was a series of small test programs to ensure I knew how to
control all of the hardware such as Direct memory Access (DMA), timers, and the Priority
Interrupt Controller Unit (PICU). This easily consumed the first six months. During this time, I

MMURTL V1.0 Page 16 of 667

was also building the kernel and auxiliary functions that would be required to make the first
executable version of an operating system. The second six months was spent moving in and out
of protected mode and writing small programs that used 32-bit segments. If you use Intel-based
platforms, this is a year you won’t have to go through, because of what you get on this book’s
CD-ROM.

My initial thought on memory management centered on segmentation, but not a fully segmented
model - two segments per program and two for the OS, all based on their own selectors. This
would have given us a zero-based addressable memory area for all code and data access for
every program. It would have appeared as a flat memory space to all the applications, but it
presented several serious complications. The largest of which would mean that all memory
access would be based on 48-bit (far) pointers. The thought was rather sickening, and some
initial testing showed that it noticeably slowed down program execution. When the 386/486
loads a segment register, a speed penalty is paid because of the hardware overhead (loading
shadow registers, etc.). It was a "kinder, gentler" environment I was after, anyway. The
segmented memory idea was canned, and I went straight to fully paged memory allocation for
the operating system. It has turned out very nicely, as you will see.

One other consideration on the memory model is ADDRESS ALIASING. If two programs in
memory must exchange data and they are based on different selectors, you must create an alias
selector to be used by one of the programs. In a paged system, aliasing is also required, but it's
not at as complicated. In chapter 5, Memory Management, I discuss several options you have.

It took almost two years to get a simple model up and running. This simple model could allocate
and manage memory, and had only the most rudimentary form of messaging (Send and Wait).

There was no loader, no way to get test programs into the system. There wasn't even a file
system! Test programs were actually built as small parts of the operating system code, and the
entire system was rebuilt for each test. This was time-consuming, but necessary to prove some of
my theories and hunches. All of the early test programs were in assembler, of course. If you start
from scratch on a different processor you will go through similar contortions. If you intend to use
the Intel processors and start with MMURTL or the information presented in this book, you'll be
ahead of the game.

The Real Task at Hand (Pun intended)

All of the hardware details aside, my original goal was a multitasking operating system that was
not a huge pig, but instead a lean, powerful, easy to use system with a tremendous amount of
documentation. I had to meet my design goals, and the primary emphasis was on the kernel and
all that that implies. If you write your own system, don't lose sight of the forest for the trees. I
touched on what I wanted in the overview, but putting in on paper and getting it to run are two
very different things.

MMURTL V1.0 Page 17 of 667

A Starting Point

If you have truly contemplated writing an operating system, you know that it can be a very
daunting task. I wish there had been some concrete information on really where to start, but there
wasn’t. The books I have purchased on operating system design gave me a vast amount of
insight into the major theories, and overall concepts concerning operating system design, but
they just didn't say, "You start here, at the beginning of the yellow brick road."

It is difficult for me to do this also, because I don't know exactly where you're coming from, how
much knowledge you have, or how much time you really have to invest. But I'll try.

The theory behind what you want is the key to a good design. Know your desired application. If
you are writing an operating system for the learning experience (and many people do), the actual
application may not be so important, and you may find you really have something when you're
done with it. Or at least when you get it working, you'll NEVER really be done with it. Your
target application will help you determine what is important to you. For example, if you are
interested in embedded applications for equipment control, you may want to concentrate on the
device and hardware interface in more detail. I was really interested in communications. You'll
probably be able to see that as you read further into this book.

The easy way out would be to take a working operating system and modify it to suite you. I have
provided such an operating system with this book. But, it is by no means the only operating
system source code available. Of course, I'm not going to recommend any others to you. If you
choose to modify an existing operating system, study what you have and make sure you
completely understand it before making modifications. I say this from experience. Many times I
have taken a piece of software that I didn't fully understand and "gutted" it, only to find out that
it had incorporated many of the pieces I needed – I simply hadn’t understood them at the time. If
this has never happened to you, I envy you.

The Critical Path

Along your journey, you'll find that there are major items to be accomplished, and there will also
be background noise. If you've ever done any large-scale project management, you know that
certain items in a project must work, or theories must be proved in order for you to continue
along the projected path. This is called the critical path. I'll give you a list of these items in the
approximate order that I found were required while writing my system.

• Decide on your basic models. This includes the tasking model, memory model and
basic programming interface. You may need to choose a hardware platform prior to
making your memory model concrete. Chapter 3 and 4 (Tasking Model and Interprocess
Communications) will give you plenty of food for thought on the tasking model.

• Select your hardware platform. It may be RISC, it may be CISC, but whatever you
decide on, get to know it very well. Try to ensure it will still be in production when you
think you'll be done with your system. This may sound a little humorous, but I'm very
serious. Things change pretty rapidly in the computer industry.

MMURTL V1.0 Page 18 of 667

• Investigate your tools. Get to know your assemblers, compilers and utilities. Even
though you may think that the programmers that wrote those tools know all there is to
know about them, you will no doubt find bugs. I blamed myself several times for
problems I thought were mine but were not.

• Play with the hardware Ensure you understand how to control it. This includes
understanding some of the more esoteric processor commands. Operating systems use
processor instructions and hardware commands that applications and even device drivers
simply never use. Document the problems, the discoveries - anything that you think you’ll
need to remember. Chapter 6 (The Hardware Interface) will give you some hints on this.
There are so many platforms out there, hints are about all I CAN give you, unless you go
with the same hardware platform I did.

• Go for the kernel. If you have to build a prototype running under another operating
system, do it. It will be worth the time spent. You can then “port” the prototype.

• Memory management is next. This can be tricky because you may be playing with
hardware and software in equal quantities. The level of complexity, of course, will
depend on the memory model you choose. In chapter 5 (Memory Management) I give
you some options. I'll tell you the easiest, and also dive into some more challenging
possibilities.

If you've gotten past the fun parts (kernel and memory), the rest is real work. You can pretty
much take these pieces - everything from device drivers, garbage collection, and overall program
management – as you see fit.

Working Attitude

Set your goals. But don't set them too high. I had my wish list well in advance. Creating a
realistic wish list may be one of the hardest jobs. Don't wish for a Porche if what you need is a
good, dependable pickup truck. Sure the Porche is nice…but think of the maintenance (and can
you haul firewood in it?)Make sure your tools work. Make certain you understand the
capabilities and limitations of them. I spent a good six months playing with assemblers,
compilers, and utilities to ensure I was “armed and dangerous.” Once satisfied, I moved on from
there. As I mentioned above, I actually had to switch assemblers in midstream. Problems with
programming tools were something I couldn't see in advance. These tools include documentation
for the hardware, and plenty of "theory food" for the engine (your brain).

Work with small, easily digestible chunks. Even if you have to write four or five small test
programs to ensure each added piece functions correctly, it's worth the time. Nothing is worse
than finding out that the foundation of your pyramid was built on marshmallows. When writing
my memory-allocation routines I must have written 30 small programs (many that intentionally
didn't act correctly) to ensure I had what I thought I had. I'll admit that I had to do some major
backtracking a time or two.

MMURTL V1.0 Page 19 of 667

Document as you go. I lay out my notes for what I want, I write the documentation, and then I
write the code. Sounds backwards? It is. I actually wrote major portions of my programming
documentation before the system was even usable, but it gave me great insight into what a
programmer would see from the outside.

Good luck. But really, it won’t be luck. It will be blood, sweat and maybe some tears, all the way.

MMURTL V1.0 Page 20 of 667

Chapter 3, The Tasking Model

This chapter discusses the tasking model and things that have an affect on it. Most of the
discussion centers on resource management, and more specifically, CPU utilization. After all,
resource management is supposed to be what a computer operating system provides you.

Terms We Should Agree On

One thing the computer industry lacks is a common language, and I’m not talking about
programming languages. One computer term may mean six different things to six different
people. Most of the problem is caused by hype and deceptive advertising, but some of it can also
be attributed to laziness (yes, I admit some guilt here too). People use terms in everyday
conversation without really trying to find out what they mean, or at least coming to agreement on
them. Before I begin a general discussion or cover your options on a tasking model, I have to
define some terms just to make sure we’re on common ground. You may not agree with the
definitions, but I hope you will accept them, at least temporarily, while your reading this book or
working with MMURTL.

TASK - A task is an independently scheduled thread of execution. You can transform the same
50 processor instructions in memory into 20 independent tasks. When a task is suspended from
execution, its hardware and software state are saved while the next task’s state is restored and
then executed. A single computer program can have one or more tasks. Some operating systems
call a task a “process,” while others call it a “thread.” In most instances I call it a TASK. Some
documentation, however, may use other words that mean the same thing such as "interprocess
communications," which means communications between tasks.

Generally, I have seen the term thread applied to additional tasks all belonging to one program.
But this is not cast in stone either. It really depends on the documentation with the operating
system you are using. If you write your own, be specific about it. Tell the programmers what you
mean.

I use the same definition as the Intel 80386 System Software Writer's Guide and the 80386 and
80486 Programmer's Reference Manuals. This is convenient if you want to refer to these
documents while reading this book. I literally destroyed two copies of each of these books while
writing MMURTL (pages falling out, coffee and soda spilled on them, more highlighter and
chicken scratching than you can imagine). The Intel based hardware is by far the most available
and least expensive, so I imagine most of you will be working with it.

KERNEL - This term is not disputed very much, but it is used a lot in the computer industry. It
also seems that a lot of people use the term and they don't even know what it is. The kernel of an
operating system is the code that is directly responsible for the tasking model. In other words, it
is responsible for the way the CPU's time is allocated. MMURTL has a very small amount of
code that is responsible for the tasking model. In it's executable form; it probably isn't much
more than two or three kilobytes of code. This makes it a very small kernel. This might allow me
to use the latest techno-buzz-word "microkernel" if I were into buzzwords. The operating system

MMURTL V1.0 Page 21 of 667

functions that directly affect CPU tasking are called kernel primitives. It’s not because they’re
from the days of Neanderthal computing, but because they are the lowest level entry points into
the kernel code of the operating system.

PREEMPTIVE MULTITASKING - This is a hotly disputed term (or phrase) in the industry. It
shouldn’t be, but it is. The word preempt simply means to interrupt something that is currently
running, but doesn’t expect the interrupt. There are many ways to do this in a computer operating
system. One type of preemption that occurs all the time is hardware interrupts. I’m not including
them in this discussion because they generally return control of the processor back to the same
interrupted task, and non-multitasking systems use them to steal time from programs and
simulate true multitasking (e.g., MS-DOS TSRs - Terminate and Stay Resident programs). The
preemptive multitasking I’m talking about, and most people refer to, is the ability for an
operating system to equitably share CPU time between several well defined tasks currently
scheduled to run on the system (even tasks that may be a little greedy with the CPU).

My definition of Preemptive Multitasking: If an operating system has the ability to stop a task
while running before it was ready to give up the processor, save it’s state, then start another task
running, it’s PREEMPTIVE. How and when it does this is driven by its tasking model. An
operating system that you use may be preemptive, but its tasking model may not be the correct
one for the job you want to accomplish (or you may not be using it correctly). Hence, all the
grumbling and heated discussions I see on the on-line services.

When you determine exactly what you want for a tasking model, you will see the rest of your
operating system fit around this decision.

Resource Management

An operating system manages resources for applications and services. This is its only real
purpose in life. Consider your resources when planning your operating system. The resources
include CPU time sharing (tasking model), memory management, and hardware (Timers, DMA,
Interrupt Controller Units, etc.). These are the real resources. Everything else uses these
resources to accomplish their missions. Input/Output (I/O) devices, including video, keyboard,
disk, and communications makes use of these basic resources to do their jobs. These resources
must be managed properly for all these things to work effectively in a multitasking environment.

One of my major goals in designing MMURTL was simplicity. To paraphrase a famous scientist
(yes, good old Albert), "Everything should be as simple as possible, but not simpler" (otherwise
it wouldn't work!). I have attempted to live up to that motto while building my system as a
resource manager. One of my friends suggested the motto, "simple software for simple minds,"
but needless to say, it didn't sit too well with me. Managing these resources in a simple, yet
effective fashion is paramount to building a system you can maintain and work with.

MMURTL V1.0 Page 22 of 667

Task Management

Tasks begin. Tasks end. Tasks crash. All of these things must be taken into consideration when
managing tasks. Quite obviously, keeping track of tasks is no simple “task.” In some operating
systems each task may be considered a completely independent entity. It may have memory
assigned to it, and it may even run after the task that created it is long gone. On the other hand, it
may be completely dependent on its parent task or program. How tasks are handled, and how
resources are assigned to these tasks was easy for me to decide, but it may not be so easy for you.

If you decide that a single task may exist on it's own two feet, then you must make sure that your
task management structures and any IPC mechanisms take this into account. When you get to
Section IV (The Operating System Source Code), take a good look at the TSS (Task State
Segment). This is where all of the resources for my tasks are managed. You may need to expand
on this structure quite a bit if you decide that each and every task is an entity unto itself.

Single vs. Multi User

One of the determining factors on how your tasks are managed may be whether or not you have a
true multi-user system. The operating system I wrote is not multi-user. It is not a UNIX clone by
any stretch of the imagination. Nor did I want it to be. In a system that is designed for multiple
terminals/users, tasks may be created to monitor serial ports, or even network connections for
logons, execute programs as the new users desire, then still be there after all the child processes
are long gone (for the next user).

Probably the best way to get this point across is to describe what I decided, and why. From this
information you will be able to judge what's right for you.

I have written many commercial applications that span a wide variety of applications. Some are
communications programs (FAX software, comms programs), some deal with equipment control
(interaction with a wide variety of external hardware), and some are user-oriented software. In
each case, when I look back at the various jobs this software had to handle, each of the functions
dealt with a specific well-defined mission. In other words, each program had a set of things that
it had to accomplish to be successful (satisfy the user). When I wrote these programs, the ability
to spawn additional tasks to handle requirements for simultaneous operations came in very
handy. But in almost all of these systems, when the mission was accomplished, or the user was
done, there seemed to be no purpose to have additional tasks that continued to run. The largest
factor was that I had a CPU in front of me, and each of the places these programs executed also
had a CPU - In other words, Single User, Multitasking.

My operating system is designed for microcomputers, rather than a mini or mainframe
environment (although this line is getting really blurry with the unbelievable power found in
micro CPUs these days). I deal with one user at a time. You may want to deal with many. Your
decision in this matter will have a large effect on how you manage tasks or whole programs that
are comprised of one or more tasks.

MMURTL V1.0 Page 23 of 667

The Hardware State

When a task switch occurs, the task that is running must have its hardware context saved. The
hardware context in its simplest form consists of the values in registers and processor flags at the
time the task stopped executing. In the case of hardware interrupts, this is usually a no-brainer.
The CPU takes care of it for you. If you must do it yourself, there are instructions on some
processors to save all of the necessary registers onto the stack. Then all you have to do is switch
stacks. When you restore a task, you switch to its stack and pop the registers off.

The hardware state may also consist of memory context if you are using some form of hardware
paging or memory management. This will depend on the processor you are using and possibly on
external paging circuitry. You will have to determine this from the technical manuals you
accumulate for your system.

The Software State

The software state can be a little more complicated than the hardware state and depends on how
you implement your task management. The software state can consist of almost nothing, or it
may be dozens of things that have to be saved and restored with each task switch.

An example of an item that would be part of the software state is a simple variable in your
operating system that you can check to see which task is running. When you change tasks, you
change this variable to tell you which task is currently executing. The number of things you have
to save may also depend on whether or not the processor assists you in saving and restoring the
software-state. Some processors (such as the Intel series) let you define software state items in a
memory structure that is partially managed by the operating system. This is where the hardware-
state is saved.

It’s actually easier than it sounds. You can define a structure to maintain the items you need for
each task, then simply change a pointer to the current state structure for the task that is executing.

CPU Time

CPU time is the single most important resource in a computer system. "It’s 11:00PM. Do you
know where your CPU is?" A funny question, but an important one. What instructions are
executing? Where is it spending all it’s time? And why?

When an application programmer writes a program, they generally assume that it’s the only thing
running on the computer system. My first programs were written with that attitude. I didn’t worry
about how long the operating system took to do something unless it seemed like it wasn’t fast
enough. Then I asked, "What is that thing doing?" When I used my first multi-user system, there
were many times that I thought it had died and gone to computer heaven. Yet, it would seem to
return at its leisure. What WAS that thing doing? It was being shared with a few dozen other
people staring at their terminals just like I was. We were each getting a piece of the pie, albeit

MMURTL V1.0 Page 24 of 667

not a very big piece it seemed. Microcomputers spoiled me. I had my very own processor, and I
could pretty much figure out what it was doing most of the time. Many of the programs I wrote
didn’t require multitasking, and single thread of instructions suited me just fine. It was 1980 that
I wrote my first time slicer which was built into a small program on an 8-bit processor. It was
crude, but effective. I knew exactly how long each of my two tasks were going to run. I also
knew exactly how many microseconds it took to switch between them. There were so few factors
to be concerned with on that early system, it was a breeze.

In a multitasking operating system, ensuring that the CPU time is properly shared is the job of
kernel and scheduling code. This will be the heart and brains of the system.

Single Tasking

What if you don’t want a multitasking system? This is entirely possible, and in some cases, a
single threaded system may be the best solution. In this case, you basically have a hardware
manager. In a single tasking operating system, management of CPU time is easy. The only thing
for the programmer to worry about is how efficient the operating system is at its other jobs such
as file handling, interrupt servicing, and basic input/output. Many methods have been devised to
allow single-tasking operating systems to share the CPU among pseudo-tasks. These have been
in the form of special languages (Co-Pascal), and also can be done with mini-multitasking
kernels you include in your programs. These forms of CPU time-sharing suffer from the
disadvantage that they are not in complete control of all resources. They can, however, do an
adequate job in many cases.

You may also be aware that multitasking is simulated quite often in single tasking systems by
stealing time from hardware interrupts. This is done by tacking your code onto other code that is
executed as a result of an interrupt.

Multitasking

I categorize forms of multitasking into two main groups; Cooperative and Preemptive. An
operating system’s tasking model can be one of these, or a combination of the two. In fact, many
operating-system tasking models are a combination. There are other important factors that apply
to these two types of multi-tasking, which I cover in this chapter.

The major point that you must understand here is that there are really only two ways a task
switch will occur on ANY system; A task that has the processor gives it up, or it is preempted
(the processor is taken away from the task).

Cooperative Multitasking

In a solely cooperative environment, each task runs until it decides to give up the processor. This
can be for a number of reasons, but usually to wait for a resource that is not immediately
available, or to pause when it has nothing to do, if the system allows this (a sleep or delay

MMURTL V1.0 Page 25 of 667

function). An important point here is that in a cooperative system, programs (actually the
programmer) may have to be aware of things that must be done to allow a task switch to happen.
This implies that the programmer does part of the scheduling of task execution. This is in the
form of the task saying to the operating system, "Hey - I’m done with the CPU for now." From
there, the operating system decides which of the tasks will run next (if any are ready to run at
all). It may not always be obvious when it happens, however. For instance, a program that is
running makes an operating system call to get the time of day. The operating system may be
written in such a fashion that this (or any call into the operating-system code) will suspend that
task and execute another one.

I’m sure you’ve run across the need to delay the execution of your program for a short period of
time, and you have used a library or system call with a name such as sleep() or delay(). With
these calls, you pass a parameter that indicates how long the program should pause before
resuming execution. This may be in milliseconds, 10ths of seconds or even seconds. If the
operating system uses this period of time to suspend your task and execute another, you are
cooperating with the operating system. It is then making wise use of your request to delay or
sleep. In many single tasking systems, a call of this nature may do nothing more than loop
through a series of instructions or continually check a timer function until the desired time has
passed. And yes, that’s a waste of good CPU time if something else can be done.

There is a major problem with a fully cooperative system. If a programmer writes code that
doesn’t give up the CPU (which means he doesn’t make an operating system call that somehow
gets to the scheduler), he then monopolizes the CPU. If this isn’t the task that the user is involved
with, the screen and everything else looks frozen. Meanwhile, there’s some task in there
calculating pi to a zillion digits, and the computer looks dead for all practical purposes.

Because such "CPU hogs" are not only possible but also inevitable, it is a good idea to have
some form of a preemptive system, the ability to cut a task off at the knees, if necessary.

Preemptive Multitasking

The opposite end of the spectrum from a fully cooperative system, is a preemptive system. This
is an operating system that can stop a task dead in it’s tracks and start another one. I defined
preemptive at the beginning of this chapter. To expand on that definition, when a task is
preempted, it doesn’t expect it. It does nothing to prepare for it. This can occur between any two
CPU instructions that it is executing (with some exceptions discussed later).

As I also mentioned earlier, this actually happens every time a hardware interrupt is activated.
However, when a hardware interrupt occurs on most hardware platforms, the entire "state" of
your task is not saved. Most of the time, it’s only the hardware state which includes registers, and
maybe memory context, or a few other hardware-related things. Also, after the interrupt is
finished, the CPU is returned to the task that was interrupted. Generally, hardware interrupts
occur to pass information to a device driver, a program, or the operating system from an external
device (e.g., hardware timer, disk drive, communications device, etc.).

MMURTL V1.0 Page 26 of 667

One of the most important hardware interrupts and one of the most useful to an operating system
designer is a timer interrupt. On most platforms, there is hardware (programmable support
circuitry) that allows you to cause a hardware interrupt either at intervals, or after a set period of
time. The timer can help determine when to preempt.

Task Scheduling

Given the only two real ways a task switch can occur, we must now decide which task runs next.
Just to review these ways (to refresh your RAM), these two reasons are:

1. A task that has the processor decides to give it up,
2. The currently running task is preempted, which means the processor is taken away from

the task without its knowledge.

The next section is the tricky part. When do we switch tasks, to which task do we switch, and
how long does that task get to run?

Who, When, and How Long?

The procedure or code that is responsible for determining which task is next is usually called the
Scheduler.

In fully cooperative systems, the scheduler simply determines who’s next. The programmer (or
the task itself) determines how long a task will run. This is usually until it willingly surrenders
the processor. In a preemptive system, the scheduler also determines how long a task gets to run.
For the preemptive system, this adds the requirement of timing. How long does the current task
run before we suspend it and start the next one?

One thing that we can’t lose sight of when considering scheduling is that computer programs are
generally performing functions for humans (the user). They are also, quite often, connected to
the outside world - communicating, controlling, or monitoring. This means there is often some
desire or necessity to have certain jobs performed in a timely fashion so there is some
synchronization with outside events. This synchronization may be required for human interaction
with the computer which will not be that critical, or it may be for something extremely critical,
such as ensuring your coffee is actually brewed when you walk out for a cup in a maniacal daze
looking like Bill The Cat (I DID say important!).

This is where the scheduling fun really begins.

Scheduling Techniques

In a multitasking system, only one task is running at a time (excluding the possibility of multi-
processor systems). The rest of the tasks are waiting for their shot at the CPU, or waiting for
outside resources such as I/O.

MMURTL V1.0 Page 27 of 667

As you can see, there is going to be a desire, or even a requirement, for some form of
communications between several parties involved in the scheduling process. These parties
include the programmer, the task that’s running, the scheduler, outside events, and maybe (if
we’re nice) the user.

We’re going to look at several techniques as if they were used alone. This way you can picture
what each technique has to offer.

Time Slicing

Time slicing means we switch tasks based on set periods of execution time for each task; "a slice
of time." This implies the system is capable of preempting tasks without their permission or
knowledge.

In the simplest time sliced systems, each task will get a fixed amount of time - all tasks will get
the same slice - and they will be executed in the order they were created. A simple queuing
system suffices. For example, each task gets 25 milliseconds. When a task’s time is up, its
complete hardware and software state is saved, and the next task in line is restored and executed.

Many early multitasking operating systems were like this. Not quite that simple, but they used a
time slicing scheduler based on a hardware timer to divide CPU time amongst the tasks that were
ready to run.

In some systems, simple time slicing may be adequate or at least acceptable. For example, a
multitasking system that is handling simple point of sale and ordering transactions at Ferdinand’s
Fast Food and Burger Emporium may be just fine as an equitably time sliced system. The
customer (and the greasy guy waiting on you behind the counter) would never see the slowdown
as the CPU in the back room did a simple round-robin between all the tasks for the terminals.
This would even take care of the situation where your favorite employee falls asleep on the
terminal and orders 8000 HuMonGo Burgers by mistake. The others may see a slow down, but it
won’t be on their terminals. (the others will be flipping 8,000 burgers.)

Simple Cooperative Queuing

The very simplest of cooperative operating-system schedulers could use a single queue system
and execute the tasks on a first-come/first-serve basis. When a task indicates it is done by
making certain calls to the operating system, it is suspended and goes to the end of the queue.
This is usually not very effective, and if a user interface is involved, it can make for some pretty
choppy user interaction. But it may be just fine in some circumstances.

Prioritized Cooperative Scheduling

A logical step up from a simple first-in/first-out cooperative queue is to prioritize the tasks. Each
task can be assigned a number (highest to lowest priority) indicating it’s importance. This gives

MMURTL V1.0 Page 28 of 667

the scheduler something to work with. It can look at the priorities of those tasks that are ready-to-
run and select the best based on what the programmer thinks is important.

In a cooperative system, this means that of all the tasks that are ready to run, the one with the
highest priority will be executed. This also implies that some may not be ready at all. They can
be waiting for something such as I/O.

Variable Time Slicing

In a preemptive system, if we preempted a task without it telling us it was OK to do so, you must
assume that it’s ready to run immediately. This also means we just can’t assign simple priorities
in a time sliced system; otherwise, only the very highest would ever get to run.

In a time sliced preemptive system, it makes more sense to increase the time allocation for more
important tasks, than to execute the tasks in a sequence of equal time segments based solely on a
priority assignment.

The tasks that need more time can get it by asking for it, or by the programmer (or user) telling
the scheduler it needs it. Some form of signaling can even increase time allocation based on
other outside events.

Time slicing is an old technique. When combined with an adequate form of interprocess
communications or signaling (discussed in Chapter 4), it can serve admirably. But it has some
major drawbacks. Who determines which task gets more time, or which task will run more
often? You generally can’t ask the user if they need more time (They will ALWAYS say yes!).
And the programmer can’t even determine in advance how much time he or she will need, or
how much time there is to go around on the system. Because it is still based on a preset period of
time, the possibility of being preempted before a certain important function was accomplished
always exists.

It’s pretty simple to calculate how much time you’ll need for a communications program running
at full capacity at a known data rate. To know in advance if it will actually be used at that rate is
another story entirely.

Other Scheduling Factors

You know as well as I do, things are never as simple as they seem. Two very important areas of
computing have been moving to the forefront of the industry. These are communications and
user interface issues. We want good, dependable, clean communications, and we want our
machines responsive to us. There are also many tasks inside the machine to perform of which the
user has no concept (nor do they care!)

In case you haven’t noticed, computers are everywhere. They do so many things for us that we
simply accept them in our everyday lives. Many of these things depend on real-time interaction
between the machine and the world to which it is connected.

MMURTL V1.0 Page 29 of 667

Some of the best examples of real-time computing are in robotics and equipment control. A
computer in charge of complete climate control for a huge building may be a good example, but
it’s not dramatic enough. Let’s look at one that controls a nuclear reactor and all other events at a
nuclear power plant. The programs that run on this computer may have some snap decisions to
make based on information from outside sensors, or the user. Being forced to wait 200 or more
milliseconds to perform a critical safety task may spell certain disaster. Therefore, outside events
MUST be able to force (or at least speed up) a task switch. This implies that some form of
communication is required between the sensors (e.g., hardware interrupt service routines) and the
scheduler. The programmer on this type of system must also be able to indicate to the operating
system that certain programs or tasks are more important than others are. (should turning on the
coffeepot for the midnight shift take a priority over emergency cooling-water control?)

But how many of us will be writing software for a nuclear reactor? I thought not. Now, one of
the most volatile reaction I can think of is when a user losses data from a communications
program, or his FAX is garbled because buffers went a little bit too long before being emptied or
filled. The reaction is always near meltdown proportions. This IS real-time stuff. Thus, when
something that is out of the immediate control of the programmer (and the CPU) must be
handled within a specific period of time, it requires the ability to juggle tasks on the system in
real-time.

In the case of the nuclear reactor operating system, we definitely want to be able to preempt a
task, and prioritization of these tasks will be critical. If I thought my operating system would be
used in this fashion, I would have spent more time on the tasking model and also on interrupt
service routines. But I opted to "get real" instead.

If you have ever had the pleasure of writing communications-interrupt service routines on a
system that has a purely time-sliced model, you know that it can lead to serious stress and maybe
even hair loss.

Operating systems that share the CPU among tasks by just dividing up a period of time and
giving each task a share respond poorly to outside events. This is not to say that time-sliced
systems have poor interrupt latency, but they have problems with unbalanced jobs being
performed by the tasks. For instance, take two communications programs that handle two
identical ports with two independent Interrupt Service Routines (ISRs). If the programs have an
equal time slice and equal buffer sizes, but one channel is handling five times the data, the
program servicing the busier port may lose data if it can’t get back to the buffer in time to empty
it. The buffer will overflow. This is a simple example (actually a common problem), but it makes
the point. In a message based system, the ISR can send a message to the program servicing it to
tell it the buffer is almost full ("Hey, come do something with this data before I lose it").

I think you can see the advantages of a priority based system, and maybe you can even see where
it would be advantageous to combine a cooperative system (where the programmer can
voluntarily give up the CPU) with a preemptive time-sliced system.

MMURTL V1.0 Page 30 of 667

Mixed Scheduling Techniques

As you can see, you have many options for scheduling techniques:

• Cooperative task scheduling
• Preemptive time slicing
• Cooperative prioritized task scheduling
• Variable/prioritized time slicing
• ANY AND ALL COMBINATIONS OF THE ABOVE!

The are as many ways to mix these two basic types of task scheduling as there are copies of this
book out there. No doubt, you have a few ideas of your own. I invite you to experiment with
your own combinations. See what works for your applications. That’s the only way you’ll really
know for sure.

In the next sections we’ll look at a few ways to mix them. All of these ways require some form of
signaling or inter-process communications, and I discuss all of that in the next chapter. I didn’t
want to cloud the tasking issue with the required communications methods, even though these
methods are very important, and even help define the tasking model. In addition, all of the
examples in the next sections have preemptive capabilities. To be honest, I can’t picture a system
without it, although such systems exist.

Fully Time Sliced, Some Cooperation

In this type of model, all tasks will be scheduled for execution, and will execute for a
predetermined amount of time. A task may, however, give up the CPU if it’s no longer needed.
This would put the task back into the queue to be executed when surrendered the CPU.

In this type of system, all tasks will get to run. You may opt to give certain tasks a larger
execution time based on external factors or the programmer's desires. But even when the task has
nothing to do, it would still be scheduled to execute. If such were the case (nothing to do) it
would simply surrender the CPU again.

In a system that was designed for multi-user application sharing (such as UNIX originally was),
time-slicing all the tasks is suitable (even desired) to accomplish what was initially intended by
the system builders. Users on a larger, solely time-sliced system will see the system slowdown as
the time is equitably divided between an increasing number of users or tasks. Writing
communications tasks for these types of systems has always been a challenge (and that's being
nice about it!).

Time Sliced, More Cooperative

Building on the previous mix (some cooperation), additional signaling or messaging could be
incorporated in the system to allow a task to indicate that it requires more time to execute. This

MMURTL V1.0 Page 31 of 667

could be in the form of a system call to indicate to the scheduler that this task should get a larger
percentage of the available CPU time.

You can probably picture in your head how this could get complicated as several tasks begin to
tell the scheduler they need a larger chunk of time. There would have to be additional
mechanisms to prevent poorly written tasks from simply gobbling up the CPU. This could be in
the form of a maximum percentage of CPU time allowed, based on the number of tasks
scheduled. A very simple, rapid calculation would hold the reins on a CPU hog.

Primarily Cooperative, Limited Time Slicing

In this type of system, tasks are prioritized and generally run until they surrender the CPU. This
means that the programmer sets the priority of the task and the scheduler abides by those wishes.
Keep in mind that on a prioritized cooperative system, the task that is executing was always the
highest priority found on the queue.

Only in circumstances where multiple tasks of the same priority are queued to run would time
slicing be invoked. These tasks would always be the highest priority task queued on the system.
This type of system would also have the capability to preempt a task to execute a higher priority
task if one became queued (messaging from an Interrupt Service Routine).

Primarily Cooperative, More Time Slicing

This is similar to the previous model except you can slice a full range of priorities instead of just
the highest priority running. For instance, if you have 256 priorities, 0-15 (the highest) may be
sliced together giving the lowest numbers (highest priorities) the greatest time slice.

The Tasking Model I Chose

I’ll tell you what I wanted, then you can make your own choice based on my experiences. After
all, "Experience is a wonderful thing. It allows you to recognize a mistake when you make it
again." I borrowed that quote from a sugar packet I saw in a restaurant, and no, it wasn’t
Ferdinand’s Burger Emporium.

I wanted a priority based, preemptive, multitasking, real-time operating system. My goal was not
just to equitably share the processor among the tasks, but to use the programmer’s desires as the
primary factor. In such a system, prioritization of tasks is VERY important. I made MMURTL
listens to the programmer. Remember the saying: "Be careful what you ask for, you may get it!"
Let me repeat that my goal was a real-time system. I never wanted to miss outside events. To me,
the outside events are even more important than placating the user, and in reality, the user IS an
outside event! This put my system in the Primarily Cooperative, Limited Time Slicing category.

To briefly explain my tasking model, MMURTL task switches occur for only two reasons:

MMURTL V1.0 Page 32 of 667

1. The currently running task can’t continue because it needs more information from the

outside world (outside it’s own data area) such as keystrokes, file access, timer services,
or whatever. In such a case it sends a "request" or non-specific message, goes into a
"waiting" state, and the next task with the highest priority executes.

2. An outside event (an interrupt) sent a message to a task that has an equal or higher

priority than the currently running task. This in itself does not immediately cause a task
switch.

The timer-interrupt routine, which provides a piece of the scheduling function, monitors the
current task priority, as well as checking for the highest priority task that is queued to run. When
it detects that a higher priority task is in a ready-to-run state, it will initiate a task switch as soon
as it finds this. If it detects that one or more tasks with priorities equal to the current task are in
the ready queue, it will initiate a task switch after a set period of time. This is the only "time-
slicing" that MMURTL does. This has the desired effect of ensuring that the highest priority task
is running when it needs to and also those tasks of an equal priority get a shot at the CPU. This is
the preemptive nature of MMURTL.

In chapters 18 and 20 (The Kernel and Timer Management) I discuss in detail how I melded
these two models.

Interrupt Handling

Hardware Interrupt Service Routines (ISRs) have always been interesting to me. I have learned
two very valuable lessons concerning ISRs. Keep them short, and limit the functionality if at all
possible. I bring them up in this chapter because how an operating system handles ISRs can
affect the tasking model, and they will also be used for execution timing on some preemptive
systems.

Certain critical functions in the operating system kernel and even some functions in device
drivers will require you to suspend interrupts for brief periods of time. The less time the better.
This will usually be during the allocation of critical shared operating system resources and
certain hardware I/O functions.

With the Intel processor’s you even have a choice of whether the ISR executes as an independent
task or executes in the context of a task that it interrupted. The task based ISR is slower. A
complete processor task change must occur for the ISR to execute, and another one to return it to
the task that was interrupted. Other processors may offer similar options. Go for the fastest
option - PERIOD.

I decided that MMURTL ISRs would execute in the context of the task that they interrupted.
This is a speed issue. It’s faster – actually, much faster. This could have presented some
protection problems, and also the possibility of memory-management headaches, but because
ISRs all execute code at the OS level of protection, and all programs on the system share this

MMURTL V1.0 Page 33 of 667

common OS-base addressing, the problems didn’t surface. This was due to MMURTL’s memory
management methods. I discuss memory management in chapter 5, and MMURTL’s specific
methods in chapter 19.

An important thing you should understand is that you don’t have a big choice as to when an ISR
executes. It is determined by hardware that may be completely out of your control, or even
possibly the users, and they are surely out of your control most of the time.

For instance, who’s to say when Mr. or Ms. User is going to press a key on the keyboard? That’s
right - only the user knows. Who will determine how long it actually takes to transfer several
sectors from a disk device? There are to many factors involved to even prepare for it. This
means that your operating system must be prepared at all times to be interrupted. Your only
option (when you need one) is to suspend the interrupts either through the processor (which stops
all of them except the non-maskable variety), or to suspend one or more through the Priority
Interrupt Controller Unit. (PICU)

The real effect on the tasking model comes from the fact that some interrupts may convey
important information that should cause an eventual task switch. On systems that are primarily
time sliced, the generic clock interrupt may be the basis of most task switches. After a period of
time has elapsed, you switch tasks. In a cooperative environment, it may possibly be some form
of intelligent message from an ISR that causes a task switch (if an ISR causes a task switch at
all).

When you get to chapter 4 (Interprocess Communications) you’ll how messaging ties into and
even helps to define your tasking model.

MMURTL V1.0 Page 34 of 667

Chapter 4, Interprocess Communications

Introduction

This chapter introduces you to some of your options for Interprocess Communications (IPC). As
I described in earlier chapters, you should have good idea what your operating system will be
used for before you determine important things like it’s tasking model and what forms of
interprocess communications it will use. As you will see in this chapter, the IPC mechanisms
play a very important part in the overall makeup of the system. You will also notice that even
though I covered task scheduling in the previous chapter, I can’t get away from it here because
it’s tied in very tightly with Inter Process Communications.

Messaging and Tasks

A task is a single thread or series of instructions that can be independently scheduled for
execution (as described earlier). How the operating system decides when a task is ready to
execute, where it waits, or is suspended when it can’t run, and also how it is scheduled will
depend on the messaging facilities provided by the system.

Synchronization

Synchronization of the entire system is what IPC all boils down to. On a single CPU, only one
task can execute at a time. Whether a task is ready to run will depend on information it receives
from other tasks (or the system) and also how many other tasks are ready to run (multiple tasks
competing for CPU time).

Looking at this synchronization from the application programmer’s point of view, he or she
doesn’t see most of the action occurring in the system, nor should they have to. When the
programmer makes a simple system call for a resource or I/O, their task may be suspended until
that resource is available or until another task is done with it. Some resources may be available to
more than one task at a time, while others are only available to a single task at any one point in
time.

An example of a resource that may only be available for one task at time is system memory
allocation routine. Of course, everyone can allocate memory in an operating system, but more
than likely it will be managed in such a way that it can be handed out to only one task or
program at a time. In other words, portions of the code will not be reentrant. I discuss reentrancy
in a later section in this chapter.

If you remember the discussion in chapter 3 (Task Scheduling) then you know that a task switch
can occur at just about anytime. This means that unless interrupts are suspended while one task is

MMURTL V1.0 Page 35 of 667

in the middle of a memory-allocation routine, this task could be suspended and another task
could be started. If the memory-allocation routine was in the middle of a critical piece of code
(such as updating a linked list or table) and the second task called this same routine, it could
cause some serious problems. This is one place where the IPC mechanism comes into play and is
very important. You can’t suspend interrupts for extended periods of time! I also discuss this in
detail later in this chapter.

Semaphores

One common IPC mechanism is Semaphores. As the name implies, semaphores are used for
signaling and exchanging information. Semaphores are code routines and associated data
structures that can be accessed by more than one task.

In operating systems that use semaphores, there are public calls that allocate semaphores,
perform operations on the semaphore structures, and finally destroy (deallocate) the semaphore
and it’s associated structures when no longer required.

A semaphore is usually assigned a system-wide unique identifier that tasks can use to select the
semaphore when they want to perform an operation on it. However, some systems allow private
semaphores that only related tasks can access. This identifier is generally associated with the ID
of the task that created it, and more than likely will be used to control access to one or more
functions that the owner task provides. This allows you to lock out tasks as required to prevent
simultaneous execution on non-reentrant code (they play traffic cop). They also are used to
signal the beginning or ending of an event.

Typical semaphore system calls are semget() which allocates a semaphore, semctl() which
controls certain semaphore operations and semop() which performs operations on a semaphore.
The arguments (or parameters) to these calls usually include the semaphore ID (or where to
return it if it’s being allocated), what operation you want to perform, and a set of flags that
indicate specific desires or conditions that your task wants to adhere to such as one that says
"DON’T SUSPEND ME IF I CAN’T GET BY YOU" or "I’LL WAIT TILL I CAN GET IT."

In most cases, the application programmer won’t even know that a semaphore operation is being
performed. He or she will make a system call for some resource, and the library code or code
contained in the system will perform the semaphore operation which ensures synchronized
access to it’s code (if that’s it’s purpose), or to ensure some other required condition on the system
is met before the calling task is scheduled to execute.

When a semaphore operation is performed and the calling task is suspended, it is waiting at that
semaphore for a condition to change before proceeding (being restarted to execute). As you can
see, the semaphore mechanism would have to be coupled with all of the other kernel code, such
as those procedures that create new tasks, destroy tasks, or schedule tasks for execution.

MMURTL V1.0 Page 36 of 667

I opted not use semaphores in my operating system. I studied how they were used in UNIX
systems and in OS/2, and was my opinion that they added an unnecessary layer of complexity.
All of the functions that they performed are available with simpler messaging facilities.

Another reason I avoided semaphores is that are usually associated specifically with tasks
(processes). In my system, tasks are not wholly independent. They rely on a certain data
contained in structures that are assigned to a program or job, which will consist of one or more
tasks.

If you intend to implement semaphores, you should study how they are implemented in the more
popular systems that use them (UNIX, OS/2, etc.). One thing to note is that portability may be an
issue for you. Semaphore functions on some systems are actually implemented as an installable
device instead of as an integrated part of the kernel code. In my humble opinion, I think they are
best implemented as tightly integrated pieces of the kernel code. This is much more efficient.

Pipes

Another popular IPC mechanism is called a pipe. Pipes are a pseudo input/output device that can
be used to send or receive data between tasks. They are normally stream-oriented devices and the
system calls will look very much like file system operations.

Pipes can be implemented as public devices, which means they can be given names so that
unrelated tasks can access them. Quite often they are not public and are used to exchange data
between tasks that are part of one program.

Common system calls for pipe operations would be CreatePipe(), OpenPipe(), ClosePipe(),
ReadPipe(), and WritePipe(). The parameters to these calls would be very similar to equivalent
file operations. In fact, some systems allow standard I/O to be redirected through pipes. OS/2 is
one such system.

If you intend to implement pipes as part of your IPC repertoire, you should study how they are
used on other systems.

I initially considered public named pipes for MMURTL to allow data transfer between system
services and clients, but I used a second form of messaging instead. If you’re not worried about
size or complexity in your system, public pipes are very handy. They also don’t have to be so
tightly coupled with the kernel code.

Messages

Messaging methods can be implemented several different ways (although not in as many
different ways as semaphores from my experience).

MMURTL V1.0 Page 37 of 667

Send and Wait

The most rudimentary form of messaging on any system is a pair of system calls generally
known as send() and wait(). You will see these commands, or similar ones, on most real-time
operating systems. It is even possible to implement messaging routines using semaphores and
shared memory. This would provide the needed synchronization for task management on the
system. But once again, you must keep the code maintenance aspects in mind for whatever
implementation you choose.

The best method to implement messaging (and I don’t think I’ll get an argument here) is to make
it an integral part of the kernel code in your system. In fact, the entire kernel should be built
around whatever messaging scheme you decide on.

With the send() and wait() types of messaging, the only other resource required is somewhere to
send a message and a place to wait for one (usually the same place).

The best way to describe messaging is to provide the details of my own messaging
implementation. This will afford an overview of messaging for the novice as well as the details
for the experienced systems programmer.

In the system I’ve included for you (MMURTL), a program is made up of one or more tasks. I
refer to a program as a “job.” The initial task in a program may create additional tasks as needed.
These new tasks inherit certain attributes from the initial task. I am describing this because you
may decide to implement tasks as wholly independent entities. I didn't.

In a message-based system, such as MMURTL, tasks exchange information and synchronize
their execution by sending messages and waiting for them. On many message-based systems for
smaller embedded applications, only the basic form of messaging is implemented. I have added a
second, more powerful, form of messaging which adds two more kernel message functions;
request() and respond(). This now gives MMURTL two forms of messaging, one which is
"request" for services which should receive a response, and a non-specific "message" that doesn't
expect a response. The request/respond concept is what I consider the key to the client-server
architecture which was one of my original goals. Other operating systems use this type of
messaging scheme also.

Sending and receiving messages in any message-based system is not unlike messaging of any
kind (even phone messages). You can send one way messages to a person, such as, "Tell Mr.
Zork to forget it, his offer is the pits." This is an example of a one way message, for which you
expect no response. One key element in a message system is WHERE you leave your messages.
In Bob's case he will get the message from his secretary. In an operating system's case, it is
generally an allocated resource that can be called a mailbox, a bin, or just about any other name
you like. It is a place where you send messages or wait for them to exchange information. In
MMURTL's case, I called it an Exchange. In order to send or receive a message you must have
an exchange. In your system you will provide a function to allocate a mailbox, an exchange
point, or whatever you call it. MMURTL provides a call to allocate exchanges for jobs. It is
called AllocExch() and is defined like this in C:

MMURTL V1.0 Page 38 of 667

unsigned long AllocExch(long *pdExchRet);

The parameter pdExchRet points to a dword (32-bit unsigned variable) where the exchange
number is returned. The function return value is the kernel error if there is one (such as when
there are no more exchanges). It returns 0 if all goes well.

You also need a way to send the message. Operating system calls to send a message come in
several varieties. The most common is the send() function I described earlier. I have
implemented this as SendMsg(). It does just what it says - it sends a message. You tell it what
exchange, give it the message and away it goes. If you’re lucky, the task that you want to get the
message is "waiting" at the exchange by calling the wait() function I described earlier. In
MMURTL I call this WaitMsg(). If there is no task waiting at that exchange, the message will
wait there until a task waits at the exchange or checks the exchange with CheckMsg(). This is an
added messaging function to allow you to check an exchange for a message without actually
waiting.

The C definitions for these calls and their parameters as I have implemented them are:

unsigned long SendMsg(long dExch,
 long dMsgPart1,
 long dMsgPart2);

 dExch is the destination exchange.

dMsgPart1 and dMsgPart2 are the two dword in a message. Note that my messages are two 32
bit values. Not too large to move around, but large enough for a couple of pointers.

unsigned long WaitMsg(long dExch,
 char *pMsgRet);

unsigned long CheckMsg(long dExch,
 char *pMsgRet);

dExch is the exchange where we will wait to check for a message.

pMsgRet points to an eight-byte (2 dwords) structure where the message will be placed.

Did you notice (from my definitions above) that not only messages wait at exchanges, but tasks
can wait there too? This is an extremely important concept. Consider the phone again. The task is
the human, the answering machine is the exchange. You can leave a message on the machine (at
the exchange) if no one (no task) is waiting there. If a human is there waiting (a task is at the
exchange waiting), the message is received right away.

MMURTL V1.0 Page 39 of 667

Now, consider this: In a single processor system that is executing a multitasking operating
system, only one task is actually executing instructions. All the other tasks are WAITING
somewhere.

There are only two places for a task to wait in MMURTL: At an Exchange or on the Ready
Queue. The Ready Queue is the line-up of tasks that are in a ready-to-run state but are not
running because there’s a higher priority task currently executing.

One more quick topic to round off what we’ve already covered. Tasks are started with the kernel
primitives SpawnTask or NewTask. You point to a piece of code, provide some other pieces of
information, and VIOLA, a task is born. Yes, it’s a little more complicated than that, but we have
enough to finish the basic theory.

Now I have some very important terms and functions - not in detail yet, but enough that we can
talk about them. SendMsg(), CheckMsg(), WaitMsg(), SpawnTask(), and NewTask() are five
very important kernel primitives. AllocExch is an important auxiliary function. The only reason
it’s discussed with the rest of the kernel primitives is because of its importance. I don’t consider it
part of the kernel because it has no effect on the tasking model (CPU time allocation). You also
know about Exchanges and the Ready Queue.

I apologize that none of the items I’ve introduced have names that are confusing or buzzwordish.
I’ll try to liven it up some later on.

You now have enough information under your belt to provide a scenario of message passing that
will help enlighten you to what actually occurs in a message based system. Table 4.1 (Task and
kernel Interaction) shows actions and reactions between a program and the operating system.

You start with a single task executing. What it’s doing isn’t important. As we move down the
table in our example, time is passing. In this example, whenever you call a kernel primitive you
enter the KERNEL ZONE. Just kidding, it’s not called the kernel zone, just the "kernel" (a small
tribute to Rod Serling, very small...).

Table 4.1

Task and Kernel Interaction

Task Action

Kernel Action

Task1 is Running

Task1 allocates Exch1

Task1 calls SpawnTask (to start Task2)

Kernel checks priority of new task. Task2
is higher.

Kernel places Task1 on the Ready Queue.

Kernel makes Task2 run

MMURTL V1.0 Page 40 of 667

Task2 is running.
Task2 allocates Exch2.

Task2 sends a message to Exch1.

Kernel checks for a task waiting at Exch1.
None are waiting.

Kernel attaches message to Exch1.

Kernel evaluates Ready Queue to see who
runs next. It’s still task 2.

Task2 is still running.

Task2 calls WaitMsg at Exch2.

Kernel checks for a message waiting at
Exch2. None found. Kernel places Task2
on Exch2.

Kernel evaluates Ready Queue.

Task1 is ready to run.

Kernel makes Task1 run.

Task1 is running

Task1 sends a message to Exch2

Kernel checks for task at Exch2 and find
Task2 there. It gives task2 the message.

Kernel places task1 on Ready Queue

Kernel makes Task2 run (It’s a Higher
priority)

Task2 is running

...

...

From the simple example in table 4.1, you can see that the kernel has its job cut out for it. You
can also see that it is the messaging and the priority of the tasks that determines the sharing of
CPU time (as was described in previous chapters). From the example you can also see that when
you send a message, the kernel attaches the message to an exchange. If there is a task at the
exchange, the message is associated with that task and it is placed on the Ready Queue. The
Ready Queue is immediately reevaluated, and if the task that just received the message is a
higher priority than the task that sent it, the receiving task is made to run.

What would happen if both Task1 and Task2 waited at their exchanges and no one sent a
message? You guessed it - the processor suddenly finds itself with nothing to do. Actually it
really does absolutely nothing. In some systems, dummy tasks are created with extremely low
priorities so there is always a task to run. This can simplify the scheduler. This low priority task
can even be made to do some chores such as garbage collection or a system integrity check. I
didn’t do this with MMURTL. I actually HALT the processor with interrupts enabled. If

MMURTL V1.0 Page 41 of 667

everyone is waiting at an exchange, they must be waiting for something. More than likely it is
something from the outside world such as a keystroke. Each time an interrupt occurs, the
processor is activated and it checks the Ready Queue. If the interrupt that caused it to wake up
sent a message, there should be a task sitting on the ready queue. If there is one, it will be made
to run. This may not work on all types of processors. You will have to dig into the technical
aspects of the processor you are using to ensure a scheme like this will work.

Request()

I have added two more messaging types in my system. If a very small embedded kernel is your
goal, you will more than likely not use these types in your system. They are dedicated types.

Request() and Respond() provide the basis for a client server system that provides for
identification of the destination exchange and also allows you to send and receive much more
than the eight-byte message used with the SendMsg() primitive.

The Request() and Respond() messaging primitives are designed so you can install a program
called a System Service that provides shared processing for all applications on the system. The
processing is carried out by the service, and a response (with the results and possibly data) is
returned to the requester.

Message based services are used to provide shared processing functions that are not time critical
(where a few hundred microsecond delay would not make a difference), and also need to be
shared with multiple applications. They are ideal for things like file systems, keyboard input,
printing services, queued file management, e-mail services, BBS systems, FAX services, the list
could go on and on. The MMURTL FAT-file system and keyboard are both handled with system
services. In fact, you could implement named pipes (discussed earlier in this chapter) as a system
service.

With MMURTL, each service installed is given a name. The name must be unique on the
machine. When the service is first installed, it registers its name with the OS Name Registry and
tells the OS what exchange it will be serving. This way, the user of the system service doesn’t
need to know the exchange number, only the service name. The exchange number may be
different every time it’s installed, but the name will always be the same. A fully loaded system
may have 5, 10 or even 15 system services. Each service can provide up to 65,533 different
functions as identified by the Service Code. The functions and what they do are defined by the
service. The OS knows nothing about the service codes (except for one discussed later). It
doesn’t need to because the Request interface is identical for all services.

The interface to the Request primitive is procedural, but has quite a few more parameters than
SendMsg. Look at it prototyped in C:

unsigned long Request(char *pSvcName,
 unsigned int wSvcCode,
 long dRespExch,

MMURTL V1.0 Page 42 of 667

 long *pdRqHndlRet,
 long dnpSend
 char *pData1SR,
 long dcbData1SR,
 char *pData2SR,
 long dcbData2SR,
 long dData0,
 long dData1,
 long dData2);

At first glance, you’ll see that the call for making a request is a little bit more complicated than
SendMsg(). But, as the plot unfolds you will see just how powerful this messaging mechanism
can be (and how simple it really is). Lets look at each of the parameters:

pSvcName - Pointer to the service name you are requesting. The service name is eight
characters, all capitals, and space-padded on the right.

wSvcCode - Number of the specific function you are requesting. These are documented
independently by each service.

dRespExch - Exchange that the service will respond to with the results (an exchange you have
allocated).

*pdRqHndlRet - Pointer where the OS will return a handle to you used to identify this request
when you receive the response at your exchange. This is needed because you can make multiple
requests and direct all the responses to the same exchange. If you made more than one request,
you’ll need to know which one is responding.

dnpSend - is the number (0, 1 or 2) of the two data pointers that are moving data from you to the
service. The service already knows this, but network transport mechanisms do not. If pSend1
was a pointer to some data the service was getting from your memory area, and pSend2 was not
used or was pointing to your memory area for the service to fill, dnpSend would be 1. If both
data items were being sent to you from the service then this would be 0.

*pData1 - Pointer to memory in your address space that the service must access (either to read
or write as defined by the service code). For instance, in the file system OpenFile() function,
pData1 points to the file name (data being sent to the service). This may even point to a structure
or an array depending on how much information is needed for this particular function (service
code).

dcbData1 - How many bytes the pDataSend points to. Using the Open File() example, this
would be the size (length) of the filename.

*pData2 - This is a second pointer exactly like pData1 described above.

dcbData2 - This is the same as dcbData1.

MMURTL V1.0 Page 43 of 667

dData0, dData1, and dData2 - These are three dwords that provide additional information for
the service. In many functions you will not even use pData1, or pData2 to send data to the
service, but will simply fill in a value in one or more of these three dwords. These can never be
pointers to data. This will be explained later in memory management.

Respond()

The Respond() primitive is much less complicated than Request(). This doesn’t mean the system
service has it easy. There’s still a little work to do. Here is the C prototype:

unsigned long Respond(long dRqHndl, long dStatRet);

The parameters are also a little less intimidating than those for Request(). They are described
below:

dRqHndl - the handle to the request block that the service is responding to.

dStatRet - the status or error code returned to the requester.

A job (your program) calls Request() and asks a service to do something, then it calls WaitMsg()
and sits at an exchange waiting for a reply. If you remember, the message that comes in to an
exchange is an eight-byte (two dwords) message. Two questions arise:

1. How do we know that this is a response or just a simple message sent here by another task?

2. Where is the response data and status code?

First, The content of the eight-byte message tells you if it is a message or a response. The
convention is the value of the first dword in the message. If it is 80000000h or above, it is NOT a
response. Second, this dword should match the Request Handle you were provided when you
made the Request call (remember pRqHndlRet?). If this is the response, the second dword is the
status code or error from the service. Zero (0) usually indicates no error, although its exact
meaning is left up to the service.

Second, if the request was serviced (with no errors), the data has already been placed into your
memory space where pData1 or pData2 was pointing. This is possible because the kernel
provides alias pointers to the service into your data area to read or write data. Also, if you were
sending data into the service via pData1 or 2, the kernel has aliased this pointer for the service as
well, and the service has already read your data and used it as needed.

Not as difficult as you expect, right? But let me guess - this aliasing thing with memory
addresses is still a bit muddy. A little further into this chapter we cover memory management as
it applies to messaging which should clear it up considerably.

MMURTL V1.0 Page 44 of 667

Link Blocks

I keep referring to how a message or a task just "sits" or "waits" at an exchange. An exchange is
a small structure in memory. You will need some way (a method) to attach messages to your
mailbox. It will no doubt be a linked list of sorts. I guess you could use Elmer’s Glue, but this
would slow things down a bit.

I opted to use something called a Link Block (LB). A Link Block is a little structure (smaller
than an exchange) that becomes a link in a linked list of items that are connected to an exchange.
Not very big, but still very important. (You will find out how important they are if you run out of
them!) There is one link block in use for every outstanding (unanswered) request and one for
every message waiting at an exchange. This can add up to hundreds in a real hurry.

Reentrancy Issues

A multitasking system that lets you simply point to a set of instructions and execute them means
that you can actually be executing the same code at almost the same time. I say "almost" because
really only one task is running at a time.

This can lead to serious problems if the code that is being executed is not designed to be
reentrant. Reentrant means that if a task is executing a series of instructions and gets preempted,
or pauses in the middle of them, it’s OK for another task to enter and execute the same code
before the first task is done with it.

To really understand this issue, lets look at an example. I’ll use a pseudo text algorithm to define
a series of instructions that are NON-reentrant, and show you what can happen.

The example is a function that allocates buffers and returns a pointer to it. It’s called
GetMeSomeMem() In this example there are two variables that the code accesses to carry out it’s
mission.

Variable nBuffersLeft
Variable pNextBuffer

GetMeSomeMem()
If (nBuffersLeft > 0)

 (A place between instructions called Point X)

 { (Allocate a Buffer)
 Decrement nBuffersLeft
 Increment pNextBuffer
 Return pNextBuffer
 }
else

MMURTL V1.0 Page 45 of 667

 Return Error

Lets suppose two tasks are designed to call this function. As you know, only one task can really
be running at a time, even in a multitasking system. So, task1 calls GetMeSomeMem(). But
when it reaches PointX, it is preempted. For the sake of understanding this, there was only one
buffer left. Now, task2 is running and calls GetMeSomeMem(). it successfully makes it all the
way through and gets that last buffer. Now, task1 gets to run again. He is restarted by the
scheduler and starts up at PointX. The code has already checked and there was 1 buffer left. So
the code goes in and WHAMO - it’s crash time. The buffer is gone; pointers are off the ends of
arrays; it’s a mess.

As you can see, some method is required to prevent two tasks from being inside this code at the
same time. Semaphores are used on many systems. Each task that enters the code, checks the
semaphore, and will be suspended until the last task is done with it. The call to manage and
check the semaphore would actually be part of the allocation code itself. Messages can also
provide exactly the same functionality. Allocate a mailbox or exchange and send it one message.
Each task will wait() at the exchange until it has a message. When each task is done with the
allocation routine, it sends back the message so the next task can get in. It’s really quite simple.

What’s usually not so simple for the operating-system writer is ensuring you identify and protect
all of the NON-reentrant code.

If the instruction sequence is short enough, you can simply disable interrupts for the critical
period of time in the code. You should always know how long this will be and it shouldn’t be too
long. If you disable interrupts too long then you will suffer interrupt latency problems. You will
lose data. The next sections discuss this.

Interrupt Latency

Interrupt latency is when interrupts don’t get serviced fast enough, and maybe even not often
enough. I mentioned in the above section that you shouldn’t disable interrupts for too long a
period of time. Just to give you an idea of what periods of time we are talking about, let’s look at
a real-world example. A nonbuffered communication UART (Universal Asynchronous Receiver
Transmitter) operating at 38,400 bits per second will interrupt every 208 microseconds. This is
1/38,400 * 8 because they will interrupt for every byte (8 bits). The typical processor running at
25 MHz executes most of it’s instructions in 2 or 3 system-clock periods. That would be an
average of 120 nanoseconds (1/25,000,000 * 3). In theory, this means you could execute as many
as 1730 instructions in the interrupt interval.

WHOA THERE - that was only in theory! Now we have to do a reality check. You must take
into consideration that there are more interrupts than just that communications channel. The
timer interrupt will be firing off every so often. The communications interrupt itself will have
interrupts disabled for a good period of time, and also "the biggie" - task switches.

MMURTL V1.0 Page 46 of 667

Why are task switches considered "the biggie?" A task switch can consume as many as 30 or 40
microseconds. The actual amount of time will depend on whether you use hardware task
switching or do it yourself, but you will still have interrupts disabled for a rather scary period of
time. Also, if you remember the GetMeSomeMem() example above, you know you locked out
multiple users with the kernel messaging (or semaphores). You didn’t disable interrupts. In the
kernel code, you can’t use the kernel code to lock things out of the kernel! You MUST disable
interrupts in many sections. It will be the only way.

Good tight code in the kernel is a must. I could probably tighten mine a whole lot, but my testing
shows I did OK. You will have to do some serious testing on your system to ensure interrupt
latency is not going to be a problem. Have you ever run a communications program for an
extended period of time at 19,200 baud in Windows 3.x? You will lose data. Don’t blame
Windows though, they’re doing some things I personally consider impossible.

Memory Management Issues

The last hurdle in Interprocess Communications is memory. It doesn’t sound like it would be a
problem, but it can be depending on how you implement your memory model.

If you use a completely flat model for the entire system, it will simplify IPC greatly - but it will
increase the headaches elsewhere. A single huge linear array of memory in your system that all
programs and task share means that they all understand a pointer to any memory address. This
means you can freely pass pointers in messages back and forth (even between different
programs) and no one gets confused.

If you implement independent-linear memory arrays through paging hardware (as I did with
MMURTL), then you have to find away to translate (alias) addresses that are contained in
messages that will be passed between different programs.

Segmented memory models will also suffer from this aliasing requirement to even a greater
extent. I recommend you avoid a fully segmented model. I started with one and abandoned it
early on. Fully segmented models allow any memory allocation to be zero-based. This means
that if paging is used along with the segmentation, it will be even a greater chore to translate
addresses that are passed around on the system.

You can find out about some of your memory management options in chapter 5, “Memory
Management.”

MMURTL V1.0 Page 47 of 667

Chapter 5, Memory Management

Introduction

This chapter provides you with some fairly detailed ideas for memory management from an
operating system’s perspective. An operating system’s view of memory management is quite
different than that of a single application.

If you’ve ever written memory-allocation routines for compiler libraries, or another complicated
applications, you know that you are basically asking the operating system for chunks of memory
which you will breakdown even further as required for your application.

Just as your memory management routines keep track of what they hand out, so does an
operating system. There are some major differences though. These difference vary considerably
based on how you choose to handle the memory on the system.

Memory management code in an operating system is affected by the following things (this list is
not all inclusive, but hits the important things):

1. How the processor handles addressing. This greatly affects the next three items.
2. The memory model you choose.
3. Whether or not you use paging hardware, if available.
4. Whether you allow variable-sized chunks of memory to be allocated.

I do make some assumptions about your processor. I can do this because most of the processors
afford roughly the same memory management schemes. Some do it with internal paging
hardware, some do it with an external page memory management unit (PMMU). Either way, it’s
all basically the same.

Basic Terms

Once again, I need to define some terms to ensure we are talking about the same thing.

Physical memory is the memory chips and their addresses as accessed by the hardware. If I put
address 00001 on the address bus of the processor, I am addressing the second byte of physical
memory. Address 0 is the first.

Linear memory is the address space a program or the operating system sees and works with.
These addresses may or may not be the same as the physical addresses. This will depend on
whether or not some form of hardware translation takes place. For instance, Intel uses this term
to describe memory addresses that have been translated by paging hardware.

MMURTL V1.0 Page 48 of 667

Logical memory is more an Intel term than a generic term that can be applied across different
manufacturers processors. This is the memory that programs deal with and is based around a
"selector" (a 16-bit number that serves as an index into a table). With the Intel processors, a
protected-mode program’s memory is always referenced to a selector which is mapped in a table
to linear memory by the operating system and subsequently translated by the processor. I will
discuss segmentation in greater detail in this chapter for those of you who may want to use it.

Memory Model

Do not confuse my term "memory model" for the MS-DOS/Intel term. It does not refer
specifically to size or any form of segmentation. Instead, this refers to how and where programs
are loaded, and how the operating system allocates and manages processor memory space.

There are several basic memory models to choose from and countless variations. You may be
restricted from using some of these options, depending on what your processor or external
memory management hardware allows. I’ll start with the easiest to understand and work from
there. Keep in mind that the easiest to understand may not necessarily be the easiest to
implement.

Simple Flat Memory

Fimple Flat Memory means that the operating system and all programs share one single range of
linear memory space, and that physical addresses and linear addresses are the same. No address
translations take place in hardware.

In this type of system, the operating system is usually loaded at the very bottom or very top of
memory. As programs are loaded, they are given a section of memory (a range of address) to use
as their own. Figure 5.1 (Simple Flat Memory) shows this very simple-shared memory
arrangement.

MMURTL V1.0 Page 49 of 667

Figure 5.1, Simple Flat Memory

Unless some form of protection is used, any program can reach any other program’s memory
space (intentionally or unintentionally). This can be good, and bad. The good part is that no
address translations are required for any kind of interprocess communications. The bad part is
that an invalid pointer will more then likely cause some serious problems.

Hardware memory paging would possibly provide a solution to the bad pointer problem. Paging
hardware usually affords some form of protection, at least for the operating system. If the paging
hardware only provides two levels of protection, this still means that program A can destroy
program B as long as they both share the same linear space and are at the same protection level.

Considerations and variations of this simple model include paging, different memory allocation
schemes (top down, bottom up, etc.), and possible partitioning for each program. Partitioning
means you would allocate additional memory for a program it would use as it’s unallocated heap.
This would keep all of the program’s memory in one range of linear addresses. As programs are
loaded, they are partitioned off into their own space with a lower and upper bound.

Paged Flat Memory

This is a variation on simple flat memory. With this scheme, chunks of physical memory called
pages, are allocated and assigned to be used as a range of linear memory. This is still a flat
scheme because all the programs will use the same linear addresses. They can still share and get
to each other’s address space if no protection is applied. This scheme requires the use of paging
hardware.

Figure 5.2 (Paged Flat Memory) shows how the blocks of physical memory are turned into
addressable chunks for the system. With paged memory, the physical memory can come from

MMURTL V1.0 Page 50 of 667

anywhere in the physical range to fit into a section of linear address space. With this scheme, the
linear address range can also be much larger than the amount of physical memory, but you can’t
actively allocate more linear address space than you have physical memory. For example, your
linear address space may run from 0 to 1 Gigabytes, but only 16 Megabytes of this linear address
range may be active if that’s all the physical memory your system has. This gives the operating
system some options for managing memory allocation and cleanup. Figure 5.2 also implies that
the physical pages for the program were allocated from the "top down" to become its addressable
area from the "bottom up" which is perfectly legitimate.

Figure 5.2 - Paged Flat Memory

Demand-Paged Flat Memory

This is a major variation on Paged Flat Memory. With demand-paged memory, you extend the
active size of your linear memory beyond your physical memory’s limits. For instance, if you
have 16 MB of physical memory, your system’s actively-allocated linear address range may
actually be extended to a much greater size (say 32, or even 64 MB).The additional pages of
physical memory will actually be contained on an external, direct access storage device, more
than likely a hard disk drive. The word "demand" means that they are sent out to the disk when
not needed, and brought back into real physical address space on demand or when required.

Figure 5.3 (Demand Paged Flat memory) shows an example of the page translations that can
occur.

MMURTL V1.0 Page 51 of 667

Figure 5.3 - Demand Paged Flat Memory

In this scheme, all the programs still use the same linear space. Address 30000h is the same to all
programs and the operating system. Something else to note is that the actual values of these
linear addresses may extend to the highest values allowed by the paging hardware. You could
start your addressing for applications at the 3 GB mark if you desired, and the hardware allows
it.

Virtual Paged Memory

The term virtual usually means IT’S NOT REAL, but it sure looks like it is, as in virtual reality.
The minute you apply this term to memory management, it means that you’re lying to your
programs, and indeed you are. With paging hardware, you’re already lying to them when you
map in a physical page and it’s translated to a linear page address that they can use. So you can
really call any form of memory management where address translations take place "virtual
memory." Some of the older systems referred to any form of demand paging as virtual memory.
My definition of virtual is telling a BIG lie (not a little one).

This means that you can tell two programs that they are both using linear address ranges that are
the same! In other words, they are operating in "parallel" linear spaces. Look at Figure 5.4
(Virtual Paged Memory) for an example that will help you understand this technique.

MMURTL V1.0 Page 52 of 667

Figure 5.4 - Virtual Paged Memory

Like the Paged Flat memory, physically-allocated pages can be placed anywhere in a programs
linear address space. Unlike Paged Flat Memory, memory is NOT flat. To a single program with
it’s own address space it may appear flat, which is the idea, but linear address 30000h to one
program may not be the same physical memory addressed as linear address 30000h to another
program (same address, different data or code). Notice I said "may not" and not "will not." This
is because you can make the physical addresses match the linear addresses for two programs if
you desire. The options here are almost mind boggling. You can have all programs share a
section of the same physical memory in a portion of their linear space, but make all the rest of
their linear space completely independent and inaccessible by any other program. In Figure 5.4
you can see that both programs see the operating system pages at the same addresses in their
linear spaces, but the same linear range of addresses where program code and data are stored are
completely independent.

Note the advantages here. This means you can share operating system memory between all your
programs, yet, any memory they allocate can be theirs alone.
Note also the disadvantages. The largest will be when you implement interprocess
communications. You will need some form of translation between addresses that are passed from
one linear space to another. A way around this to use a shared memory area. Once again, there
are many possible variations. No doubt, you will think of, and implement some of your own.

In order to allow multiple, parallel linear spaces, the memory management hardware must
support it. You will have to do some homework for your processor of choice.

MMURTL V1.0 Page 53 of 667

Demand Paged Virtual Memory

Just like demand-paged flat memory, demand-paged virtual memory is when you can allocate
more pages than you physically have on your system. The same type of on-demand external
storage is used as with demand-paged Flat Memory. The major difference is that these pages can
be for any one of several independent linear address spaces.

Demand-Paged Memory Management

Management of demand-paged memory is no trivial task. The most common method is with a
Least Recently Used (LRU) algorithm. It’s just what it sounds like. If you need to move
someone’s physical pages back into their linear space, the pages that are moved out to make
room are the ones that haven’t been used recently.

The LRU schemes have many variations. The most common, and generally the most efficient, is
to use a separate thread or task that keeps track of how often pages are used. The paged memory
management hardware will tell you which ones have been used and which ones have been sitting
idle since they were paged in or created. In fact, paging hardware will tell you if a page has been
accessed only for reading or has actually been modified. When a page has been written to, it is
usually termed as "dirty." The idea of a page being dirty has some significance. If you had read
in a page and it was accessed for reading, and now you want to move it out to disk because it
hasn’t been used lately, you may already have a "clean" copy on the disk. This means you can
save the time rewriting it. This can be a big time saver when you’re talking about thousands of
pages being swapped in and out.

This additional task will try to keep a certain percentage of physical space cleared for near term
page-in, or page creation (memory allocation) requirements.

Segmented Memory

I will discuss segmented memory because the Intel processors allow it, and you need to
understand the implications. You may even want to use it to make your system compatible with
some of the most popular operating systems in use (e.g., OS/2 or Windows). This compatibility
may be in the form of the ability to use code or object modules from other systems that use
segmentation, and maybe to use the Intel Object Module format.
Segmentation is really a hold over from the past. When this was a 16-bit world, or even an 8-bit
one, we had some pretty limited address spaces. A multitude of software was written for 16-bit
addressing schemes.

When Intel built the first of its 32-bit processors (80386), they made sure that it was downward
compatible with code written for the 16-bit processors. Likewise, when they built the 16 bit

MMURTL V1.0 Page 54 of 667

processors (8086, 8088, 80186, and 80286), the 16-bit processors were also compatible with
object code for the 8-bit processors (8080 and 8085, and the popular Zilog Z80).

The 8-bit processors had 16 address lines. This meant you could have a whopping 64K of RAM.
It also meant that when they built processors with more address lines, 20 to be exact, they needed
a way to use all of the 8-bit processor code that used 16-bit addressing.

What they came up with is called Segmentation. They allowed multiple sequential, or
overlapping 64-K sections of memory called segments. To make this work, they needed to
identify and manage those segments. They used something called a segment register. This was
actually several registers, one for code and several for data access, that would identity which
particular 64-K addressable area you were working with. What they needed was a transparent
way to use the extra four bits to give you access to a full 1 Mb of RAM. The segment registers
gave you an addressable granularity of 16 bytes.

All of the Intel products are very well documented, so I won’t go into further detail. However,
this introduction leads us to another very important point about segmentation that you need to
understand. The segment registers in the 16-bit processors were a simple extension to the address
lines. When the 80286 came on the scene, they added a very important concept called Protected
mode. This made it possible to manage these segments with something called a “selector.” A
selector is a number that is an index into a table that selects which segment you are working
with. It is really a form of virtual memory itself. Protected mode operation with selectors carried
over into the 32-bit processors.

Another major change in the 32-bit processors that deal with segments is the fact that they can
now be as large as all available memory. They are not limited to 64K.

The selectors are managed in tables called the Global Descriptor Table (GDT) or Local
Descriptor Tables (LDT). When you use a selector, the processor uses the entry in the table
indicated by the selector and performs an address translation. The descriptor tables allow you to
set up a zero based address space that really isn't at linear address zero. This means you can
locate code or data anywhere you want in the 4 GB of linear memory, and still reference it as if it
were at offset zero. This is a very handy feature, but it can become cumbersome to manage
because it can force you to use something called FAR pointers to access almost everything. The
FAR pointer is a pointer that includes the selector as part of the address. With a 32-bit system,
this makes a far pointer 48 bits. This can be a real hassle. It also slows things down because the
processor must do some house keeping (loading shadow registers) each time the selector is
changed.

Memory Management

Once you've chosen a memory model, you'll face many decisions on how to manage it.
Management of memory involves the following things:

• Initialization of memory management,

MMURTL V1.0 Page 55 of 667

• Allocating memory to load applications and services,
• Allocating memory for applications,
• Tracking client linear memory allocations,
• Tracking physical memory if paging is used, and
• Handling protection violations, if your hardware supports it.

I’ll discuss each of these things, but not in the order I listed them. This is because you have to
figure out how you’ll manage memory before you know how to initialize or track it.

Tracking Linear Memory Allocation

Two basic methods exist to track allocation of linear or physical memory. They are “linked lists”
and “tables.” Before you decide which method to use, you should decide on your basic allocation
unit.

Basic Memory Allocation Unit

The basic allocation unit will define the smallest amount of memory you will allow a client to
allocate. Remember, you ARE the operating system. You make the rules. You can let
applications allocate as little as one byte, or force them to take 16 Kilobytes at a time. You'll
have to make a decision, and it will be based on many factors. One of the important ones will be
whether or not you use hardware paging. If you do, you may want to make the allocation unit the
same size as a page, which will be defined by the paging hardware. This will simplify many
things that your memory management routines must track. Other factors include how much
memory you have, the type of applications you cater to, and how much time and effort you can
put into to the algorithms.

I don't know of any theoretical books that take into account how much time it takes to actually
implement pieces of an operating system, but it's a very realistic part of the equation, especially
if you have a very small programming team (say, one person). I learned this the hard way, and
my advice to you is not to bite of more than you can chew.

Linked List Management

Using linked lists is probably the most common, and one of the easiest ways to manage memory.
This type of algorithm is most common when there is a large linear address space shared by one
or more applications, such as I described earlier with the Simple Flat Memory Model. With this
scheme, you have one or more linked lists that define allocated and/or free memory. There have
been hundreds of algorithms designed for linked list memory management. I will give you a
good idea what it's like, then it's up to you to do some serious research to find the best method
for your system.

MMURTL V1.0 Page 56 of 667

The linked lists are setup when the operating system initializes memory. How you store the links
in this list can vary. The easiest and most efficient way is to store the link at the beginning of the
allocated block. This way, each block holds its own link, and can be located almost instantly
with the memory reference. The links are small structures that contain pointers to other links,
along with the allocated size and maybe the owner of the memory block. I recommend you track
which client owns each link for purposes of deallocation and cleanup. In operating systems that
don’t provide any type of protection, when one application crashes, it usually takes the whole
system down. But in many systems, when one application crashes, it is simply terminated and the
resources it used are recovered.

The word cleanup also implies that the memory space will become fragmented as callers allocate
and deallocate memory. This is another topic entirely, but I’ll touch on it some.

MS-DOS appears to use links in the allocated space. I haven’t disassembled their code, I can tell
this from the values of the pointers I get back when I allocate memory from the MS-DOS
operating system heap. Ignoring the fact that MS-DOS uses segmented pointers, you can see that
there is a conspicuous few bytes missing from two consecutive memory allocations when you do
the arithmetic. You now have an idea where they went.

In the following simple linked list scheme, you have two structure variables defined in your
memory management data. These are the first links in your list. One points to the first linked
block of free memory (pFree) and the other points to the first linked block of allocated memory
(pMemInUse).

/* Memory Management Variables */

struct MemLinkType /* 16 bytes per link */
{
 char *pNext;
 char *pPrev; /* a backlink so we can find previous link */
 long size;
 long owner;
};
struct MemLinkType pFree;
struct MemLinkType pMemInUse;
struct MemLinkType *pLink; /* to work with links in memory */
struct MemLinkType *pNewLink; /* " " */
struct MemLinkType *pNextLink; /* " " */
struct MemLinkType *pPrevLink; /* " " */

long Client = 0;

In the process of memory management initialization, you would set up the two base link
structures; pFree and pMemInUse.

For my description, let’s assume we have 15 megabytes of memory to manage beginning at the 1
Mb address mark (100000h) and all of it is free (unallocated). You would set up the base
structures as follows:

void InitMemMgmt(void)

MMURTL V1.0 Page 57 of 667

{
 pFree.pNext = 0x100000; /* first link in 15 megabyte array */
 pFree.pPrev = 0; /* No backlink */
 pFree.size = 0; /* No size for base link */
 pFree.owner = 0; /* OS owns this */
 pMemInUse.pNext = 0; /* No mem blocks allocated yet */
 pMemInUse.pPrev = 0; /* No backlink */
 pMemInUse.size = 0; /* No size for base link */
 pMemInUse.owner = 0; /* OS owns this */

 /* Set up first link in free memeory */

 pLink = 0x100000; /* Set structure pointer to new link */
 pLink->pNext = 0; /* NULL. No next link yet. */
 pLink->pPrev = &pFree; /* Backlink to pFree */
 pLink->size = 0xf00000 - 16; /* 15 Megs-16 for the link */
 pLink->owner = 0; /* OS owns it now */
}

When a client asks for memory, you follow the links beginning at pFree to find the first link
large enough to satisfy the request. This is done by following pLink.pNext until pLink.size is
large enough, or you reach a link where pNext is null, which means you can’t honor the request.
Of course, you must remember that pLink.size must be at least as large as the requested size
PLUS 16 bytes for the new link you’ll build there.

The following case of the very first client will show how all allocations will be. Let’s assume the
first request is for 1 MB. WantSize is the size the client has requested, Client is the owner of the
new block. The function returns the address of the new memory, or a NULL pointer if we can’t
honor the request.

The following example code is expanded to show each operation. You could make this type of
operation with pointers almost "unreadable" in the C programming language. If you use this
code, I would suggest you leave it as is for maintenance purposes and take the hit in memory
usage. I’ve gone back to code I did five or six years ago and spent 30 minutes just trying to figure
out what I did. Granted, it was in an effort to save memory and make the code tight and fast, but
it sure didn’t seem like it was worth the headaches.

char *AllocMem(long WantSize)
{

pLink = &pFree; /* Start at the base link */
 /* Keep going till we find one */
while (pLink->pNext) /* As long as we have a valid link...*/
{
 pLink = pLink->pNext; /* Next link please */

 if (pLink->size >= (WantSize + 16)) /* This one will do! */
 {
 /* Build a new link for the rest of the free block */
 /* then add it two the free list. This divides the free */
 /* block into two pieces (one of which we’ll allocate) */

 /* Set up new link pointer, fix size and owner */

MMURTL V1.0 Page 58 of 667

 pNewLink = &pLink + (WantSize + 16);
 pNewLink->size = pLink->size - WantSize - 16;
 pNewLink->owner = 0; /* OS owns this for now */

 /* Hook it into free links after pLink */

 pNewLink->pPrev = &pLink; /* Backlink */
 pNewLink->pNext = pLink->pNext;
 pLink->pNext = &pNewLink;

 pLink->size = WantSize; /* Fix size of pLink */

 /* Remove pLink from the pFree list and put it in the */
 /* allocated links! */

 pPrevLink = pLink->pPrev; /* get previous link */
 pPrevLink->pNext = &pNewLink; /* Unhook pLink */

 pLink->pNext = pMemInUse.pNext; /* Put pLink in USE */
 pMemInUse.pNext = &pLink; /* Point to the new link */
 pLink->size = WantSize; /* How much we allocated */
 pLink->owner = Client; /* This is who owns it now */

 return(&pLink+16); /* Return address of the NEW memory */
 }
}
return(0); /* Sorry - no mem available */
}

You will require a routine to free up the memory and also to clean up the space as it gets
fragmented. And believe me, it WILL get fragmented. The deallocation routine is even easier
than the allocation routine. When they hand you a pointer to deallocate, you go to that address
(minus 16 bytes), validate the link, change its owner, then move it to the pFree list. This is where
the fragmentation comes it.

The cleanup of fragmented space in this type of system is not easy. Even though the links
themselves are next to each other in memory, they can end up anywhere in the pFree list,
depending on the order of deallocation.

There are several thoughts on cleanup. You can add code in the allocation and deallocation
routines to make it easier, or you can do it all after the fact. I personally have not done any
research on the fastest methods, but a lot depends on the patterns of allocation by your clients. If
they tend to allocate a series of blocks and then free them in the same order, the links may end up
next to each other in the free list anyway. A simple scan of the list can be used to combine links
that are next to each other into a single link. But you can’t depend on this.

Another method is to keep the pFree list sorted as you add to it. In other words, do a simple
insertion at the proper point in the list. This will add time to deallocation routines, but cleanup
will be a snap. You have the linear address, you simply walk the list until you find the links that
the newly freed memory belongs between, and you insert it there. Combining blocks can be done
at the same time. This makes the most sense to me.

MMURTL V1.0 Page 59 of 667

Here is a deallocation routine that defragments the space as they free up memory. This starts at
the first link pFree is pointing to, "walks" up the links and finds its place in linear memory order.
We try to combine the newly freed link with the one before it or after it, if at all possible. This
provides instant cleanup.

You should notice that the allocation algorithm ensured that there was always a link left at a
higher address than the link we allocated. This will be useful in the following routine, which
returns memory to the free pool, because we can assume there will always will be a link at a
higher address.

int FreeMem(char *MemAddress)
{

/* We will use pNewLink to point to the link to free up. */
/* It’s actually a MemInUse link right now. */

pNewLink = MemAddress - 16; /* point to the link to free up */

/* Some form of error checking should go here to ensure they */
/* are giving you a valid memory address. This would be the link */
/* validation I talked about. You can do things like checking to */
/* ensure the pointer isn’t null, and that they really own the */
/* memory by checking the owner in the link block. */

pNextLink = pFree.pNext; /* Start at pFree */

/* scan till we find out where we go. We will stop when */
/* we find the link we belong between. */

while ((pNextLink->pNext) && (&pNextLink < &pNewLink))
{
 pNextLink = pNextLink->pNext;
}
pPrevLink = pNextLink->pPrev; /* this will be handy later */

/* If memory isn’t corrupted, we should be there! */
/* We could just stick the link in order right here, */
/* but that doesn’t help us cleanup if we can */

/* First let’s see if we can combine this newly freed link */
/* with the one before it. This means we would simply add our */
/* size + 16 to the previous link’s size and this link would */
/* disappear. But we can’t add our size to pFree. He’s a dummy */

if (pNextLink->pPrev != &pFree) /* Can’t be pFree */
{
 if (&pNewLink == (&pPrevLink + (pPrevLink->size + 16)))
 {
 /* add our size and link size (16), then go away! */

 pPrevLink->size += pNewLink->size + 16;
 return(0);
 }

MMURTL V1.0 Page 60 of 667

}
/* If we got here, we couldn’t be combined with the previous. */
/* In this case, we must insert ourselves in the free list */

pPrevLink->pNext = pNewLink;
pNextLink->pPrev = pNewLink;
pNewLink->pNext = pNextLink;
pNewLink->pPrev = pPrevLink;
pNewLink->owner = 0; /* operating system owns this now!*/

/* Now we’ll try to combine pNext with us! */

if ((&pNewLink + pNewLink->size + 16) == &pNextLink)
{
 /* We can combine them. pNext will go away! */
 pNewLink->size += pNextLink->size + 16;
 pNewLink->pNext = pNextLink->pNext;
 pLink = pNextLink->pNext;
 if (pLink) /* the next could have been the last! */
 pLink->pPrev = &pNewLink; /* fix backlink */
}

/* If we didn’t combine the new link with the last one, */
/* we just leave it were we inserted it and report no error */

return(0);
}

Memory Management With Tables

If you use paging hardware - or you decide to make your operating system’s allocation unit a
fixed size and fairly large - you can use tables for memory management. In the case of the
paging hardware, you will be forced to use tables of some kind anyway.

Paging hardware will define how the tables are organized. If you don’t use the paging hardware,
you can decide how you want them setup. Tables are not as elegant as linked lists. Quite often
you resort to brute processor speed to get things done in a hurry. I go into great detail on paging
hardware and tables when I describe MMURTL memory management. It combines the use of
managing physical and linear memory with tables. It should give you a great number of ideas,
and all the information you need to use paging hardware on the Intel and work-alike systems. If
you want to use tables and you’re not using paging hardware, you can still look at the setup of the
tables for paging. You can expand on them if needed.

Tracking Physical Memory

If you use some form of paging, you will have two memory spaces to track. The two must be
synchronized. In the memory-management routines earlier, we assumed we were working with a
flat linear space. You can still use paging underneath the system described earlier, you will
simply have to ensure that when you hand out a linear address, there are physical pages assigned

MMURTL V1.0 Page 61 of 667

to it. This means your operating system will be tracking linear and physical memory at the same
time.

When you work with paging hardware, you will deal with a fixed size allocation unit. It will be
the page’s size. It will be greater if you keep a certain number of pages grouped together in a
cluster.

the relationship between physical and linear memory. Your operating system is responsible to
ensure they are updated properly.

You could also use linked lists to manage the physical memory underneath the linear address
space if you like. Something to remember about working with physical memory when paging is
used, is that you can't address it until it has been identified in the hardware page tables that you
manage.

Initialization of Memory Management

I won't discuss loading the operating system here because it's covered in chapter 7, “OS
Initialization,” but once the operating system is loaded, you need to ensure that you initialize
memory so that it takes into account all of memory used by the OS code and data. This is one of
the first things you will do during initialization of memory management.

You must consider where the operating system loads. You may want your operating system code
and data at the very top of you linear memory address space. Wherever you load it, it becomes
allocated memory right away.

From there, you may also have to take into account any hardware addresses that may not be
allocated to applications or the operating system. Some processors use memory addresses from
your linear space for device I/O. Intel has a different scheme called Port I/O. I'll discuss that in
Chapter 6, “the Hardware Interface.” If you use a processor that uses hardware I/O from the
memory space, it will generally be in a block of addresses. You will be allocated these up front.

If you use paging, you have a lot of work to do during the initialization process. You must set up
tables, add the translations you need and are already using, and turn on the paging hardware. The
hardware paging is usually not active when the processor is reset. Most paging hardware also
requires that the non-paged addresses you are executing during initialization match the paged
linear addresses when you turn on paging. This means that if you want your operating system
code and data in a linear address beyond the physical range, you will have to move it all, or load
the rest of it after you turn on paging. This can get complicated. I recommend you to leave the
initial operating system memory block in an address range that matches physical memory. But
it's up to you.

Another chore you'll have is to find out just how much memory you have on the system. Some
hardware platforms have initialization code stored in ROM (executed at processor reset) that will
find the total and place it somewhere you can read, such as battery backed-up CMOS memory

MMURTL V1.0 Page 62 of 667

space. You may not always be able to depend on this to be accurate. Batteries fail, and you
should take that into consideration.

Memory Protection

Protected memory implies that the processor is capable of signaling you when a problem is
encountered with memory manipulation or invalid memory address usage.

This signaling will be in the form of a hardware trap or interrupt. The trap may not actually be
signaling a problem, but may be part of the system to help you manage memory. For instance,
demand-paged systems must have a way to tell you that some application is trying to address
something in a page that isn’t in memory right now.

Other forms of traps may be used to indicate that an application has tried to access memory
space that doesn’t belong to it. It generally means the application has done some bad pointer
math and probably would be a candidate for shut-down. If your processor gives you these types
of options, it will generally be associated with page tables that you are using to manage your
linear address space. In some cases, you will have independent tables for each application.

You will have to investigate each type of interrupt, trap, fault or other signaling method
employed by the processor or paging hardware and determine how you will handle all those that
apply to the type of system you design.

An Intel Based Memory Management Implementation

I chose the Intel processors to use for MMURTL, so the best thing I can do is to provide you
with a very detailed description of the memory model and my implementation.

I use a Virtual Paged memory model as described earlier. I may add demand paging to it at some
later point in time, but it serves my purposes quite well without it.

I depend on the paging hardware very heavily. It can be very complicated to use on any system,
but how I use it may give you some ideas I haven’t even thought of.

A Few More Words On Segmentation

Even though I continue to refer to Intel as the "segmented" processors, the concept of program
segments is an old one. For instance, programs are quite often broken down into the code
segment, the initialized data segment, uninitialized data segment, and many others. I do use a
very small amount of segmentation, and I even use the Intel segment registers, but in a very
limited fashion. If you have no desire to use them, set them all to one value and forget them.

MMURTL V1.0 Page 63 of 667

If you are familiar with segmented programming, you know that with MS-DOS, programs
generally had one data segment which was usually shared with the stack, and one or more code
segments. This was commonly referred to as a "Medium Memory Model" program. In the 80x86
Intel world there are Tiny, Small, Compact, Medium, Large, and Huge models to accommodate
the variety of segmented programming needs. This was too complicated for me, and is no longer
necessary on these powerful processors. I wanted only one program memory model. The
program memory model I chose is most analogous to the small memory model where you have
two segments. One is for code and the other is for data and stack. This may sound like a
restriction until you consider that a single segment can be as large as all physical memory, and
even larger with demand page memory.

I use almost no segmentation. The operating system and all applications use only 3 defined
segments: The operating system code segment, the application code segment, and one data
segment for all programs and applications. The fact that the operating system has it’s own code
segment selector is really to make things easier for the operating system programmer, and for
protection within the operating system pages of memory. Making the operating system code
zero-based from it’s own selector is not a necessity, but nice to have. This could change in future
versions, but will have no effect on applications.

The "selectors" (segment numbers for those coming from real mode programming) are fixed.
The selector values must be a multiple of eight, and I chose them to reside at the low end of the
Global Descriptor Table. These will never change in MMURTL as long as they are legal on Intel
and work-alike processors.

The operating system code segment is 08h.
The user code segment is 18h.
The common data segment is 10h.

MMURTL’s memory management scheme allows us to use 32-bit data pointers exclusively. This
greatly simplifies every program we write. It also speeds up the code by maintaining the same
selectors throughout most of the program’s execution. The only selector that will change is the
code selector as it goes through a call gate into the operating system and back again. This means
the only 48-bit pointers you will ever use in MMURTL are for an operating system call address
(16-bit selector, 32-bit offset).

How MMURTL Uses Paging

MMURTL uses the Intel hardware-based paging for memory allocation and management. The
concept of hardware paging is not as complicated as it first seems. Getting it straight took only
half my natural life

MMURTL really doesn’t provide memory management in the sense that compilers and language
systems provide a heap or an area that is managed and cleaned up for the caller. I figured that an
operating system should be a "wholesale" dealer in memory. If you want just a few bytes, go to
your language libraries for this trivial amount of memory. My thought was for simplicity and

MMURTL V1.0 Page 64 of 667

efficiency. I hand out (allocate) whole pages of memory as they are requested, and return them to
the pool of free pages when they are deallocated. I manage all memory in the processor’s address
space as pages.

A page is Four Kilobytes (4Kb) of contiguous memory. It is always on a 4Kb boundary of
physical as well as linear addressing.

Paging allows us to manage physical and linear memory address with simple table entries. These
table entries are used by the hardware to translate (or map) physical memory to what is called
linear memory. Linear memory is what applications see as their own address space. For instance,
we can take the very highest 4K page in physical memory and map it into the application’s linear
space as the second page of its memory. This 4K page of memory becomes addresses 4096
through 8191 even though it’s really sitting up at a physical 16MB address if you had 16 MB of
RAM. No, its not magic, but it’s close.

Page Tables (PTs)

The tables that hold these translations are called page tables (PTs). Each entry in a PT is called a
page table entry (PTE). There are 1024 PTEs in every PT. Each PTE is four bytes long. (Aren't
acronyms fun? Right up there with CTS - Carpal Tunnel Syndrome).

With 1024 entries (PTEs) each representing 4 kilobytes, one 4K page table can manage 4MB of
linear/physical memory. That's not too much overhead for what you get out of it.

Here's the tricky part (like the rest was easy?). The operating system itself is technically not a
job. Sure, it has code and data and a task or two; but most of the operating system code –
specifically, the kernel - runs in the task of the job that called it. The kernel itself is never
scheduled for execution (sounds like a "slacker," huh?). Because of this, the operating system
really doesn't own any of it's memory. The operating system is shared by all the other jobs
running on the system. The Page Tables that show where the operating system code and data are
located get mapped into every job's memory space.

Page Directories (PDs)

The paging hardware needs a way to find the page tables. This is done with something called a
page directory (PD). Every Job gets its own PD. You could designed your system with only one
page directory if you desire.

Each entry in a PD is called a Page Directory Entry (PDE). Each PDE holds the physical address
of a Page Table. Each PDE is also four bytes long. This means we can have 1024 PDEs in the
PD. Each of the PDEs points to a PT, which can have 1024 entries, each representing 4Kb of
physical memory. If you get our calculator out, you'll see that this allows you to map the entire 4
GB linear address space.

MMURTL V1.0 Page 65 of 667

1024 * 1024 * 4K (4096) = 4,294,967,296 (4 GB)
You won’t need this capability any time soon, Right? Wrong. What you don’t see, because I
haven’t explained it yet, is that you really do need most of this capability, but you need it in
pieces.

The Memory Map

The operating system code and data are mapped into the bottom of every job’s address space. A
job’s memory space actually begins at the 1GB linear memory mark. Why so high? This gives
the operating system one gigabyte of linear memory space, and each application the same thing.
Besides, if I add demand paging to MMURTL’s virtual memory, an application of a hundred
megabytes or more is even conceivable.

The Map of a single job and the operating system is shown in Table 5.1. The map is identical for
every Job and Service that is installed.

Table 5.1 - MMURTL Memory Map

Description Address Range
Linear Top 4Gb -1 byte
Dead address space 2Gb – Linear Top
Linear Max. 2Gb (Artificial maximum limit)
Job Allocated Memory 1Gb + Job Memory
Data 1Gb + Stack Page(s) + Code Pages
Code 1Gb + Stack Page(s)
Initial Stack 1Gb
Job Memory 1Gb (Initial stack, Code, Data)
DLLs
(loadable shared code)

Device Drivers
OS Allocated memory 0Gb + operating system Memory
OS Memory 0Gb
Linear Base 0Gb

Now the pundits are screaming: "What about the upper 2 gigabytes – it’s wasted!" Well, in a
word, yes. But it was for a good cause (No, I didn't give it to the Red Cross).

In the scheme of things, the operating system has to know where to find all these tables that are
allocated for memory management. It needs a fast way to get to them for memory management
functions. Sure, I could have built a separate table and managed it, but it wasn't needed. Besides,
I wanted to keep the overhead down. Read on and see what I did.

The processor translates these linear (fake) addresses into real (physical) addresses by first
finding the current Page Directory. It does this by looking at the value you (the OS) put into

MMURTL V1.0 Page 66 of 667

Control Register CR3. CR3 is the physical address of the current PD. Now that it knows where
the PD is, it uses the upper 10 bits of the linear address it’s translating as an index into the PD.
The entry it finds is the physical address of the Page Table (PT). The processor then uses the
next lower 10 bits in the linear address it’s translating as an index into the PT. Now it’s got the
PTE. The PTE is the physical address of the page it’s after. Sounds like a lot of work, but it does
this with very little overhead, certainly less overhead than this explanation).

The operating system has no special privileges as far as addressing physical memory goes. The
operating system uses linear addresses (fake ones) just like the applications do. This is fine until
you have to update or change a PDE or PTE. You can’t just get the value out of CR3 and use it to
find the PT because it’s the physical address (crash – page fault). Likewise, you can’t just take a
physical address out of a PDE and find the PT it points to.

Finding the PD for an application is no problem. When I started the application, I built the PD
and stored the physical address in the Task State Segment field for CR3, then I put the linear
address of the PD in the Job Control Block. This is fine for one address per job. However, now
we’re talking dozens or even hundreds of linear addresses for all the page tables that we can
have, possibly several for each application.

This is how I use the upper 2 Kb of the page directories. I keep the linear address of all the PTs
there. 2K doesn’t sound like a lot to save, but when you start talking 10, 20, or even 30 jobs
running it starts to add up.

I make this upper 2K a shadow of the lower 2K. If you remember, each PDE has the physical
address of each PT. MMURTL needs to know the physical address of a PT for aliasing
addresses, and it needs it fast.

Exactly 2048 bytes above each real entry in the PD is MMURTL’s secret entry with the linear
address of the PT. Well, the secret is out. Of course, these entries are marked "not used" so the
operating system doesn’t take a bad pointer and try to do something with it.

Page Directory Entries (PDEs)

I know you’re trying to picture this in your mind. What does this make the page directory look
like? Below, in Table 5.2, is a list of the entries in the PD for the memory map shown in Table
5.1. This assumes the operating system consumes only a few PTEs (one-page table maximum).

Table 5.2 Page Directory Example

Entry # Description
0 Physical address of operating system PT (PDE

0)
1 Empty PDE
...
256 Physical address of Job PT
257 Empty PDE

MMURTL V1.0 Page 67 of 667

...
512 Linear Address of operating system PT

(Shadow –marked not present)ı
513 Empty Shadow PDE
...
768 Linear Address of Job PT

(Shadow –marked not present)
769 Empty Shadow PDE
...
1023 Last Empty Shadow PDE

This table doesn't show that each entry only has 20 bits for each address and the rest of the bits
are for management purposes, but you get the idea. It's 20 bits because the last 12 bits of the 32-
bit address are below the granularity of a page (4096 bytes). The low-order 12 bits for a linear
address are the same as the last 12 bits for a physical address. As shown, all the shadow entries
are marked not present, in fact, all of the entries with nothing in them are marked not present.
They simply don't exist as far as the processor is concerned. If I desired, I could move the
shadow information into separate tables and expand the operating system to address and handle
4Gb of memory, but I was more interested in conservation at this point in time. If I decided to do
it, it would be transparent to applications anyway.

Something else the example doesn't show is that the entry for the physical address of the
operating system PT (0) is actually an alias (copy) of the page tables set up when memory
management was initialized. I don't keep duplicate operating system page tables for each job.
That would really be a waste.

Allocation of Linear Memory

You now know the mechanics of paging on the Intel processors, and how I use the processor's
paging hardware. Now you need to know how MMURTL actually allocates the linear space in
each job or for the OS. This is accomplished with three different calls depending what type of
memory you want. AllocPage(), AllocOSPage(), and AllocDMAPage() are the only calls to
allocate memory in MMURTL.

AllocPage() allocates contiguous linear pages in the Jobs address range. This is 1Gb to 2Gb.
The pages are all initially marked with the user protection level Read/Write.

AllocOSPage() allocates contiguous linear pages in the operating system address range. This is
0 to 1Gb. The pages are all initially marked Read/Write with the System protection level and the
entries automatically show up in all job's memory space because all the operating system page
tables are listed in every job's page directory.

AllocDMAPage() allocates contiguous linear pages in the operating system address range, but
it ensures that these pages are below the 16MB physical address boundary. Direct Memory
Access hardware on ISA machines can't access physical memory above 16MB.

MMURTL V1.0 Page 68 of 667

AllocDMAPage() also returns the physical address needed by the user’s of DMA. The pages are
all initially marked with the System protection level Read/Write.

All AllocPage() calls first check to see if there are enough physical pages to satisfy the request.
If the physical memory exists, then they must find that number of pages as contiguous free
entries in one of the PTs. If enough free PTEs in a row don’t exist, it will create a new PT. All
AllocPage() calls return an address to contiguous linear memory, or will return an error if it’s
not available. With a 1Gb address space, it’s unlikely that it won’t find a contiguous section of
PTEs. It’s more likely you will run out of physical memory (the story of my life).

Deallocation of Linear Memory

When pages are deallocated (returned to the operating system), the caller passes in a linear
address, from a previous AllocPage() call, along with the number of pages to deallocate. The
caller is responsible for ensuring that the number of pages in the DeAllocMem() call does not
exceed what was allocated. If it does, the operating system will attempt to deallocate as many
pages as requested which may run into memory that was allocated in another request, but only
from this caller’s memory space. If so, there will be no error, but the memory will not be
available for later use. If fewer pages than were allocated are passed in, only that number will be
deallocated. The caller will never know, nor should it try to find out, where the physical memory
is located with the exception of DMA users (device drivers).

I’ve discussed how MMURTL handles linear addresses. Now comes that easy part - Managing
physical memory.

Allocation of Physical Memory

The fact that the processor handles translation of linear to physical memory takes a great deal of
work away from the OS. It is not important, nor do you even care, if pages of memory in a
particular job are physically next to each other (with the exception of DMA). The main goal of
physical memory management is simply to ensure you keep track of how much physical memory
there is, and whether or not it’s currently in use.

Physical memory allocation is tracked by pages with a single array. The array is called the Page
Allocation Map (PAM, which is also my sister’s name, and to keep up family relations I told her
I named this array after her).

The PAM is similar to a bit allocation map for a disk. Each byte of the array represents eight 4Kb
pages (one bit per page). This means the PAM would be 512 bytes long for 16 Mb of physical
memory. The current version of MMURTL is designed to handle 64 MB of physical memory
which makes the PAM 2048 bytes long. Now if I could only afford 64 MB of RAM. The PAM is
an array of bytes from 0 to 2047, with the least significant bit of byte 0 representing the first
physical 4K page in memory (Physical Addresses 0 to 4095).

MMURTL V1.0 Page 69 of 667

For AllocPage() and AllocOSPage(), you allocate physical memory from the top down. For
AllocDMAPage() you allocate physical memory from the bottom up. This ensures that even if
you install a device driver that uses DMA after your applications are up and running, there will
be physical memory below 16MB available (if any is left at all).

The PAM only shows you which pages of memory are in use. It does not tell you whom they
belong to. To get this information we must go to the PDs and PTs.

Loading Things Into Memory

Applications, System Services, Device drivers, and DLLs, must all be loaded into memory
somewhere.

Each application (job) gets it own PD. This is allocated along with the new Job Control Block
(JCB). It also get as many pages as it needs for it’s code, initial stack, and data. It’s loaded into
these initial pages. Message-based system services are exactly like applications from a memory
standpoint. They are simply new jobs.

Device Drivers have code and data, but no stack. They become part of the operating system and
are reached through the standard entry points in the call gate). They are actually loaded into the
operating system’s memory space with freshly allocated operating system pages. They become
part of the operating system in the operating-system address space accessible to everyone.

Dynamic Link Libraries are the weird ones. They have only code, no data, and no stack. Some
systems allow DLLs to contain data. This can introduce re-reentrancy problems. I wanted them
to be fully re-entrant with no excuses. They are there to be used as shared code only.

DLLs are also loaded into operating system address space, but the pages they occupy are marked
executable by user level code. This means they can be accessed from the user’s code with near
calls. This also means that the loader must keep track of the PUBLIC names of each call in a
DLL and resolve references to them after we load the applications that call them, But this gets
away from memory management.

Operating System page tables are aliased as the first tables in each job’s PD and marked as
supervisor. PDs and PTs are always resident (no page swapper yet, how could they be
swapped?). This is 8 Kb of initial memory management overhead for each job. It will still only
be 8Kb for a 4Mb application. Memory overhead per application is one thing you will have
consider in your design.

Messaging and Address Aliases

If you design your memory management so that each application has its own independent range
of linear addresses, you’ll have to tackle address aliasing. This means you will have to translate
addresses for one program to reach another’s data.

MMURTL V1.0 Page 70 of 667

With a page based system such as MMURTL, an alias address is actually just a shared PTE. If
two programs need to share memory (as they do when using the Interprocess Communications
such as Request/Respond messaging), the kernel copies a PTE from one job’s PT to another job’s
PT. Instantly, the second job has access to other job’s data. They share physical memory. Of
course they probably won’t be at the same linear address, which means you have to fix-up a
pointer or two in the request block, but that’s trivial (a few instructions).

There is no new allocation of physical memory, and the service doesn’t even know that the pages
don’t actually belong to him as they "magically" appear inside its linear address space. Of course,
If it tries to deallocate them, an error will occur. Paging makes messaging faster and easier. A
PTE that is aliased is marked as such and can’t be deallocated or swapped until the alias is
dissolved. Aliasing will only occur for certain operating system structures and messaging other
than the aliased page tables in the users Page Directory for the operating system code and data.

If you decide you want to use the full segmentation capabilities of the Intel processors, then you
can also alias addresses using selectors. The Intel documentation has a very good description of
this process.

Memory and Pointer Management for Messaging

If you haven’t read chapter 4 (Interprocess Communications), you should do it before you read
this section. This will make more sense if you do.

When an application requests a service, the kernel allocates a Request Block from the operating
system and returns a handle identifying this request block to the caller. This request block is
allocated in operating system memory space, but at the user’s protection level so the service can
access it.

The user’s two pointers pData1 and pData2, are aliased into the services memory area and are
placed in the request block.

The memory management aspects of the request/respond messaging process work like this:

1. The caller makes a request
2. The Request() primitive (on the caller’s side) does the following:

- Allocates a request block
- Returns a request handle to the caller
- Places the following into the RqBlk:
- linear address of pData1 (if not 0)
- linear address of pData2 (if not 0)
- sizes of the pData1 and 2
- pointer to caller’s Job Control Block
- Service Code
- Response Exchange

MMURTL V1.0 Page 71 of 667

- dData0 and dData1
- Places a message on the Service’s exchange with the Request handle in it
- Schedules the service for execution
- Reevaluates the ready queue, switching tasks if needed

3. The Wait() primitive (on the service’s side):
- Adds aliases to the service’s Page Table(s) for pData1 and 2
- Places aliased linear addresses into RqBlk
- Returns the message to the service

4. The service does it’s thing using the aliased pointers, reading & writing data to the caller’s
memory areas. When it’s done its work, it responds.

5. The respond() primitive (on the service’s side) does the following:
- Removes the aliased memory from the service’s PTs.
- Places the message on the caller’s response exchange.
- Reevaluates the ready queue (switch tasks if needed).

6. The Wait() primitive (back on the caller’s side): passes the response message to the caller.

Summary of MMURTL Memory Management

The key points to remember and think about when pondering my memory-management scheme
(and how you can learn from it, use it, or use pieces of it) are:

• One Page Directory (PD) for each job.
• Linear address of the PD is kept in the Job Control Block.
• One or more Page Tables (PT) for each Job.
• One or more PTs for the OS.
• OS PTs are MAPPED into every Job’s Page Directory by making entries in the Job’s PD.
• OS uses upper 2Kb of each PD for linear addresses of PTs.
• Physical memory is tracked with a bit map.

What does all this mean to the applications programmer? Not much I’m afraid. They don’t need
to know any of this at all to write a program for MMURTL. Only those of you that will brave the
waters and write your own operating system will have to consider documentation directed at the
programmers. How they see the interface is very important. For MMURTL, the application
programmer needs to know the following:

• The minimum amount of allocated memory is 4Kb (one page).
• Memory is allocated in 4Kb increments (pages).
• Jobs can allocate one or more pages at a time.
• Jobs can deallocate one or more pages at a time.
• The programmer tracks his own memory usage.

MMURTL V1.0 Page 72 of 667

Chapter 6, Hardware Interface

As a resource manager, the operating system provides access to hardware for the programs on
the system. This chapter discusses your approach to hardware interfaces and highlights some of
he pitfalls to avoid.

Hardware Isolation

The concept of isolating the operating system (and the programmer) from directly accessing or
having to control the hardware is a good idea. This concept is called hardware abstraction or
hardware isolation; it implies an additional programmatic interface layer between the hardware
and the parts of the operating system that control it. You provide a common, well defined
interface to do things like move data to and from a device, or for specific timing requirements.

This well-defined interface has no hardware-specific information required for it’s operation from
the point of view of the operating system. Therefore, in theory, you can port the operating system
to almost any platform, as long as it has similar hardware to accomplish the required functions.

You need to define logical device nomenclatures from the operating system’s point of view, and
physical device nomenclatures to the code that will be below this abstraction layer (which is
actually controlling the hardware). The interface can be designed above or below the device
driver interface. The most elegant method (and the most difficult) is when it is done below the
device driver code. Not even device driver writers have to know about the hardware aspects.

As good as it sounds, there are drawbacks to this idea. The two that are obvious are code size,
and speed. Any additional layers between the users of the hardware and the hardware itself adds
to size and reduces the speed of the interface. The most obvious place this is evident is in the
video arena. Adding a somewhat bulky layer between a program and the video hardware
definitely slows down operation.

The implementation of this hardware isolation layer also means that you must thoroughly
investigation all of the platforms you intend to target. I don’t recommend you try to implement a
complete hardware isolation layer without having all of the documentation for the target
platforms you intend to support.

You can keep your device interfaces as hardware non-specific as possible, however. Don’t use
any fancy non-standard functions that might not be supported on some platforms – for example,
memory-to-memory DMA transfers.

MMURTL V1.0 Page 73 of 667

The CPU

The interface to the Central Processor Unit (CPU) seems almost transparent. It executes your
instructions, jumps where you tell it, and it simply runs. But there’s always more than meets the
eye.
The CPU has well defined methods of communicating with the operating system. The most
common, aside from the instructions you give it, is the interrupt or trap. Other methods may be in
the form of registers that you can read to gather information on the state of the processor, or
tasks that are running (or running so poorly).

An important consideration is how the processor stores and manipulates its data - how it is
accessed in memory. Some processors store the least significant byte of a four byte integer at the
highest memory address of the four bytes, and the most significant at the lowest. The Intel and
compatible CPUs have been referred to as "backward" in this respect, although I never thought
so. This affects everything from the programmatic interfaces, to interoperability with other
systems. This is often referred to as the "Big-ENDian, Little-ENDian" problem when dealing
with the exchange of information across networks or in data files. Your assembler and compilers
will take care of all the details of this for you, and if you’ve worked with the processor for any
length of time it will be second nature. One other thing this may affect is how you manipulate the
stack or access data that is on it.

Timing issues are also involved with the CPU. Most 32-bit CPUs have relatively large internal
instruction and data caches. These types of caches can affect timing of certain OS-critical
functions. I have learned how to enable and disable caching on the systems I work with for the
purposes of debugging. I haven’t run into any timing problems I could attribute to caching, but
that doesn’t mean that you won’t.

An important point concerning the CPU interface is how you handle interrupts. With some CPUs
you can actually switch tasks on a hardware interrupt instead of just calling a procedure. This is
handy, but it can consume a good deal of valuable bandwidth. This gets into the issue of
interrupt latency, which means not being able to handle all your interrupts in a timely fashion.
Switching the complete hardware and software context of a task for every interrupt will simply
slow you down. I’ve tried both methods, and I recommend interrupt procedures over interrupt
tasks if at all possible.

There is no source of information like the manufacturer’s documentation to familiarize yourself
with all of the aspects of the CPU. I read many books about my target processor, but I found the
most valuable, and most useful, were purchased directly from the processor manufacturer. Your
interpretation of their documentation may be superior to that of those who write secondary books
on these topics (like mine).

MMURTL V1.0 Page 74 of 667

The Bus Structure

A bus is a collection of electrical signals that are routed through a computer system between
components. Bus designs are usually based on standards and given names or numbers such as
IEEE-696, ISA, EISA, PCI, Multibus, just to name a few.

The bus structure on any hardware platform is usually comprised of several buses. The most
obvious to note is the bus from the CPU to the rest of the computer system. This is called the
main bus, internal bus, or CPU bus.

The CPU bus is usually comprised of three distinct sets of signals for most processors. The first
set is the data bus, which carries the values that are read from and written to memory or I/O
devices. The second is the address bus, which determines where in memory is being read from or
written to or which I/O device is being accessed. Finally, the control bus usually carries a wide
variety of signals, including read and write access lines for memory and I/O, along with things
like processor interrupt lines and clock signals.

The CPU bus is usually connected to the main bus. On smaller systems, the main bus may be
composed solely of the CPU signals; in that case, the CPU bus and the main bus are the same.
The connections between busses are usually through gated devices that will be turned on and off
depending on who is accessing what bus. These actions are under hardware control so you
generally don’t have to worry about them.

The CPU bus will not usually be the bus that is connected directly to the external interface
devices that you must control. I refer to this bus as the interface bus. On the PC-ISA platforms,
the external interface bus is called the Industry Standard Architecture, or ISA Bus. There are
many extensions to this bus - some proposed, and some that are available now.

The interface bus may not carry all of the data, address, or control lines that are found on the
main or CPU bus. For instance, the PC-ISA bus is really quite crippled compared to the CPU
bus. Only half of the data lines make there way out to this bus (it’s really a 16-bit bus), and not
all of the I/O addresses or interrupt lines can be accessed on this bus.

You really don’t need to know the exact hardware layouts for these busses and signals, but in
some of the processor documentation, they are fairly explicit about the effect of certain
instructions concerning some of these signal lines, such as those dealing with interrupts. It would
help you to be familiar with the basic bus structures on your target hardware platform. Before
you plan some grand interface scheme, make sure you understand the capabilities of the platform
you’re working with, and especially the interface bus. Quite honestly, I’ve had to "drop back 10
yards and punt" a time or two.

Serial I/O

Many forms of serial Input/Output exist. The most common is the relatively low-speed,
asynchronous serial communications (RS-232). The electronic devices that handle asynchronous

MMURTL V1.0 Page 75 of 667

communications are called UARTs (Universal Asynchronous Receiver Transmitters). They are
actually very forgiving devices, and they take much of the drudgery away from the programmer
that is implementing serial communications. Most varieties of these devices are very similar. The
RS-232 device driver included with the MMURTL operating system should prove valuable to
you, no matter which device you must code.

Other devices besides communications channels may also be controlled through UARTs. These
may include the keyboard or a mouse port to name few.

Less commonly found, but still very important, are synchronous communications such as those
used with X.25 (an international link and network layer standard), SDLC, or HDLC. All these
synchronous communications standards have one thing in common from the operating system
writer’s point of view: critical timing.

Unlike UART devices, USART (the added "S" is for synchronous) devices are very timing
critical. They work with frames or packets of data. They have no way, except for the hardware
clock timing, to determine when one byte ends and the next begins. USARTs generally expect
the device driver to provide these packets with very little delay. In fact, in many cases, a delay
causes them to abort the frame they’re working on and send an error instead. Therefore, you must
ensure that you can get out the entire frame (byte by byte) without a large delay factor involved
between each byte. Buffered USARTs assist with this issue, but how your operating system
implements its tasking model and its ISRs (interrupt service routines) will have a large effect on
its ability to handle these types of devices.

The issue of polling versus interrupt-driven control of communications devices crops up in
documentation you read about UARTs and USARTs. The concept of polling a device means that
your device driver or program always is there to continually check on the device to see when it
needs attention. This is done by repetitively reading the status registers on the UART/USART in
a loop. If you intend to design a true multitasking system, I recommend that you forget about
polling and stick with interrupts. Concentrate on the efficiency of all the Interrupt Service
Routines (ISRs) on your system.

Parallel I/O

Parallel Input/Output may include devices for printer interface (e.g., the infamous Centronics
interface); the IEEE-488 General Purpose Interface Bus (GPIB); and on some systems, even the
main bus may be accessible as a parallel interface of sorts (this is most common on laptops and
notebook computers).

Parallel buses can move data faster, simply because they are transferring information one byte or
one word at a time instead of a single bit at a time in a serial fashion. These devices provide
interrupt-driven capabilities just like the serial devices. Quite often, they are much easier to
control than serial devices because they have fewer communications options.

MMURTL V1.0 Page 76 of 667

Block-Oriented Devices

Block-oriented devices can include disk drives, network frame handlers, and tape drives, to name
a few. The interfaces to these devices enable large volumes (blocks) of data to be moved
between the devices and memory in a rapid fashion.

This block movement of data is accomplished in one of several ways. Direct Memory Access
(DMA) is one method, which is discussed in detail later in this chapter. Another method is
shared memory blocks – a process in which a hardware device actually takes up a portion of your
physical address space, and all you do to transfer the block is write or read those addresses then
tell the device you're done. Another way is programmed I/O, which is available on some
processors such as the Intel series. Programmed I/O uses special instructions to send data to what
appears to be an address, but is really a device connected to the bus. The processor may even
have some form of high-speed string instructions to enable you send blocks of data to this array
of pseudo addresses. This is how the Integrated Drive Electronics (IDE) interface works on the
PC-ISA systems.

The major difference between these forms of block-data transfer is the consumption of CPU time
(bandwidth). DMA uses the least CPU bandwidth because it's a hardware device designed to
transfer data between memory and devices, or even memory to memory, during unused portions
of the CPU clock cycle. You will usually not have a choice as to which method you use; the
method is determined by the interface hardware (the disk or tape controller hardware, or network
card).

Keyboard

The keyboard may or may not be a part of the hardware to control on your system. If you have a
platform that communicates with its users through external terminals, you may simply have to
deal with a serial device driver.

On many systems, the keyboard is an integral part of the hardware. This hardware is usually a
small processor or a UART/CPU combination. If this is the case, the keyboard hardware will be
accessed through I/O port (or memory address), and you will need to know how to set it up and
operate the device.

The keyboard on many systems is preprogrammed to provide series of bytes based on some
translation table within the keyboard microprocessor. Keyboard users prefer a familiar set of
codes to work with such as ASCII (American Standard Code for Information interchange), or
Unicode, which is a relatively new multibyte international standard. You are responsible for the
translations required from the keyboard device if they aren't already in the desired format.

Interrupts are the normal method for the keyboard device to tell you that a key has been struck;
This requires an interrupt service routine. The keyboard can usually be treated as just another
device on your system as far as a standardized interface, but you must realize the importance of
this device. Nothing infuriates an experienced user more than an undersized type-ahead buffer or

MMURTL V1.0 Page 77 of 667

losing keystrokes. I suppose you can imagine the veins popping out on my forehead when I reach
the huge 15 keystroke limit of MS-DOS.

Keyboard handling in a multitasking system can present some pretty interesting problems. One
of these is how to assign and distinguish between multiple programs asking for keystrokes. Your
tasking model and your programmatic interfaces will determine how this is accomplished.

On the PC-ISA platform, the keyboard hardware is tightly integrated into the system. In fact, the
keyboard serial device allows more than just keyboard interaction. You can even perform a CPU
hardware reset through these same control ports. Quite often, devices perform more than one
function on a particular platform. It’s worth repeating that having the manufacturer’s
documentation for the platform, and even the device manufacturer’s manuals (builders of the
integrated circuits), is worth more than I can indicate to you.

Video

Like the keyboard, you may not have any video hardware at all if your user I/O is through
external terminals. All the output would be via a serial port. However, most platforms have the
video hardware built in or directly accessible through the interface bus.

Many books have been written on control of video hardware. This is especially true for the IBM
PC-AT compatible platforms. There are certain aspects of video hardware you need to
understand because the direct hardware interaction on your platform will affect things like
memory-management techniques that you must design or implement.

The two basic forms of video display are character-based and bit-mapped graphics. Each of these
requires a completely different approach to how you interface video with your operating system.
In most cases, you have direct access to "video memory" somewhere in the array of physical
addresses that your CPU can reach.

In character-based systems, this video memory will contain character codes (e.g., ASCII) that the
video hardware translates into individual scan lines on-screen to form the characters. This
consumes the least amount of your address space. One byte per character and maybe one byte for
the character’s color or attribute is required. On an 80-column-by-25-line display, this only
consumes 4000 bytes.

Bit-mapped graphics-based systems are much more complicated to deal with, and can consume a
much larger area of your address space. Graphics systems must have an address for each bit or
Pixel (Picture element) of information you wish to manipulate or display. In a monochrome
system with a decent resolution, this can be 600 or more bits across and as many as 500
vertically.

600 x 500 divided by 8(size of a byte in bits)=37,500 bytes of memory space. A common
resolution on many systems is 1280 x 1024.

MMURTL V1.0 Page 78 of 667

If you want 16 colors for each bit, this would require three additional arrays to provide the
independent color information. This could consume a vast amount of memory. Video hardware
manufacturers realize this. Manufacturers provide methods to allow these arrays to occupy the
same physical address space, and they give you a way to switch between the arrays. This is
known as planar pixel access. Each bit array is on its own plane. Another method is to make
each nibble of a byte represent the four color bits for each displayed bit on-screen. Then they
break video memory into four or more sections, and allow you to switch between them. This is
known as packed pixel access. Even though they have paralleled access to this memory, it is still
a vast amount of memory to access. For a 256-color system, this would be 16 planes at 37,500
bytes (using the 600 x 500 size sample). That equates to 600,000 bytes. Only one plane of the
total memory consumes your address space, because the video interface cards have RAM that
they switch in and out of your address space. The efficiency of your video routines has a large
effect on the apparent system speed as seen by the user.

These methods of displaying video information require you to allocate an array of OS-managed
memory that is for the video display subsystem. The video hardware must usually be
programmed to tell it where this memory is located. How much memory you require will be
determined by what methods your video hardware uses.

Other aspects of the video subsystem will also require your attention. This includes cursor
positioning, which is hardware-controlled on character based systems, and timing when you
write to the video display area.

In this age of graphics-based systems and graphical user interfaces, you need to take graphics
into consideration even if you build a character-based system first. Your graphics
implementation might have an effect on your memory management design or even your tasking
model. I considered future video and graphics requirements with MMURTL. I even cheated a
little and left the video subsystem set up the way the boot ROM left it because it suited my
purposes. I did, however, have to research hardware cursor control, and I also allocated memory
for large graphics arrays during initialization. Chapter 26, “Video Code,” describes each of the
calls I designed for the video interface. I was interested in character-based, multiple, non-
overlapping video users. Your requirements will more than likely be different.

The concept of a message-based operating system plays well into event-driven program control
(such as a windowing system). I took this into consideration also.

I recommend you purchase a book that details the video hardware that you intend to control long
before you implement your memory management, interprocess communications, and your
tasking model.

One thing I should mention is that many video subsystems may provide video code in ROM to
control their hardware. In many cases, this code will be of little use to you after the system is
booted. In some cases, the video ROM's only purpose is to test and setup the video hardware
during the testing and initialization phases of the boot process. Video-handling code may even be
provided in the form of a BIOS ROM (Basic Input/Output System). This code may also be
useless if it will not execute properly in your system (e.g., 16-bit code in a 32-bit system). Make

MMURTL V1.0 Page 79 of 667

certain that the video documentation you acquire documents hardware access and not simply
access to the code found in ROM.

Direct Memory Access (DMA)

You’ll find DMA hardware on almost all platforms you work with, except maybe an embedded
system board. DMA devices have several control lines that connect to the CPU and to the
devices that use it. These control lines provide the necessary "handshakes" between the device
and the DMA hardware. Programmers that write device drivers have often faced the chore of
learning all the intricacies of DMA hardware.

In a multitasking system that may have several DMA users, the operating system must ensure
harmony between these users. If the programmers all follow the rules for programming the DMA
hardware to the letter, you’ll have no problems, but this means that the programmers must be
well versed on the DMA hardware-control requirements. A better plan is to provide users with a
programmatic interface to use the DMA hardware, which takes care of the synchronization and
details of DMA programming.

DMA hardware also requires that the programmer know the physical addresses with which they
are working. Direct memory access is a hardware device that operates outside of the virtual
address translations that may be taking place within the paging hardware of the processor or
external PMMU (paged memory management unit).

I’ll show you what I provided for users of DMA. With minimal changes you could use this code
on almost any system, taking into account the differences in control registers and commands on
the target system’s DMA hardware. I provided a method to allocate memory that returns the
physical address they require which I touched on in chapter 5, “Memory Management.” I also
gave users high level calls to set up the DMA hardware for a move, and to query the status of the
move. The DMA hardware calls are SetUpDMA(), and GetDMACount(). The code for these
two calls is shown below. The code is larger than it could be because I have expanded out each
channel instead of using a simple table for the registers. Optimize it as you please.

There really is no data segment for DMA, but the standard include file MOSEDF.INC is used for
error codes that may be returned to the caller.

.DATA
.INCLUDE MOSEDF.INC
.CODE

With 8-bit DMA, the lower word (bits 15-0) is placed into the address registers of the DMA, and
the page register is the next most significant byte (bits 23-16). With word, DMA moves
(channels 5-7), address bits 16-1 are placed in the address registers, while 23-17 are put in the
page register. Bit 16 is ignored by the page register. The page registers determine which 64K or
128K section of memory is being accessed.

MMURTL V1.0 Page 80 of 667

There are two 4-channel DMA devices. One of the channels from the second device is fed into a
channel on the first device. This is called a cascaded device. The following equates are the
register addresses for these two devices on ISA hardware.

;========== DMA Equates for DMA and PAGE registers =========
; DMA 1 Port addresses and page registers
DMA10Add EQU 00h ;Ch 0 Address
DMA10Cnt EQU 01h ;Ch 0 Word Count
DMA11Add EQU 02h ;Ch 1 Address
DMA11Cnt EQU 03h ;Ch 1 Word Count
DMA12Add EQU 04h ;Ch 2 Address
DMA12Cnt EQU 05h ;Ch 2 Word Count
DMA13Add EQU 06h ;Ch 3 Address
DMA13Cnt EQU 07h ;Ch 3 Word Count
DMA1StatCmd EQU 08h ;Read Status/Write Command
DMA1RqReg EQU 09h ;Read/Write DMA Rq Register
DMA1RCmdWbm EQU 0Ah ;Read Command/Write Single bit mask
DMA1Mode EQU 0Bh ;Read/Write Mode register
DMA1FF EQU 0Ch ;Writing this address clears byte ptr flip flop
DMA1Clear EQU 0Dh ;Write causes MASTER Clear (Read from Temp Reg)
DMA1ClrMode EQU 0Eh ;Rd clears mode reg count/Wr Clr ALL mask bits
DMA1MskBts EQU 0Fh ;Read/Write DMA Rq Mask Register

; DMA 2 Port addresses

DMA20Add EQU 0C0h ;Ch 0 Address
DMA20Cnt EQU 0C2h ;Ch 0 Word Count
DMA21Add EQU 0C4h ;Ch 1 Address
DMA21Cnt EQU 0C6h ;Ch 1 Word Count
DMA22Add EQU 0C8h ;Ch 2 Address
DMA22Cnt EQU 0CAh ;Ch 2 Word Count
DMA23Add EQU 0CCh ;Ch 3 Address
DMA23Cnt EQU 0CEh ;Ch 3 Word Count
DMA2StatCmd EQU 0D0h ;Read Status/Write Command
DMA2RqReg EQU 0D2h ;Read/Write DMA Rq Register
DMA2RCmdWbm EQU 0D4h ;Read Command/Write Single bit mask
DMA2Mode EQU 0D6h ;Read/Write Mode register
DMA2FF EQU 0D8h ;Writing this address clears byte ptr flip flop
DMA2Clear EQU 0DAh ;Write causes MASTER Clear (Read from Temp Reg)
DMA2ClrMode EQU 0DCh ;Rd clears mode reg count/Wr Clr ALL mask bits
DMA2MskBts EQU 0DEh ;Read/Write DMA Rq Mask Register

;DMA Page register by DRQ/DACK number

DMAPage0 EQU 87h ;DMA DACK0 Page register
DMAPage1 EQU 83h ; DACK1 (etc. etc. etc.)
DMAPage2 EQU 81h
DMAPage3 EQU 82h
DMAPage5 EQU 8Bh
DMAPage6 EQU 89h
DMAPage7 EQU 8Ah
The following internal call sets up the initial DMA channel values for both
chips to most probable use. This includes the cascade mode for generic
channel 4, which is DMA channel 0 on DMA chip 2. This is called one time
during initialization of the operating system.
PUBLIC InitDMA:

MMURTL V1.0 Page 81 of 667

 MOV AL, 04 ;Master disable
 OUT DMA1StatCmd, AL
 OUT DMA2StatCmd, AL

 XOR AL, AL ;MASTER CLEAR (same as hardware reset)
 OUT DMA1Clear, AL
 OUT DMA2Clear, AL

 XOR AL, AL ;All commands set to default (0)
 OUT DMA1StatCmd, AL
 OUT DMA2StatCmd, AL

 MOV AL, 40h ;CH 0 DMA 1
 OUT DMA1Mode, AL ;
 MOV AL, 0C0h ;CH 0 DMA 2 (Cascade Mode)
 OUT DMA2Mode, AL ;

 MOV AL, 41h ;CH 1 DMA 1 & 2
 OUT DMA1Mode, AL ;
 OUT DMA2Mode, AL ;

 MOV AL, 42h ;CH 2 DMA 1 & 2
 OUT DMA1Mode, AL ;
 OUT DMA2Mode, AL ;

 MOV AL, 43h ;CH 3 DMA 1 & 2
 OUT DMA1Mode, AL ;
 OUT DMA2Mode, AL ;

 XOR AL,AL
 OUT DMA1ClrMode, AL ;Enable ALL DMA 1 Channels
 OUT DMA2ClrMode, AL ;Enable ALL DMA 2 Channels
 RETN

The PUBLIC call DMASetUp() sets up a single DMA channel for the caller. DMA is crippled
because it can’t move data across 64K physical boundaries for a byte-oriented move, or 128K
boundaries for a word move. I left it up to the caller to know if their physical addresses violate
this rule. If they do, the segment is wrapped around, and data is moved into the lower part of the
current 64K segment (not into the next segment, as you might assume).

The caller sets the type of DMA operation (In, Out, Verify). For channels 5,6 and 7, the address
and count must be divided by two for the DMA hardware. I do this for the caller, so they always
specify byte count for the setup call, even on word moves.

The PUBLIC call DMSASetUp() follows:

; DmaSetUp(dPhyMem, sdMem, dChannel, dType, dMode)
; EBP+ 28 24 20 16 12
;
; dPhyMem is physical memory address
; sdMem is nBytes to move (STILL bytes for word xfers, we do math)
; dChannel (0,1,2,3,5,6,7)
; dType - 0 = Verify, 1 = In (Write Mem), 2 = Out (Read memory)
; dMode - 0 Demand Mode, 1 Single Cycle, (Floppy Disk I/O uses 1)

MMURTL V1.0 Page 82 of 667

; 2 Block, 3 Cascade
;
;
PUBLIC __DMASetUp:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX, [EBP+12] ; dMode
 CMP EAX, 04 ; Mode must be < 4
 JB DMAModeOK
 MOV EAX, ErcDMAMode
 JMP DMAEnd
DMAModeOK:
 SHL EAX, 6 ; Move Mode bits to 6 and 7
 MOV BL, AL ; Put it in BL
 MOV EAX, [EBP+16] ; get dType
 AND BL, 0C0h ; Set to Verify by default (low bits 0)
 CMP EAX, 0 ; Check fType (Verify?)
 JE DMASelect ; Yes
 CMP EAX, 1 ; In? (Write)
 JE DMAWrite ; Yes (if no then fall thru to Read)
DMARead:
 OR BL, 00001000b ; OR read command to BL (OUT)
 JMP DMASelect
DMAWrite:
 OR BL, 00000100b ; OR write command to BL (IN)

DMASelect:
 MOV EAX, [EBP+20] ;Jump table for channel selection
 CMP EAX, 0 ;
 JE DMA0
 CMP EAX, 1
 JE DMA1
 CMP EAX, 2
 JE DMA2
 CMP EAX, 3
 JE DMA3
 CMP EAX, 5
 JE DMA5
 CMP EAX, 6
 JE DMA6
 CMP EAX, 7
 JE DMA7
 MOV EAX, ErcDMAChannel
 JMP DMAEnd

DMA0:
 CLI
 MOV AL, 00000100b ; channel 0 Set Mask for DRQ
 OUT DMA1RCmdWbm, AL ;
 MOV AL, 00000000b ; CH0 (CH is last 2 bits)
 OR AL, BL ; OR with MODE
 OUT DMA1Mode, AL
 OUT DMA1FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 OUT DMA10Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA10Add, AL ; Hi Byte

MMURTL V1.0 Page 83 of 667

 SHR EAX, 8
 OUT DMAPage0, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24]
 DEC EAX
 OUT DMA10Cnt, AL
 SHR EAX, 8
 OUT DMA10Cnt, AL
 MOV AL, 00000000b ; channel 0 Clear Mask for DRQ
 OUT DMA1RcmdWbm, AL
 STI
 XOR EAX, EAX
 JMP DMAEnd

DMA1:
 CLI
 MOV AL, 00000101b ; channel 1 Set Mask for DRQ
 OUT DMA1RCmdWbm, AL
 MOV AL, 00000001b ; CH1
 OR AL, BL ; OR with MODE/TYPE
 OUT DMA1Mode, AL
 OUT DMA1FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 OUT DMA11Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA11Add, AL ; Hi Byte
 SHR EAX, 8
 OUT DMAPage1, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24] ; sdMem
 DEC EAX
 OUT DMA11Cnt, AL
 SHR EAX, 8
 OUT DMA11Cnt, AL
 MOV AL, 00000001b ; channel 1 Clear Mask for DRQ
 OUT DMA1RcmdWbm, AL
 STI
 XOR EAX, EAX
 JMP DMAEnd

DMA2:
 CLI
 MOV AL, 00000110b ; channel 2 Set Mask for DRQ
 OUT DMA1RCmdWbm, AL
 MOV AL, 00000010b ; CH2
 OR AL, BL ; OR with MODE
 OUT DMA1Mode, AL
 OUT DMA1FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 OUT DMA12Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA12Add, AL ; Hi Byte
 SHR EAX, 8
 OUT DMAPage2, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24] ; sdMem
 DEC EAX
 OUT DMA12Cnt, AL
 SHR EAX, 8
 OUT DMA12Cnt, AL

MMURTL V1.0 Page 84 of 667

 MOV AL, 00000010b ; channel 2 Clear Mask for DRQ
 OUT DMA1RcmdWbm, AL
 STI
 XOR EAX, EAX
 JMP DMAEnd

DMA3:
 CLI
 MOV AL, 00000111b ; channel 3 Set Mask for DRQ
 OUT DMA1RCmdWbm, AL
 MOV AL, 00000011b ; CH3
 OR AL, BL ; OR with MODE
 OUT DMA1Mode, AL
 OUT DMA1FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 OUT DMA13Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA13Add, AL ; Hi Byte
 SHR EAX, 8
 OUT DMAPage3, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24] ; sdMem
 DEC EAX
 OUT DMA13Cnt, AL
 SHR EAX, 8
 OUT DMA13Cnt, AL
 MOV AL, 00000011b ; channel 3 Clear Mask for DRQ
 OUT DMA1RcmdWbm, AL
 STI
 XOR EAX, EAX
 JMP DMAEnd

;NOTE: DMA channels 5-7 are on DMA2 and numbered 1-3 for chip select purposes

DMA5:
 CLI
 MOV AL, 00000101b ; channel 1 DMA2 Set Mask for DRQ
 OUT DMA2RCmdWbm, AL
 MOV AL, 00000001b ; CH1 on DMA 2
 OR AL, BL ; OR with MODE
 OUT DMA2Mode, AL
 OUT DMA2FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 MOV EBX, EAX ; Save EBX for page
 AND EAX, 0FFFFh ; Rid of all but lower 16
 SHR EAX, 1 ; DIV by 2 for WORD Xfer (bits 16-1)
 OUT DMA21Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA21Add, AL ; Hi Byte
 MOV EAX, EBX
 SHR EAX, 15 ; We only need 23-17 for the page
 OUT DMAPage5, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24] ; sdMem
 SHR EAX, 1 ; DIV by 2 for WORD Xfer
 DEC EAX ; One less word
 OUT DMA21Cnt, AL
 SHR EAX, 8
 OUT DMA21Cnt, AL

MMURTL V1.0 Page 85 of 667

 MOV AL, 00000001b ; channel 1 Clear Mask for DRQ
 OUT DMA2RcmdWbm, AL
 STI
 XOR EAX, EAX
 JMP DMAEnd
;
DMA6:
 CLI
 MOV AL, 00000110b ; channel 2 Set Mask for DRQ
 OUT DMA2RCmdWbm, AL
 MOV AL, 00000010b ; CH2 on DMA 2
 OR AL, BL ; OR with MODE
 OUT DMA2Mode, AL
 OUT DMA2FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 MOV EBX, EAX
 AND EAX, 0FFFFh ; Rid of all but lower 16
 SHR EAX, 1 ; DIV by 2 for WORD Xfer
 OUT DMA22Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA22Add, AL ; Hi Byte
 MOV EAX, EBX
 SHR EAX, 15
 OUT DMAPage6, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24] ; sdMem
 SHR EAX, 1 ; DIV by 2 for WORD Xfer
 DEC EAX
 OUT DMA22Cnt, AL
 SHR EAX, 8
 OUT DMA22Cnt, AL
 MOV AL, 00000010b ; channel 2 Clear Mask for DRQ
 OUT DMA2RcmdWbm, AL
 STI
 XOR EAX, EAX
 JMP DMAEnd
;
DMA7:
 CLI
 MOV AL, 00000111b ; channel 3 Set Mask for DRQ
 OUT DMA2RCmdWbm, AL
 MOV AL, 00000011b ; CH3 on DMA 2
 OR AL, BL ; OR with MODE
 OUT DMA2Mode, AL
 OUT DMA2FF, AL ; Clear FlipFLop (Val in AL irrelevant)
 MOV EAX, [EBP+28] ; dPhyMem
 MOV EBX, EAX
 AND EAX, 0FFFFh ; Rid of all but lower 16
 SHR EAX, 1 ; DIV by 2 for WORD Xfer
 OUT DMA23Add, AL ; Lo byte address
 SHR EAX, 8
 OUT DMA23Add, AL ; Hi Byte
 MOV EAX, EBX
 SHR EAX, 15
 OUT DMAPage6, AL ; Highest byte (to page register)
 MOV EAX, [EBP+24] ; sdMem
 SHR EAX, 1 ; DIV by 2 for WORD Xfer
 DEC EAX

MMURTL V1.0 Page 86 of 667

 OUT DMA23Cnt, AL
 SHR EAX, 8
 OUT DMA23Cnt, AL
 MOV AL, 00000011b ; channel 3 Clear Mask for DRQ
 OUT DMA2RcmdWbm, AL
 STI
 XOR EAX, EAX
DMAEnd:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 20 ; 20 bytes of junk to dump

After the DMA call has been made, the device you are transferring data to or from will usually
interrupt you to let you know it’s done. In cases where you always move a fixed size block such
as a floppy disk, you can assume that the block was moved if the device status says everything
went smoothly (e.g., no error from the floppy controller). On some devices, you may not always
be moving a fixed-size block. In this case, you will have to check the DMA controller and see
just how many bytes or words were moved when you receive the interrupt. GetDMACount()
returns the number of bytes or words left in the DMA count register for the channel specified.
For channels 5 through 7, this will be the number of words. For channels 0 through 3, this is
bytes.

You should note that this value will read one less byte or word than is really left in the channel.
This is because 0 = 1 for setup purposes. To move 64K, you actually set the channel byte count
65,535:
;
; GetDMACount(dChannel, pwCountRet)
; EBP+ 16 12
;
; dChannel (0,1,2,3,5,6,7)
; pwCountRet is a pointer to a Word (2 byte unsigned value) where
; the count will be returned. The count is number of WORDS-1
; for channels 5-7 and BYTES-1 for channels 0-3.

PUBLIC __GetDMACount:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX, [EBP+16] ;Channel
 MOV ESI, [EBP+12] ;Return address for count
DMACSelect:
 CMP EAX, 0 ;
 JNE SHORT DMAC1
 MOV DX, DMA10Cnt ;
 JMP SHORT DMACDoIt
DMAC1:
 CMP EAX, 1
 JNE SHORT DMAC2
 MOV DX, DMA11Cnt ;
 JMP SHORT DMACDoIt
DMAC2:
 CMP EAX, 2
 JNE SHORT DMAC3
 MOV DX, DMA12Cnt ;
 JMP SHORT DMACDoIt

MMURTL V1.0 Page 87 of 667

DMAC3:
 CMP EAX, 3
 JNE SHORT DMAC5
 MOV DX, DMA13Cnt ;
 JMP SHORT DMACDoIt
DMAC5:
 CMP EAX, 5
 JNE SHORT DMAC6
 MOV DX, DMA21Cnt ;
 JMP SHORT DMACDoIt
DMAC6:
 CMP EAX, 6
 JNE SHORT DMAC7
 MOV DX, DMA22Cnt ;
 JMP SHORT DMACDoIt
DMAC7:
 MOV DX, DMA23Cnt ;
 CMP EAX, 7
 JE SHORT DMACDoIt
 MOV EAX, ErcDMAChannel ;No such channel!
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ; 20 bytes of junk to dump
DMACDoIt:
 CLI
 IN AL,DX ;
 MOV CL,AL ;
 IN AL,DX ;
 MOV CH,AL ;CX has words/bytes left in DMA
 STI ;
 MOV WORD PTR [ESI], CX ;
 XOR EAX, EAX ; No Error
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ; 8 bytes to dump from the stack

Timers

Hardware timers are a very important piece of any operating system. Almost everything you do
will be based around an interrupt from a hardware timer.

A hardware timer is basically a clock or stopwatch-like device that you can program to interrupt
you either once, or at set intervals. This interval or time period can range from microseconds to
seconds, or even hours in some cases. Internally, hardware timers have a counting device (a
register) that is usually decremented based on a system-wide clock signal. You can generally set
a divisor value to regulate how fast this register is decremented to zero, which determines the
interrupt interval. Quite often, these devices allow you to read this register to obtain the
countdown value at any time.

Some platforms may provide multiple hardware timers that you can access, program, and read as
required. One or more of these timers may be dedicated to hardware functions on the system

MMURTL V1.0 Page 88 of 667

board, and not available to the operating system interrupt mechanisms directly. The operating
system may, however, be responsible to program these dedicated timers, or at least make sure it
doesn’t interfere with them after they have been set up by ROM initialization prior to boot time.

If you have timers that perform system functions for the hardware, they will more than likely be
initialized at boot time and you can forget them. These timers may be for things like DMA
refresh or some form of external bus synchronization.

Priority Interrupt Controller Unit (PICU)

The PICU is a very common device found on most platforms. Usually, the processor has one or
two electrical signal lines that external hardware uses to indicate an interrupt. A hardware
interrupt is a signal from a device that tells the CPU (the operating system) that it needs
servicing of some sort.

As you can imagine (or will have realized), many devices interrupt the processor. Therefore,
some form of multiplexing that takes place on the CPU interrupt signal line. The device that
handles all of the devices that may interrupt, and eventually feeds one signal to the CPU is the
PICU. A PICU has several lines that look like the CPU interrupt line to the devices, and also has
the logic to select one of these incoming signals to actually interrupt the CPU.

In the process of an interrupt, the CPU must know which device is interrupting it so it can
dispatch the proper Interrupt Service Routine (ISR). This ISR is usually performed by the CPU
which places a value on the data lines when the CPU acknowledges the interrupt. The PICU
takes care of this for you, but you must generally set values to indicate what will be placed on the
bus. Your job is to know how to program the PICU. This is not very complicated, but it is critical
that it’s done correctly. There are instructions to tell the PICU when your interrupt service
routine is finished and interrupts can begin again, ways to tell the PICU to block a single
interrupt, and ways to tell the PICU how to prioritize all of the interrupt lines that it services.

All of this information will be very specific to the PICU that your platform uses. You will need
the hardware manual for code examples.

MMURTL V1.0 Page 89 of 667

Chapter 7, OS Initialization

Initializing an operating system is much more complicated than initializing a single program.

In this chapter, we start with loading the operating system, then go through each section of the
basic initialization, including hardware, memory, tasks, and important structures.

Your operating system’s tasking and memory models may differ from MMURTL’s, but the basic
steps to get your operating system up and running will be very similar.

Getting Booted

If you've ever done any research on how an operating system gets loaded from disk, you'll know
there is no definitive publication you can turn to for all the answers; it's not everyday someone
wants to write an operating system, and it's not exactly easy.

The only hardware platform I've researched for the purpose of learning how to boot an operating
system is the IBM-PC ISA-compatible system. If you're using another platform, you'll have to do
some research. I'm going to give you a good idea what you need to know, which you can apply
to most systems in a generic fashion. This will give you a very good head start on your studies. If
you're using a PC ISA-compatible platform, I've done all your homework.

Boot ROM

When a processor is first powered up, it executes from a reset state. Processor designers are very
specific about what state they leave the processor in after they accomplish their internal hardware
reset. This information can be found in the processor hardware manual, or in the processor
programming manual from the manufacturer.

The processor's purpose is to execute instructions. The question is, what instruction does it
execute first? The instruction pointer register or instruction counter, (whatever they call it for
your particular processor) tells the processor which instruction to execute first. (The initial
address that is executed will also be documented in the processor manual.) The operating system
writer may not really need to know the processor’s initial execution address, because this address
is executed by a boot ROM. For this reason, the first executed address is usually somewhere at
the high end of physical memory, where boot ROMs usually reside.

The boot ROM is read-only memory that contains just enough code to do a basic system
initialization and load (boot) the operating system. When I say "just enough code," that's exactly
what I mean. The operating system will be located on a disk or other block-oriented device. This
device will, no doubt, be organized with a file system.

MMURTL V1.0 Page 90 of 667

Consider that the boot ROM code knows little or nothing about the file system. If this is true,
how does it load a file (the operating system)? It generally doesn’t - at least not as a file from the
file system.

The Boot Sector

The boot ROM code knows only enough to retrieve a sector or two from the disk to some
location in RAM, then execute it. This amounts to reading a sector into a fixed address in
memory, then jumping to the first address of the sector. In the PC world, this is known as the
Boot Sector of the disk or diskette. It is usually the first logical sector of the disk.

This small amount of boot sector code has to know how to get the operating system loaded and
executed. This can be done in more than one step if required. In other words, the boot sector
code may load another, more complicated, loader program that in turn loads the operating
system. This is known as a multistage boot. To be honest, 512 bytes (standard hardware sector
size on many systems) is not a heck of a lot of code.

If the operating system you are loading is located in a special place on the disk, such as a fixed
track or cylinder, then life is easy. You only need enough hardware and file-system knowledge to
read the sectors from disk to the location you want them in RAM. But it gets more complicated.
When the boot ROM loaded your boot sector, it may have loaded it right where you want to put
your operating system. This means the boot sector code has to relocate itself before it can even
load the operating system. This dynamic relocation can eat up some more of the precious 512
bytes of code space in the boot sector (unless your boot ROM lets you load more than one sector,
such as a whole track).
The factors you will have to consider when planning how your operating system will boot are:

1. Where the boot ROM expects your boot sector or sectors to be on disk,
2. Where this boot sector is loaded and executed,
3. Whether you can leave the boot sector code where the BOOT ROM loaded it (dynamic
relocation may be needed if the boot sector is where your OS will load).
4. How to find your operating system or first-stage boot program on disk from the boot
sector code once it’s executed.
5. How the boot sector code will read the operating system or first-stage boot program
from disk (e.g., the hardware commands, or BIOS calls needed to load it into memory).
6. Where your operating system will reside in memory, and whether or not you have to
move it after you load it.
7. Whether there are any additional set-up items to perform before executing the
operating system.
8. Where your operating system’s first instruction will be, so you can begin execution.

I don’t pretend to know how to boot your system if you’re not using the platform I chose.
But I’m sure you can gain some insight on what you’ll have to do if I give a detailed
description of what it’s like on a IBM PC-AT-compatible systems.

MMURTL V1.0 Page 91 of 667

I will go over each of the eight items on the above list to explain how it’s handled, then I’ll show
you some boot sector code in grueling detail.

1. In an ISA system, the BOOT ROM expects your boot sector at what it considers is Logical
Sector Number Zero for the first drive it finds it can read. Some systems enable you to change
the boot order for drives, but the standard order on ISA systems is drive A, then Drive C. Keep in
mind that the PC ISA systems have a BIOS (Basic Input/Output System) in ROM, and they have
some knowledge of the drive geometry from their initialization routines, which they store in a
small work area in RAM.

2. A single boot sector (512 bytes) is loaded to address 7C00 hex which is in the first 64Kb of
RAM.

3. The 7C00 hex address may be fine for your operating system if you intend to load it into high
memory. I wanted mine at the very bottom and it would have overwritten this memory address,
so I relocated my boot sector code (moved it and executed the next instruction at the new
address).

4. How you find your operating system on disk will depend on the type of file system, and where
you stored it. If you intend to load from a wide variety of disk types, it may not always be in the
same place if it’s located after variable-sized structures on the first portion of the disk. This was
the case with my system, and also with MS-DOS boot schemes.

5. I was lucky with the PC ISA systems, because they provide the BIOS. Each boot sector
provides a small table with detailed disk and file system parameters that allow you to update
what the BIOS knows about the disk; then you can use the BIOS calls to load the operating
system or first-stage boot program.

6. My operating system data and code must start at address 0 (zero), and runs contiguously for
about 160Kb. This was a double problem. The boot sector was in the way (at 7C00h), as were
also the active interrupt vector table and RAM work area for the BIOS. This lead to two
relocation efforts. First, I moved the boot sector code way up in memory, then executed the next
instruction at the new address. Second, I read in the operating system above the actively used
memory then relocate it when I didn’t need the BIOS anymore.

7. There are usually a few things you must do before you actually execute the operating system.
Just what these things are depends on the hardware platform. In my case, I have to turn on a
hardware gate to access all the available memory, and I also go into 32-bit protected mode (Intel-
specific) before executing the very first operating system instruction.

8. I know the address of the first operating system instruction because my design has only two
areas (Data and Code), and the code segment loads at a fixed address. If your operating system’s
first execution address varies each time you build it, you may need to store this offset at a fixed
data location and allow your boot sector code to read it so it knows where to jump.

MMURTL V1.0 Page 92 of 667

The following code is a boot sector to load an operating system from a floppy on a PC ISA-
compatible system. It must be assembled with the Borland assembler (TASM) because the
assembler I have provided (DASM) doesn’t handle 16-bit code or addressing. One thing you’ll
notice right away is that I take over memory like I own it. I stick the stack anywhere in the first
megabyte of RAM I desire. Why not? I do own it. There’s no operating system here now.
Examine the following code:

.386P
;This boot sector is STUFFed to the gills to do a single
;stage boot of the MMURTL OS which is about 160K stored as
;a loadable image beginning at cluster 2 on the disk. The OS must
;be stored contiguously in each of the following logical sectors.
;The actual number of sectors is stored in the data param nOSSectors.
;The ,386P directive is required because I use protected
;instructions.

CSEG SEGMENT WORD ’Code’ USE16
 ASSUME CS:CSEG, DS:CSEG, ES:Nothing

ORG 0h

 JMP SHORT Boot up
 NOP ;Padding to make it 3 bytes

;This 59 byte structure follows the 3 jump bytes above
;and is found on all MS-DOS FAT compatible
;disks. This contains additional information about the file system
;on this disk that the operating needs to know. The boot sector code also
;needs some of this information if this is a bootable disk.

Herald DB ’MMURTLv1’
nBytesPerSect DW 0200h ;nBytes/Sector
nSectPerClstr DB 01h ;Sect/Cluster
nRsvdSect DW 0001h ;Resvd sectors
nFATS DB 02 ;nFATs
nRootDirEnts DW 00E0h ;Root Dir entries max
nTotalSectors DW 0B40h ;nTotal Sectors (0 = <32Mb)
bMedia DB 0F0h ;media desc. (worthless)
nSectPerFAT DW 0009h ;nSect in FAT
nSectPerTrack DW 0012h ;nSectors/track
nHeads DW 0002h ;nHeads
nHidden DD 00000000h ;nHidden Sectors (first whole track on HD)
nTotalSect32 DD 00000000h ;nTotalSectors if > 32Mb
bBootDrive DB 00h ;Drive boot sector came from
ResvdByte DB 00h ;Used for temp storage of Sector to Read
ExtBootSig DB 29h ; Ext Boot Signature (always 29h)
nOSSectors DW 0140h ; (140 sectors max) Was Volume ID number
ResvdWord DW 0000h
Volname DB ’RICH ’ ;11 bytes for volume name
FatType DB ’FAT12 ’ ;8 bytes for FAT name (Type)

;The following are pointers to my IDT and GDT after my OS loads
; and are not part of the above boot sector data structure.

MMURTL V1.0 Page 93 of 667

IDTptr DW 7FFh ;LIMIT 256 IDT Slots
 DD 0000h ;BASE (Linear)

GDTptr DW 17FFh ;LIMIT 768 slots
 DD 0800h ;BASE (Linear)

;This is where we jump from those first 3 bytes

BootUp:

;This is the Boot block’s first instruction from the initial jump
; at the beginning of this code

 CLI ;Clear interrupts

 ;Stick the stack at linear 98000h (an arbitrary location)

 MOV AX,9000h
 MOV SS, AX
 MOV SP, 8000h

;Move this boot sector UP to 90000h Linear (dynamic relocation)

 MOV AX, 09000h ;Destination segment
 MOV ES, AX
 XOR DI, DI
 MOV AX, 7C0h ;Source segment
 MOV DS, AX
 XOR SI, SI
 MOV CX, 512
 REP MOVSB

 ; Now we "jump" UP to where we moved it. It’s pseudo jump
 ; that I calculated after assembling it once. Push the
 ; return address, then "return" to it. It works.

 MOV AX, 09000h ;Segment for new location
 PUSH AX
 MOV AX, 6Fh ;Offset to new location (Next PUSH)
 PUSH AX
 RETF

; Now set DS equal to ES which is 9000h
 PUSH ES
 POP DS

;Now we must update the BIOS drive parameter
; table so it can read the disk for us.
;This is done by finding out where it is and writing
; some of the parameters to it from the boot sector.
;The BIOS left a pointer to it at the 1E hex interrupt
; vector location.

 MOV CX, nSectPerTrack ;Get this while DS is correct
 XOR AX, AX
 MOV DS, AX
 MOV BX, 0078h ;Int 1E FDC Params!

MMURTL V1.0 Page 94 of 667

 LDS SI, DS:[BX]

 MOV BYTE PTR [SI+4], CL
 MOV BYTE PTR [SI+9], 0Fh

 PUSH ES ;Make DS correct again
 POP DS
 PUSH DS ;Save DS through the reset

 STI ;Must set interrupts for BIOS to work

 MOV DL, bBootDrive ;Required for Disk System Reset
 XOR AX, AX

 INT 13h ;Reset Disk Controller (DL has drive num)
 JC SHORT BadBoot ;Reset failed...

 POP DS

 ;The controller is reset, now let’s read some stuff!!
 ;We are gonna skip checking to see if the first file
 ;really IS the OS. We need the space for other code.

 MOV SI, OFFSET MsgLoad
 CALL PutChars

 ;What we do now is calculate our way to the third cluster
 ;on the disk and read in the total number of OS sectors in
 ;logical sector order. (3rd cluster is really the first allocated
 ; cluster because the first 2 are unused).
 ;The layout of the Disk is:
 ; Hidden Sectors (optional)
 ; Boot Sector (at logical sector 0)
 ; FATS (1 or more)
 ; Additional Reserved sectors (optional)
 ; Root Directory (n Sectors long)

 XOR AX, AX
 MOV AL, nFATS
 MUL WORD PTR nSectPerFAT
 ADD AX, WORD PTR nHidden ;
 ADC DX, WORD PTR nHidden+2
 ADD AX, nRsvdSect
 MOV CX, AX ;Save in CX

 ;CX now has a Word that contains the sector of the Root

 ;Calculate the size of the root directory and skip past it
 ;to the first allocated sectors (this is where the OS or
 ;stage one of the a two stage loader should be).

 MOV AX,0020h ;Size of Dir Entry
 MUL WORD PTR nRootDirEnts
 MOV BX, nBytesPerSect
 DIV BX
 ADD AX, CX

MMURTL V1.0 Page 95 of 667

 ;AX is at sector for cluster 0, but cluster 0 and 1 don’t exist
 ;so we are really at cluster 2 like we want to be.

 MOV CX, nOSSectors ;Number of OS sectors to read
 JMP SHORT ContinueBoot

;Bad boot goes here and displays a message then
;waits for a key to reboot (or tries to) via int 19h

BadBoot:
 MOV SI, OFFSET MsgBadDisk
 CALL PutChars

 XOR AX,AX
 INT 16h ;Wait for keystroke
 INT 19h ;Sys Reboot

PutChars:
 LODSB
 OR AL,AL
 JZ SHORT Done
 MOV AH, 0Eh
 MOV BX,0007
 INT 10h
 JMP SHORT PutChars
Done:
 RETN

ContinueBoot:
 MOV BX, 06000h ;This is segment where we load the OS.
 MOV ES, BX ; before we move it down to 0000h

NextSector: ;This is a single sector read loop
 PUSH AX ; It’s slow, but works well.
 PUSH CX
 PUSH DX
 PUSH ES

 XOR BX, BX ; ES:BX points to sector read address

; Read a logical sector to ES:BX
; AX has Logical Sector Number
;
 MOV SI, nSectPerTrack
 DIV SI ;Divide LogicalSect by nSectPerTrack
 INC DL ;Sector numbering begins at 1 (not 0)
 MOV ResvdByte, DL ;Sector to read
 XOR DX, DX ;Logical Track left in AX
 DIV WORD PTR nHeads ;Leaves Head in DL, Cyl in AX
 MOV DH, bBootDrive
 XCHG DL, DH ;Head to DH, Drive to DL
 MOV CX, AX ;Cyl into CX
 XCHG CL, CH ;Low 8 bits of Cyl to CH, Hi 2 bits to CL
 SHL CL, 6 ; shifted to bits 6 and 7
 OR CL, BYTE PTR ResvdByte ;OR with Sector number
 MOV AL, 1 ;Number of sectors
 MOV AH, 2 ;Read

MMURTL V1.0 Page 96 of 667

 INT 13h ;Read that sucker!
 JC SHORT BadBoot

 MOV SI, OFFSET MsgDot
 CALL PutChars

 POP ES
 POP DX
 POP CX
 POP AX

 MOV BX, ES ;I increment ES and leave BX 0
 ADD BX, 20h ;512 bytes for segment
 MOV ES, BX ;BX will be zeroed at top of loop
 INC AX ;Next Sector
 LOOP NextSector

 ;At this point we have the OS loaded in a contiguous section
 ;from 60000h linear up to about 80000h linear.
 ;Now we disable interrupts, turn on the A20 line, move
 ;the OS down to address 0, set protected mode and JUMP!

 CLI
 XOR CX,CX
IBEmm0:
 IN AL,64h
 TEST AL,02h
 LOOPNZ IBEmm0
 MOV AL,0D1h
 OUT 64h,AL
 XOR CX,CX
IBEmm1:
 IN AL,64h
 TEST AL,02h
 LOOPNZ IBEmm1
 MOV AL,0DFh
 OUT 60h,AL
 XOR CX,CX
IBEmm2:
 IN AL,64h
 TEST AL,02h
 LOOPNZ IBEmm2

 ;A20 line should be ON Now
 ;So move the OS

 MOV DX, 8000h

 ; Move 64K data chunk from linear 60000h to linear 0

 MOV BX, 06000h
 MOV DS, BX
 XOR SI, SI
 XOR AX, AX
 MOV ES,AX
 XOR DI,DI
 MOV CX, DX

MMURTL V1.0 Page 97 of 667

 CLD
 REP MOVSW ;WORD move

 ; Move first 64K code chunk from linear 70000h to 10000h

 MOV BX, 07000h
 MOV DS, BX
 XOR SI, SI
 MOV AX,1000h
 MOV ES,AX
 XOR DI,DI
 MOV CX, DX
 REP MOVSW ;WORD move

 ; Move last code (32K) from linear 80000h to 18000h

 MOV DS, DX ;DX is 8000h anyway
 XOR SI, SI
 MOV AX,2000h
 MOV ES,AX
 XOR DI,DI
 MOV CX, DX
 REP MOVSB ;BYTE move

 MOV BX, 9000h
 MOV DS, BX

 XOR EDX, EDX
 MOV DL, bBootDrive ;OS can find boot drive in DL on entry

 LIDT FWORD PTR IDTptr ;Load Processor ITD Pointer
 LGDT FWORD PTR GDTptr ;Load Processor GDT Pointer

 MOV EAX,CR0 ;Control Register
 OR AL,1 ;Set protected mode bit
 MOV CR0,EAX
 JMP $+2 ;Clear prefetch queue with JMP
 NOP
 NOP

 MOV BX, 10h ;Set up segment registers
 MOV DS,BX
 MOV ES,BX
 MOV FS,BX
 MOV GS,BX
 MOV SS,BX

 ;We define a far jump with 48 bit pointer manually
 ;by defining the bytes that would make the FAR jump
 ;call JMP FAR 08h:10000h. The segment and code size escape
 ;bytes (66h and 67h) are required to indicate we are
 ;referencing a 32 bit segment with a 32 bit instruction.

 DB 66h
 DB 67h
 DB 0EAh
 DD 10000h

MMURTL V1.0 Page 98 of 667

 DW 8h

MsgNone DB ’ This is actually padding! ’
MsgBadDisk DB 0Dh, 0Ah, ’Bad Boot Disk!’, 00h
MsgLoad DB 0Dh, 0Ah, ’Loading MMURTL’, 00h
MsgDot DB ’.’, 00h

BootSig DW 0AA5Fh ;MS-DOS used this. I left it in.

CSEG ENDS
 END

To assemble and link this into a usable boot sector, use Borland’s Turbo Assembler:

TASM Bootblok.asm <Enter>

This will make a .EXE file exactly 1024 bytes in length. The first 512 bytes is the .EXE header.
It’s worthless. The last 512 bytes is the boot sector binary code and data in a ready-to-use format.
As you change and experiment with the boot sector, you need to inspect the actual size of the
sector and location of some of the code, such as the dynamic relocation address (if you needed to
relocate). To generate a list file from the assembly (Bootblok.lst), and a map file from the link
(Bootblok.map), use TASM as follows:

TASM Bootblok Bootblok Bootblok <Enter>

You need some additional information to experiment with this boot sector if you are on the PC
ISA platforms, such as how to write the boot sector to the disk or read a boot sector from the disk
and inspect it.

Most operating systems provide utilities to make a disk bootable. They may do this as they
format the disk, or after the fact. Some operating systems may force you to make a decision on
whether the disk will be bootable before you format it if they pre-allocate space on the disk for
the operating system.

I used the MS-DOS Debug utility to read and write the disk boot sector while experimenting. It’s
quite easy to do with the Load, Write, and Name commands. To read the boot sector from a
disk, find out where Debug’s work buffer is by doing an Assemble command (just type A while
in Debug). This will show you a segmented address. Press enter without entering any instructions
and use the address shown for the Load command along with the drive, logical sector number,
and number of sectors following it. The following code loads the boot sector from the disk to
address 219F:0000 (or whatever address you were shown):

-A <Enter>
219F:0000 <Enter>
-L 219F:0000 0 0 1 <Enter>

From there you can write this sector to another disk as a file with the Name, Register, and
Write commands as follows:

MMURTL V1.0 Page 99 of 667

N C:\Bootblok.bin
R BX <Enter>
BX:0 <Enter>
R CX <Enter>
CX:200 <Enter>
W 219F:0000

The boot sector from drive 0 is now in a file named BootBlok.bin in the root directory of drive
C. If you wanted the boot sector from your hard disk you would have used the Load command as
follows:

-L 219F:0000 2 0 1 <Enter>

The only difference was the drive number which immediately follows the segmented address.
Debug refers to the drives numerically from 0 to n drives.

After you have assembled your boot sector, you can use Debug to load it as a .EXE file and write
the single 512 sector directly to the disk or diskette. Keep in mind, you should not do this to your
active development drive. The results can be disastrous. From the MS-DOS prompt, type in the
Debug command followed by the name of your new executable boot sector, then write it to the
disk. To find where Debug loaded it, you can use the Dump command to display it.

C:\>Debug BootBlok.exe <Enter>
-D <Enter>
219F:0000 EB 3E 90 (etc.)

This will dump the first 128 bytes and provide the address you need to the Write command.

-W 219F:0000 0 0 1 <Enter>

After the boot sector is on the disk, you only need to put the operating system where it expects to
find it. The boot sector code above expects to find the operating system in a ready-to-run format
at the first cluster on the disk and running contiguously in logical sectors until it ends. This is
easy to do. Format a disk with MS-DOS 5.0 or higher using the /U (Unconditional) option, and
WITHOUT the /S (System) option. Then copy the operating system image to the disk. It will be
the first file on the disk and will occupy the correct sectors. After that you can copy any thing
you like to the disk. The commands are:

C:\> Format A: /U <Enter>
C:\> Copy OS.IMG A:\ <Enter>

The new boot sector and the operating system are on the disk and ready to go. Good luck. I only
had to do it thirty or forty times to get it right. Hopefully, I’ve saved you some serious hours of
experimentation. If so, I’m happy.

MMURTL V1.0 Page 100 of 667

Operating System Boot Image

Depending on the tools you use to build your operating system, it may not be in a form you can
load directly from disk. If it is in an executable format from a linker, there will be a header and
possibly fix-up instructions contained in it. This means you must provide a utility to turn the
operating system executable into a directly executable image that can be booted and run by the
small amount of code in a boot sector.

With MMURTL, I have provided a utility called MakeImg. This reads the MMURTL
executable and turns it into a single contiguous executable image to be placed on the disk. The
data and code is aligned where it would have been had it been loaded with a loader that
understood my executable format. My MakeImg utility is included on the CD-ROM and must be
built with the Borland C compiler. Instructions are included in the single source file
(MakeImg.c) to properly build it.

If no address fix-ups are required in your operating system executable, you might be able to
avoid a need for a utility like this. I couldn’t.

Other Boot Options

If the operating system you write will be run from another environment, you may face the chore
of booting it from another operating system. This is how I run MMURTL most of the time. I
have a program (also provided on CD-ROM) that reads, understands, and loads the image into
RAM then executes it. It is called MMLoader. It has some additional debugging display code
that you can easily eliminated if you like.

This single source file program (MMLoader.C) should also be built with the Borland C compiler
as it has imbedded assembly language. This program basically turns MS-DOS into a $79.00
loader. It does everything that the boot sector code does, along with reading the operating system
from it’s native executable format (a RUN file).

Basic Hardware Initialization

One of the very first things the operating system does after it’s loaded and the boot code jumps to
the first address is to set up a simple environment. This includes setting up the OS stack. In a
segmented processor (such as the Intel series), the boot code may have already set up the
segment registers. In a non-segmented processor (such as the 68x0 series) this wouldn’t even be
necessary.

At this point, interrupts are usually disabled because there are no addresses in the interrupt vector
table. Your operating system may already have some of the addresses hard-coded in advance, but
it’s not necessary. Disabling interrupts is one of the chores that my initialization code handles.

MMURTL V1.0 Page 101 of 667

All of the hardware that is resident in the system - such as the programmable interrupt controller
unit, the Direct Memory Access hardware, and basic timers - must be initialized before you can
set up the rest of the system (the software state). They must simply be initialized to their default
states. Chapter 21, “Initialization Code,” contains all of the code from MMURTL that is used to
set up the operating system from the very first instruction executed, up to the point we jump the
monitor program. It is all contained in the source file Main.asm on CD-ROM. It should help give
you a picture of what's required.

Additionally, some of the hardware-related tasks you may have to accomplish are discussed in
chapter 6, “The Hardware Interface.”

Static Tables and Structures

How your operating system handles interrupts and memory, and how you designed your basic
operating system API and calling conventions determines how many tables and structures you
must setup before you can do things like task and memory management.

I had to set up the basic interrupt vector table, the array of call gates (how users get to OS calls),
and also some basic variables. Chapter 21 shows how I go about this. These first tables are all
static tables and do not require any memory allocation. You'll have think about which tables are
static and which are dynamically allocated, because this will determine whether their
initialization occurs before or after memory-management initialization.

Once the basic hardware and tables are set up, you may realize that most of this code may never
be executed again. This leaves you with a few options - the first of which may be to eliminate it
from the operating system after it is executed so it doesn't take up memory. Another option is
just to forget the code if it doesn't take up too much space. A third option is to make the code
reusable by breaking it up into small segments so that the code can be more generic and used for
other things. What you do may simply depend on how much time you want to spend on it. I just
left it alone. It's not that big. If you want to eliminate it, you can position it at the end of your
code section and simply deallocate the memory for it, or not even initially allocate it with your
memory-initialization code.

Initialization of Task Management

Initialization of tasks management, setting up for multitasking, is not trivial. The processor
you're working with may provide the task management in the form of structures that the
processor works with, but you may also be performing your own tasks management. Either way,
you've got your job cut out for you.

Chapter 3, “the Tasking Model,” discussed some of your options for a tasking model. In all of
the cases that were discussed, you must understand that the code you are executing on start up
can be considered your first task. Its job is to set up the hardware and to get things ready to
create additional tasks. If you desire, you can let this first thread of execution just die once you

MMURTL V1.0 Page 102 of 667

have set up a real first task. The option is usually up to you, but may also depend on hardware
task management if you use it. For instance, on the Intel processors, you need to set up a Task
State Segment (TSS) to switch from, as well as one to switch to. Because I used the Intel task
management hardware I really had no choice. Being a little conservative, I didn’t want to waste a
perfectly good TSS by just ignoring it. I could have gone back and added code to reuse it, but
why not just let it become a real task that can be switched back to?

Chapter 21 shows what I have to do using the Intel hardware task management. Additional task-
management accomplishments may include setting up linked lists for the execution queue
(scheduler) and setting variables that might keep track of statistical information.

Initialization of Memory

During the basic hardware initialization, you may be required to send a few commands to various
pieces of hardware to set up physical addressing the way you need it. This depends on the
platform. It may be to turn on or off a range of hardware addresses, or even to set up the physical
range of video memory if your system has internal video hardware.

One particular item that falls into this category on the PC ISA hardware platform is the A20
Address Line Gate. This is one example I can give to help you understand that there may be
intricacies on your platform that will drive you nuts until you find the little piece of obscure
documentation that explains it in enough detail to get a handle on it.

What is the A20 Line Gate? It all stems back to IBM’s initial PC-AT design. As most of you are
aware (if you’re programmers), the real mode addresses are 20 bits wide. This is enough bits to
cover a one full megabyte. These address lines are numbered A0 through A19. If you use one
more bit, you can address above 1Mb. While in real mode, the A20 address line serves no
purpose. I suppose that this line even caused some problems because programmers provided a
way in hardware to turn it off (always 0). It seems that memory address calculations wrapped
around in real mode (from 1Mb to 0), and programmers wanted the same problem to exist in the
AT series of processors. I think it’s kind of like inheriting baldness from your father. You learn to
live with it.

My goal was not to discover why it existed, but to ensure it was turned on and left that way. I
tried several methods, some which didn’t work on all machines, and ended up sticking with the
way it was documented in the original IBM PC-AT documentation. This seems to work on most
machines, although some people may still have problems with it. It is controlled through a spare
port on the 8042 keyboard controller (actually a dedicated microprocessor). If your machine
doesn’t support this method, you may have to do some tweaking of the code. Meanwhile, back to
the initialization (already in progress).

At this stage of the initialization, you have basic tables set up and tasks ready to go, but you
aren’t cognizant of memory yet. You don’t know how much you have, and you can’t manage or
allocate it.

MMURTL V1.0 Page 103 of 667

This is where you call the routine that initializes memory management. This piece of code may
have a lot to do. The following list is not all-inclusive, but gives you a good idea of what you
may need to do. Most of the list depends on what memory model you chose for your design. If
you went with a simple flat model then you’ve got a pretty easy job. If you went with a full
blown demand paged system, this could be a fairly large chunk of code. Chapter 19, “Memory
Management Code,” shows what I did using the Intel paging hardware. It is explained in a fair
amount of detail. You may need to consider the following points:

• Find out how much physical memory you have.
• Know where your OS loaded and allocate the memory that it is occupying.
• Allocate other areas of memory for things like video or I/O arrays if they are used on

your
• system.
• Set up the basic linked list structures if you will be using this type of memory

management, otherwise, set up the basic tables that will manage memory.
• To make a transition to a paged memory environment, if you used paging hardware and

your processor doesn't start out that way (Intel processors don't).

Something of importance to note about the Intel platform and paged memory-management
hardware is that your physical addresses must match your linear addresses when you make the
transition into and out of paged memory mode. This is important because it forces you to have a
section of code that remains, or is at least loaded, where the address match will occur. I took the
easy way out (totally by accident) when I left the entire static portion of my operating system in
the low end of RAM. If you chose not to do this, it may mean force dynamic relocation of your
entire operating system. It's not that much of a headache, but one I'm glad I didn't face.

Dynamic Tables and Structures

After memory management has been initialized, you can begin to allocate and set up any
dynamic tables and structures required for your operating system.

These structures or tables may be allocated linked lists for resources needed for interprocess
communications (IPC), memory areas for future tables that can't be allocated on the fly, or any
number of things. The point is, that you couldn't allocate memory until memory-management
functions were available.

After all of the dynamic structures are allocated and set up, you're ready to execute a real
program (of sorts). This program will generally be part of the operating system and it will do
things like set up the program environments and load device drivers or system services.
At this point you usually load a command-line interpreter, or maybe even load up your
windowing environment.

MMURTL V1.0 Page 104 of 667

Chapter 8, Programming Interfaces

For an operating system to be useful, the resources it manages must be accessible to the
programmers who will implement applications for it. The programmers must be able to
understand what the system is capable of and how to make the best use of the system resources.

Entire books have been written to describe “undocumented system calls” for some operating
systems. This can happen when operating system developers add a call that they think may not
be useful to most programmers – or even confusing, because the call they add, and leave
undocumented, may be similar to another documented call on the system.

In the following sections, I describe both the application programming interface and the systems
programming interface, including the mechanics behind some of the possible ways to implement
them.

Application Programming Interface

The Application Programming Interface (API) is how a programmer sees your system. The
functions you provide will be a foundation for all applications that run on your system. The
design and implementation of an API may seem easy at first, but there are actually many
decisions to be made before you begin work.

Documenting Your API

Your operating system may be for a single application, an embedded system, public distribution,
or your own consumption and enjoyment. In any and all of these cases, you'll need to properly
document the correct use of each call. This may sound like a no-brainer, but it turned out to be a
time consuming and very important task for me. Even though I designed each of the calls for the
operating system, I found, that on occasion, I had questions about some of the very parameters I
selected when I went back to use them. If this happens to me, I can only imagine what will
happen to someone walking into it from a cold start.

Chapter 15, “API Specification,” shows you how I documented my calls. I'm still not entirely
happy with it. I wanted to provide a good code example for each call, but time simply wouldn't
allow it (at least for my first version).

Procedural Interfaces

Procedural interfaces are the easiest and most common type of interface for any API. You place
the name of the call and it's parameters in a parenthetical list and it's done. The call is made, the
function does its job and returns. What could be easier? I can't imagine. But there are so many
underlying complications for the system designer it can give you a serious headache. This is

MMURTL V1.0 Page 105 of 667

really a layered problem that application programmers shouldn’t have to worry about. Quite often
though, they do. I’ll go over the complications that have crossed my path. The very largest was
the calling conventions of the interface.

Calling Conventions

As a programmer you’re aware that not every language and operating system handles the
mechanics of the procedural call the same. Some of the considerations include:

• Where the parameters are placed (on the stack or in registers?),
• If the parameters are on the stack, what order are they in?
• If the stack is used, are there alignment restrictions imposed by hardware?
• If registers are used, what do you do with the excess parameters if you run out of

register?
• Who cleans the stack (resets the stack pointer) when the call is completed?

This can get complicated. No kidding! With UNIX, life was easy in this respect. UNIX was
written with C; it used the standard defined C calling conventions. With newer operating systems
always looking for more speed (for us power junkies), faster, more complicated calling
conventions have been designed and put in place. It leads to a lot of confusion if you’re not
prepared for it when you go use a mixed-language programming model. OS/2, for example, has
three or four calling conventions. Some use registers, some use the stack, some use both. Even
the IBM C/Set2 compiler has it’s very own unique calling conventions that only work with
CSet/2 (no one else supports it). I have even run across commercial development libraries
(DLLs) that used this convention which forced a specific compiler even though I preferred
another (Borland’s, as if you couldn’t guess).

When a high-level language has it’s own calling convention, it won’t be a problem if this
language also provides a method to reach the operating system if its conventions are different.
The two most popular procedural calling conventions include:

1. Standard C - Parameters are pushed onto the stack from right to left and the caller (the
one that made the OS call) is responsible to clean the stack.

2. Pascal - (also known as PLM conventions in some circles) Parameters are pushed left to

right, and the called function is responsible for making the stack correct.

There is a plethora of not-so-standard conventions out there. I’m sure you know of several.
Execution speed, code size, and hardware requirements are the big considerations that drive the
need to deviate from a standardized calling convention. I’m fairly opinionated on this issue,
especially when it comes to speed. In other words, I don’t think the few microseconds saved
(that’s all it really is) by redesigning the mechanics of a standardized interface is really worth it
when it comes to an operating system. Not many calls are made recursively or in a tightly looped
repetitive fashion to many operating system functions. Your opinion may vary on this. It’s up to
you.

MMURTL V1.0 Page 106 of 667

The hardware requirements may also be one of the deciding factors. I used an Intel-specific
processor hardware function for my calls (Call Gates), and it required a fixed number of
parameters. I had no need for variable-length parameter blocks into the operating system, so the
C calling conventions had no appeal to me. I decided on the Pascal (PLM) conventions. This
makes porting a C compiler a little hectic, but I wasn’t going to let that drive my design.

You may not want to go to the lengths that I did to support a specific calling convention on your
system. You may be using your favorite compiler and it will, no doubt, support several
conventions. If you want to use code generated by several different compilers or languages, you
will surely want to do some research to ensure there is full compatibility in the convention that
you choose.

Mechanical Details

Aside from the not-so-simple differences of the calling conventions, there are many additional
details to think about when designing the API.
Will your call go directly into the operating system? In other words, will the call actually cause
the processor to change the instruction pointer to the code you wrote for that particular call?
Your answer will more than likely be no.

Many systems use an intermediate library, that is linked into your code that performs some
translation before the actual operating system code is executed. There are two reasons this library
may be required. First, your code expects all of the data to be in registers, and you want to
maintain a standard procedural calling convention for the sake of the high-level language
interface. Second, the actual execution of the call may depend on a hardware mechanism to
actually execute the code.

An example of a hardware-calling mechanism is the Software Interrupt. A software interrupt is a
method provided by some processors that allow an pseudo-interrupt instruction to trigger a form
of a call. This causes the instruction pointer to be loaded with a value from a table (e.g., the
interrupt vector table). The stack is used to save the return address just like a CALL instruction,
but the stack is not used for parameters. A special instruction is provided to return from the
software interrupt. MS-DOS uses such a device on the Intel-compatible processors. This device
is extremely hardware dependent, and forces an intermediate library to provide a procedural
interface.

The advantages of using the software-interrupt function include speed (from assembly language
only), and also the fact that operating system code relocation doesn’t affect the address of the call
because it’s a value in the interrupt vector table. The address of the operating system calls may
change every time you load it, or at least every time it’s rebuilt. However, this is not sufficient
reason to use this type of interface. A simple table fixed in memory to use for indirect call
addresses, or some other processor hardware capability can provide this functionality without all
the registers directly involved.

MMURTL V1.0 Page 107 of 667

When the software-interrupt mechanism is used, you may only need one interrupt for all of the
calls in the operating system. This is accomplished by using a single register to identify the call.
The intermediate library would fill in this value, then execute the interrupt instruction.

Portability Considerations

Looking at portability might not seem so important as you write your system for one platform.
However, Murphy’s law says that as soon as you get the system completed, the hardware will be
obsolete. I really hope not, but this is the computer industry of the 90s. I can remember reading
the phrase "30 or 40 megahertz will be the physical limit of CPU clock speeds." Yea, right.

The portability I speak of is not the source-code portability of the applications between systems,
but the portability of the operating system source code itself. For application source code
portability, the procedural interface is the key. For the operating system source, how you design
the internal mechanisms of the system calls may save you a lot of time if you want to move your
system to another platform.

I considered this before I used the Intel-specific call gates, and the call gates are really not a
problem. They aid in the interface but don’t detract from portability because they were designed
to support a high-level calling convention in the first place (procedural interfaces). However,
things like software interrupts and register usage leave you with subtle problems to solve on a
different platform. If portability is near the top of your wish list, I recommend you avoid a
register-driven interface if at all possible.

Error Handling and Reporting

So many systems out there make you go on some kind of wild-goose chase to find out what
happened when the function you called didn’t work correctly. They either make you go find a
public variable that you’re not sure is named correctly for the language you’re using, or they
make you call a second function to find out why the first one failed. This may be a personal issue
for me, but if I could have any influence in this industry at all, it would be to have all systems
return a status or error code directly from the function call that would give me some intelligent
information about why my call didn’t work.

I recommend that you consider providing a status or error code as the returned value from your
system functions that really tells the caller what happened. When you need to return data from
the call, have the caller provide a pointer as one of the parameters.

Error reporting has special implications in a multitasking environment, especially with multiple
threads that may share common data areas or a single data segment. A single public variable
linked into your data to return an error code doesn’t work well anymore. Give this some serious
thought before you begin coding.

MMURTL V1.0 Page 108 of 667

Systems Programming Interface

I divide the systems programming interface into two distinct categories. The first is the interface
seen by programmers that write device drivers or any kind of extension to the operating system.
The second is how internal calls are made from inside the operating system to other operating
system procedures (public or internal). I never considered the second aspect until I wrote my
own operating system.

Internal Cooperation

The second aspect I mentioned above is not as easy as it sounds. This is especially true if you
intend to use assembler and high-level languages at the same time. You more than likely will.
Many operating systems now are written almost entirely with high-level languages, but
underneath them somewhere is some assembly language coding for processor control and status.

Suddenly, naming conventions and register usage can become a nightmare. Select a register-
usage plan and try to stick with it. I had to deviate from my plan quite often as you’ll see, but
there was at least a plan to go back to when all else failed.

You also need to investigate exactly how public names are modified by the compiler(s) you
intend to use. Is it one underscore before the name? Maybe it was one before and one after, or
maybe it was none if a particular compiler switch was active. Do you see what I mean?
Internally, I ended up with two underscores for the public names that would be accessed by
outside callers, and this wasn’t my original plan.

Device Driver Interfaces

For all practical purposes, device drivers actually become part of the operating system. They
work with the hardware, and so much synchronization is required with the tasking and memory-
management code, that it’s almost impossible to separate them.

Some device drivers will load after the operating system is up and running, so you can’t put the
code entry point addresses into a table in advance. You’ll need a way to dynamically make all the
device drivers accessible to outside callers without them knowing where the code is in advance.
This capability requires some form of indirect calling mechanism. This mechanism may be a
table to place addresses in that the operating system can get to when a standardized entry point is
made by an application.

In your system you will also have to consider how to make the device appear at least somewhat
generic. For instance, can the programmer read a sector from a floppy disk drive or a hard disk
drive without caring which one it really is? That’s something to think about when you approach
your design.

MMURTL V1.0 Page 109 of 667

I was familiar with two different device driver interface schemes before I started writing my own
system. I knew that there were four basic requirements when it came to device drivers:

• Installation of the driver
• Initialization of the driver
• Control (using) the driver, and
• Statusing the driver.

You need to consider these requirements in your design. The possibility exists that you may be
writing a much more compact system than I did. If this is the case, all of your device drivers may
be so deeply embedded in your code that you may not want a separate layered interface.

You must also realize that it isn’t just the interface alone that makes things easier for the device
driver programmer. Certain system calls may have to be designed to allow them to concentrate
their programming efforts on the device and not the hardware on the platform. You may want to
satisfy these requirements by adding calls to isolate them from some of the system hardware
such as DMA, timers, and certain memory-management functions.

A Device-Driver Interface Example

With the four basic requirements I mentioned above, I set out to design the simplest, fully
functional device driver interface I could imagine. It’s purpose is to work generically with
external hardware, or hardware that appeared external from the operating system’s standpoint.
The interface calls I came up with to satisfy my design were:

InitDevDr(dDevNum, pDCBs, nDevices, fReplace)
DeviceOp(dDevice, dOpNum, dLBA, ndBlocks, pData):dError
DeviceInit(dDevice, pInitData, sdInitdata):dError
DeviceStat(dDevice, pStatRet, sdStatRetmax):dError

In chapter 10, “Systems Programming,” I provide detail on the use of these calls, so I won't go
over it here. What I want to discuss is the underlying code that allows them to function for
multiple device drivers in a system. This will give you a good place to start in your design.

A requirement for the operating system to know things about each device driver led me to
require that each driver maintain a common data structure called a Device Control Block (DCB).
This is a common requirement on many systems. This structure is filled out with items common
to all drivers before the driver tells the operating system that it is ready to go into business
serving the applications.

The first call listed in this section, InitDevDr(), is called from the driver to provide the operating
system with the information it needs to seamlessly blend it into the system. You'll note that a
pointer to its DCB is provided by the driver.

The other three functions are the calls that the operating system redirects to the proper device
driver as identified by the first parameter (the device number).

MMURTL V1.0 Page 110 of 667

 In a multitasking system, you will also find that some device drivers may not be re-entrant. Two
simultaneous calls to the driver may not be possible (or desirable). For example, when one user
is doing serial communications, this particular device must be protected from someone else
trying to use it. I provided a mechanism to prevent re-entrant use of the drivers if the a flag was
set in the DCB when the driver initialized itself. I use system IPC messaging to block subsequent
calls to a driver that indicates it is not re-entrant.

The following code example is from the file DevDrvr.ASM. This is the layer in MMURTL that
initializes device drivers and also redirects the three device driver calls to the proper entry points.
When you look at the code, pay attention to the comments instead of the details of the code. The
comments explain each of the ideas I’ve discussed here. It’s included in this chapter to emphasize
the concepts and not to directly document exactly what I’ve written.

Announcing the Driver to the OS

This is the call that a driver makes after it’s loaded to let the operating system know it’s ready to
work. You’ll see certain validity checks, and also that we allocate an exchange for messaging if
the driver is not re-entrant.

; InitDevDr(dDevNum, pDCBs, nDevices, dfReplace):dError
; EBP+24 EBP+20 EBP+16 EBP+12 sParam 16
;
;Local vars
dDevX EQU DWORD PTR [EBP-4]
prgDevs EQU DWORD PTR [EBP-8]
nDevs EQU DWORD PTR [EBP-12]
dExchTmp EQU DWORD PTR [EBP-16]

PUBLIC __InitDevDr:
 PUSH EBP ;
 MOV EBP,ESP ;
 SUB ESP, 16
 MOV EAX, [EBP+24] ;Set up local vars
 MOV dDevX, EAX
 MOV EAX, [EBP+20]
 MOV prgDevs, EAX
 MOV EAX, [EBP+16]
 MOV nDevs, EAX

InitDev00:
 CMP dDevX, nDevices ;Valid DCB number?
 JB InitDev01
 MOV EAX, ErcBadDevNum ;Not valid DCB number
 JMP InitDevEnd

InitDev01: ;Now check to see if device is already installed
 ;and whether it’s to be replaced

 LEA EBX, rgpDCBs ;Point EBX to rgpDCB
 MOV EAX, dDevX ;dDevNum

MMURTL V1.0 Page 111 of 667

 SHL EAX, 2
 ADD EBX, EAX
 CMP DWORD PTR [EBX], 0 ;pDCBx = 0 if not used yet
 JZ InitDev02 ;Empty, OK to use
 CMP DWORD PTR [EBP+12], 0 ;OK to replace existing driver?
 JNZ InitDev02 ;Yes
 MOV EAX, ErcDCBInUse ;No - error exit
 JMP InitDevEnd

InitDev02: ;If we got here, we can check DCB items then move ptr

 MOV EAX, prgDevs ;EAX points to DCB
 CMP BYTE PTR [EAX+sbDevName],12 ;Check Device name size
 JA InitDev03
 CMP BYTE PTR [EAX+sbDevName], 0 ;is Devname OK?
 JA InitDev04

InitDev03:
 MOV EAX, ErcBadDevName
 JMP InitDevEnd

InitDev04:
 ;Now see if there are more devices for this driver

 DEC nDevs ;Decrement nDevices
 JZ InitDev05 ;NONE left
 ADD prgDevs, 64 ;Next caller DCB
 INC dDevX ;Next devnum
 JMP SHORT InitDev00 ;

 ;All error checking on DCB(s) should be done at this point

InitDev05: ;Alloc Exch if driver in NOT reentrant
 MOV EBX, [EBP+20] ;pDCBs
 CMP BYTE PTR [EBX+fDevReent], 0
 JNZ InitDev06 ;device IS reentrant!
 LEA EAX, dExchTmp ;Allocate device Exchange
 PUSH EAX ;into temp storage
 CALL FWORD PTR _AllocExch
 CMP EAX, 0
 JNZ SHORT InitDevEnd

InitDev06:
 ;All went OK so far, now move the DCB pointer(s) into array
 ; and assign exchange from temp storage to each DCB

 MOV EAX, [EBP+16] ;nDevices
 MOV nDevs, EAX ;Set nDev to number of devices again
 LEA EBX, rgpDCBs ;Point EBX to OS rgpDCBs
 MOV EAX, [EBP+24] ;dDevNum
 SHL EAX, 2
 ADD EBX, EAX ;EBX now points to correct pointer
 MOV EAX, [EBP+20] ;EAX points to first DCB
 MOV ECX, dExchTmp ;ECX has semaphore exchange

InitDev07:
 ;Now that EBX, EAX and ECX are set up, loop through each

MMURTL V1.0 Page 112 of 667

 ;DCB (if more than 1) and set up OS pointer to it, and
 ;also place Exchange into DCB. This is the same exchange
 ;for all devices that one driver controls.

 MOV [EAX+DevSemExch], ECX
 MOV [EBX], EAX
 ADD EBX, 4 ;next p in rgp of DCBs
 ADD EAX, 64 ;next DCB
 DEC nDevs
 JNZ InitDev07 ;Any more DCBs??
 XOR EAX, EAX ;Set up for no error

 ;If the device driver was NOT reentrant
 ;we send a semaphore message to the exchange for
 ;the first customer to use.

 MOV EBX, [EBP+20] ;pDCBs
 CMP BYTE PTR [EBX+fDevReent], 0
 JNZ InitDev06 ;device IS reentrant!
 PUSH ECX ;ECX is still the exchange
 PUSH 0FFFFFFFEh ;Dummy message
 PUSH 0FFFFFFFEh
 CALL FWORD PTR _SendMsg ;Let erc in EAX fall through (Was ISend)

InitDevEnd:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 16 ;

;

A Call to the driver

This is the call that the user of the device driver makes to initially set up the device, or reset it
after a failure. You can see in the comments how we redirect this call to the proper code in the
driver from the address provided in the DCB. The other two calls, DeviceOp() and DeviceStat(),
are almost identical to DeviceInit(), and are not presented here.
;
; DeviceInit(dDevNum, pInitData, sdInitData);
; EBP+20 EBP+16 EBP+12 Count = 12
;
PUBLIC __DeviceInit: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 CMP DWORD PTR [EBP+20], nDevices ;Valid Device number?
 JB DevInit01
 MOV EAX, ErcBadDevNum ;Sorry no valid DCB
 JMP DevInitEnd
DevInit01:
 LEA EAX, rgpDCBs
 MOV EBX, [EBP+20] ;
 SHL EBX, 2 ;
 ADD EAX, EBX ;
 MOV EBX, [EAX] ;now EBX points to DCB (maybe)
 CMP EBX, 0 ;Is there a pointer to a DCB?
 JNZ DevInit1A ;Yes

MMURTL V1.0 Page 113 of 667

 MOV EAX, ErcNoDriver ;NO driver!
 JMP DevInitEnd
DevInit1A:
 CMP BYTE PTR [EBX+DevType], 0 ;Is there a physical device?
 JNZ DevInit02
 MOV EAX, ErcNoDevice
 JMP DevInitEnd

DevInit02: ;All looks good with device number
 ;so we check to see if driver is reentrant. If not we
 ;call WAIT to get "semaphore" ticket...

 CMP BYTE PTR [EBX+fDevReent], 0
 JNZ DevInit03 ;Device IS reentrant
 PUSH EBX ;save ptr to DCB
 PUSH DWORD PTR [EBX+DevSemExch] ;Push exchange number
 LEA EAX, [EBX+DevSemMsg] ;Ptr to message area
 PUSH EAX
 CALL FWORD PTR _WaitMsg ;Get semaphore ticket
 POP EBX ;Get DCB ptr back
 CMP EAX, 0
 JNE DevInitEnd ;Serious kernel error!

DevInit03:
 PUSH EBX ;Save ptr to DCB
 PUSH DWORD PTR [EBP+20] ;Push all params for call to DD
 PUSH DWORD PTR [EBP+16]
 PUSH DWORD PTR [EBP+12]
 CALL DWORD PTR [EBX+pDevInit]
 POP EBX ;Get ptr to DCB back into EBX
 PUSH EAX ;save error (if any)

 CMP BYTE PTR [EBX+fDevReent], 0 ;Reentrant?
 JNZ DevInit04 ;YES

 PUSH DWORD PTR [EBX+DevSemExch] ;No, Send semaphore message to Exch
 PUSH 0FFFFFFFEh ;Bogus Message
 PUSH 0FFFFFFFEh ;
 CALL FWORD PTR _SendMsg ;Ignore kernel error
DevInit04:
 POP EAX ;Get device error back

DevInitEnd:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;dump params

Your interface doesn’t have to be in assembly language like the preceding example, but I’m sure
you noticed that I added examples of the procedural interface in the comments. It you use
assembly language and provide code examples, adding the procedural call examples is a good
idea.

This chapter (8) ends the basic theory for system design. The next chapter begins the
documentation of and for an operating system.

MMURTL V1.0 Page 114 of 667

Chapter 9, Application Programming

Introduction

This section introduces the applications programmer to the MMURTL operating-system
interface and provides guidance on programming techniques specific to the MMURTL
environment. It provides information on basic video and keyboard usage as well as examples of
multi-threading with MMURTL and information on memory-management techniques and
requirements. This section should be used with the reference manual for the language you are
using.

Before writing your first MMURTL program, you should be familiar with the material covered
in Chapter 4, “Interprocess Communications,” and Chapter 5, “Memory Management.” These
chapters provide discussions on the concept behind message based operating systems and paged
memory management. These are important concepts you should understand before you attempt
to create or port your first application.
Some of the information provided in this section may actually not be needed to code a program
for MMURTL. I think you will find it useful, though, as you discover the methods employed by
this operating system. It may even be entertaining.

Terminology

Throughout this section, several words are used that may seem language-specific or that mean
different things to different programmers. The following words and ideas are described to
prevent confusion:

Procedure - A Function in C or Pascal, or a Procedure in Pascal, or a Procedure in Assembler.
All MMURTL operating system calls return values (called Error Codes).
Function - Same as Procedure.
Call - This is also used interchangeably with function and procedure.
Byte - An eight bit value (signed or unsigned)
Word - a 16-bit value (signed or unsigned)
DWord - a 32-bit value (signed or unsigned)
Parameter - A value passed to a function or procedure, usually passed on the stack.
Argument - Same as Parameter

Understanding 32-BIT Software

If you have been programming with a 16-bit operating system (e.g., MS-DOS), you will have to
get used to the fact that all parameters to calls, and most structures (records) have many 32-bit
components. If you are used to the 16-bit names for assembler variables, you will be comfortable
with MMURTL because I have maintained the Intel and Microsoft conventions of BYTE,

MMURTL V1.0 Page 115 of 667

WORD, and DWORD. Most MMURTL parameters to operating system calls are DWords (32-bit
values). If I were a perfectionist, I would have called a 32-bit value a WORD, but alas, old habits
are hard to break and one of my key design goals was simplicity for the programmer on Intel-
based ISA systems.

One of the things that make processors different from each other is how data is stored and
accessed in memory. The Intel processors have often been called "backwards" because they store
the least significant data bytes in lower memory addresses (hence, the byte values in a word
appear reversed when viewed with a program that displays hexadecimal bytes). A Byte at
address 0 is accessed at the same memory location as a word at address 0, and a dword is also
accessed at the same address. Look at the table 9.1 to visualize what you find in memory:

Table 9.1 - Memory Alignment

Address 0 1 2 3 Hex Value
Access As
Byte 01 01h
Word 01 02 0201h
Dword 01 02 03 04 04030201h

This alignment serves a very useful purpose. Conversions between types is automatic when read
as a different type at the same address. This also plays a useful role in languages such as C,
Pascal, and assembly language, although it’s usually transparent to the programmer using a high
level language.

When running the Intel processors in 32-bit protected mode, this also makes a great deal of
difference when values are passed on the stack. You can push a dword on the stack and read it as
a byte at the same location on the stack from a procedure. MMURTL always uses a DWord stack
(values are always pushed and popped as dwords – 32-bit values.) This is a hardware
requirement of the 386/486 processors when 32-bit segments are used.

Operating System Calling Conventions

All operating system calls are listed alphabetically in chapter 15, “API Specification.”

Most operating system calls in MMURTL return a dword (32-bit) error code which is often
abbreviated as ERC, erc, or dError. The descriptions in the API Specification (Chapter 15)
show it as dError to indicate it is a 32-bit unsigned value. These codes convey information to the
caller about the status of the call. It may indicate an error, or simply convey information that
may, or may not be an error depending on what you expect. A list of all documented status or
error codes can be found in header files included with the source code.

MMURTL V1.0 Page 116 of 667

All Public operating-system calls are accessible through call gates and can be reached from
"outside" programs. They are defined as far (this may be language-dependent) and require a 48-
bit call address.

A far call address to the operating system consists of a selector and an offset. The selector is the
call gate in the Global Descriptor Table (GDT), while the offset is ignored by the 386/486
processor. The GDT entry for the call gate defines the actual address called and the number of
dwords of stack parameters to be passed to the call. You can even hard code the far address of
the operating-system call because the system calls are at call gates. It doesn’t matter where the
operating system code is in memory. The call gate will never change unless it becomes obsolete
(in which case it will be left in for several major revisions of the operating system for
compatibility purposes). This means that an assembly-language programmer can make the far
call to what appears to be a hard address (but is really a call gate). The addresses of the calls are
documented with the source code (header or Include files).

Stack Usage

Each of the MMURTL operating-system calls is defined as a function with parameters. Most
return a value that is a an error or status code. Some do not.

All but a few of the operating-system calls use the stack to pass parameters to the operating
system functions.

All parameters are pushed from left to right, and are expanded to 32-bit values. This will be done
by the compiler, and in some cases, even the assembler or processor itself. This is because the
processor enforces a four-byte aligned stack.
The called operating-system function always cleans the stack. In some C compilers, this is
referred to as the Pascal Calling Convention. The CM32 compiler uses this convention.

It is also very easy to use from assembly language. Here is an example of a call to the operating
system in assembler:

PUSH 20
PUSH 15
CALL FWORD PTR SetXY

In the preceding example, SetXY is actually a far pointer stored in memory that normally would
contain the address of the SetXY function. But the address is really a call gate, not the real
address of the SetXY function.

Memory Management

MMURTL uses all of the memory in your system and handles it as it as one contiguous address
span. If you need a 2Mb array, you simply allocate it. Chapter 3, “The Tasking Model,” and
Chapter 4, “Interprocess Communications,” describe this in great detail.

MMURTL V1.0 Page 117 of 667

MMURTL has control of all Physical or Linear memory allocation and hands it out it as
programs ask for it. Application programs all reside at the one-gigabyte memory location inside
of their own address space. The operating system resides at address 0. This doesn’t change any
programming techniques you normally use. What does change your techniques is the fact that
you are working with a flat address space all referenced to one single selector. There are no far
data pointers. This also means that a pointer to allocated memory will never start at 0. In fact,
when an application allocates pages of memory they will begin somewhere above 1Gb
(40000000h)

MMURTL really doesn’t provided memory management in the sense that compilers and
language systems provides a heap or an area that is managed and cleaned up for the caller.
MMURTL is a Paged memory system. MMURTL hands out (allocates) pages of memory as
they are requested, and returns them to the pool of free pages when they are turned in
(deallocated). Heap-management functions that allow you to allocate less than 4Kb at a time
should be provided by your high-level language. The library code for the high-level language
will allocate pages and manage them for you. This would let you allocate 30 or 40 bytes at a
time for dynamic structures such as linked lists (e.g., malloc() in C).

A MMURTL application considers itself as being the only thing running on the system aside
from the operating system and device drivers. Your application sees the memory map shown in
table 9.2:

Table 9.2 - Basic Memory Map

7FFFFFFFh Top of user address space
...
...
40000000h Application base (1Gb)
3FFFFFFFh Top of OS Address space
...
...
00000000h OS base address

Even if six applications running at once, they all see this same "virtual memory map" of the
system. The operating system and device drivers reside in low linear memory (0), while all
applications and system services begin at the one-gigabyte mark. Paged virtual memory is
implemented with the paging capabilities of the 386/486 processor. Multiple applications all load
and run at what seems to be the same address range which logically looks like they are all loaded
in parallel to one another. The paging features of the 386/486 allow us to assign physical
memory pages to any address ranges you like. Read up on Memory Management in Chapter 5 if
you’re really interested.

The operating system provides three basic calls for application memory management.

MMURTL V1.0 Page 118 of 667

They are listed below:

AllocPage(nPages, ppMemRet): dError
DeAllocPage(pMem, dnPages): dError
QueryPages(pdnPagesRet): dError

When your program needs a page of memory, you allocate it. When you are done with it, you
should deallocate it. There are cleanup routines in the operating system that will deallocate it for
you if your program exits without doing it, but it’s bad manners not to cleanup after yourself.
MMURTL is kind of like your mother. She may pick up your dirty socks, but she would much
rather that you did it.

Memory-page allocation routines always return a pointer to the new memory. The address of the
pointer is always a multiple of the size of a page (modulo 4096).

The memory allocation routines use a first fit algorithm in your memory space. It is up to you to
manage your own addressable memory space. Your program can address up to one-gigabyte of
space. Of course, this doesn’t mean you can allocate a gigabyte of memory, but pointer
arithmetic may get you into trouble if you allocate and deallocate often and lose track of what
your active linear addresses are. The high-level language allocation routine may help you out
with this, but I have to address the issues faced by those that write the library allocation routines
for the languages. Consider the following scenario:

1. Your program takes exactly 1Mb before you allocate.
2. You allocate 5 pages. Address 40100000h is returned to you. You now have 20K at the

40100000h address.
3. Then you deallocate 3 of these pages at address 40100000h (12K). You are left with a

hole in your addressable memory area. This is not a problem, so long as you know it
can’t be addressed.

4. Now you allocate 4 pages. The memory-allocation algorithm can’t fit it into the 3 page
hole you left, so it will return a pointer to 4 pages just above the original 5 you allocated
first (address 40105000h). Now you have 6 pages beginning at 40103000h.

If you attempt to address this "unallocated" area a Page Fault will occur. This will TERMINATE
your application automatically (Ouch!).

Operating System Protection

MMURTL provides protection for the operating system and other jobs using the paging-
hardware protection.

The operating system Code, Data, and Device Drivers run and can only be accessed at the
system-protection level (level 0) , while System Services and Applications run at user-level
protection. The operating system prevents ill-behaved programs from intentionally or
accidentally accessing another program’s data or code (from "a pointer in the weeds"). It even
prevents applications from executing code that doesn’t belong to them, even if they know the

MMURTL V1.0 Page 119 of 667

where it’s located (it’s physical or linear address). MMURTL does NOT, however, protect
programmers from themselves.

This means that in a multitasking environment, a program that crashes and burns doesn’t eat the
rest of the machine in the process of croaking. The operating system acts more like a referee than
a mother.

Application Messaging

The most basic applications in MMURTL may not even use messaging directly. You may not
even have to call an operating-system primitive-message routine throughout the execution of
your entire program. However, when you write multithreaded applications (more than one task)
you will probably need a way to synchronize their operation, or "queue up" events of some kind
between the threads (tasks). This is where non-specific intertask messaging will come into play.
This is done with the SendMsg() and WaitMsg() calls.

You may also require the use of a system service that there isn’t a direct procedural interface for,
in which case you will use Request() and WaitMsg().

The following messaging calls are provided by the operating system for applications.

SendMsg (dExch, dMsg1, dMsg2): dError
CheckMsg(dExch, pMsgsRet) : dError
WaitMsg(dExch,pqMsgRet):dError
Request(pSvcName, wSvcCode, dRespExch, pRqHndlRet, npSend, pData1, cbData1,
pData2, cbData2, dData0, dData1, dData2) : dError

Before you can use messaging you will need an exchange where you can receive messages, or
you will need to know of one you send messages to. The following calls are provided to acquire
exchanges and to return them to the operating system when you no longer need them:

AllocExch(pdExchRet): dError
DeAllocExch(dExch): dError

Normally, applications will allocate all of the exchanges they require somewhere early in the
program execution and return them (DeAllocExch) before exiting.

Messaging is very powerful, but can also be destructive (to the entire system). Memory-
management protection provided by MMURTL will help some, but you can easily eat up all of
the system resources and cause the entire system to fail. MMURTL is not a mind reader. For
instance, accidentally sending messages in an endless loop to an exchange where no task is
waiting to receive them will cause the system to fail. This eats all of your link blocks. The
operating system is brought to its knees in a hurry.

MMURTL V1.0 Page 120 of 667

Starting a New Thread

Some programs need the capability to concurrently execute two or three things, such as data
communications, printing, and user interaction. It may be simply keeping the time on the screen
updated on a user interface no matter what else you are doing. In these cases you can "spawn" a
new task to handle the secondary functions while your main program goes about it’s business.

The operating system provides the SpawnTask() call which gives you the ability to point to
one of the functions in your program and turn it into a "new thread" of execution. This new
function will be scheduled for execution independently of your main program.

Prior to calling SpawnTask(), you need to allocate or provide memory from your data segment
for the stack that the new task will use. Other than that, you basically have two programs
running in the same memory space. They can even execute the same procedures and functions
(share them). The stack you allocate should be at least 512 bytes (128 dwords) plus whatever
memory you require for your task. You are responsible to ensure you don’t overrun this stack. If
you do, only your program will be trashed, but you don’t want that either.

You should be concerned about reentrancy if you have more than one task executing the same
code. Reentrancy considerations include modifications to variables in your data segment (two
tasks sharing variables), operating system messaging (sharing an exchange), and allocation or
use of system resources such as memory.

Look at the code for the Monitor (Monitor.c provided with the operating system source code) for
a good example of spawning new tasks. Several tasks are spawned in the Monitor.

Job Control Block

Applications may sometimes need to see the data in a Job Control Block. Utilities to display
information about all of the jobs running may also need to see this data.

The GetpJCB() call will provide a pointer to allow you to read values from a JCB. The pointer
is read-only. Attempts to write directly to the JCB will cause your application to be terminated
with a protection violation.

In order to use the GetpJCB() call, you need to know your job number, which the
GetJobNum() call will provide. Header files included with the source code have already
defined the following structure for you.

struct JCBRec {
long JobNum;
char sbJobName[14]; /* lstring */
char *pJcbPD; /* Linear add of Job’s PD */
char *pJcbCode; /* Address of code segment */
unsigned long sJcbCode; /* Size of code segment */
char *pJcbData; /* Address of data segment */
unsigned long sJcbData; /* Size of data segment */

MMURTL V1.0 Page 121 of 667

char *pJcbStack; /* Address of primary stack */
unsigned long sJcbStack; /* Size of primary stack */
char sbUserName[30]; /* User Name - LString */
char sbPath[70]; /* current path (prefix) */
char JcbExitRF[80]; /* Exit Run file (if any) */
char JcbCmdLine[80]; /* Command Line - LString */
char JcbSysIn[50]; /* std input - LString */
char JcbSysOut[50]; /* std output - LString */
long ExitError; /* Error Set by ExitJob */
char *pVidMem; /* Active video buffer */
char *pVirtVid; /* Virtual Video Buffer */
long CrntX; /* Current cursor position */
long CrntY;
long nCols; /* Virtual Screen Size */
long nLines;
long VidMode; /* 0 = 80x25 VGA color text */
long NormVid; /* 7 = WhiteOnBlack */
char fCursOn; /* 1 = Cursor is visible */
char fCursType; /* 0=UL, 1 = Block */
unsigned char ScrlCnt; /* Count since last pause */
char fVidPause; /* Full screen pause */
long NextJCB; /* OS Uses to allocate JCBs */
};

The JCB structure is a total of 512 bytes, with unused portions padded. Only the active portions
are shown in the preceding list. All of the names and filenames (strings) are stored with the first
byte containing the length the active size of the string, with the second byte (offset 1) actually
holding the first byte of data.

To change data in the JCB, you must use the calls provided by the operating system. They
include:

SetJobName(pJobName, dcbJobName): dError
SetExitJob(pFileName, dcbFileName): dError
SetPath(pPath, dcbPath): dError
SetUserName(pUserName, dcbUserName): dError
SetSysIn(pFileName, dcbFileName): dError

Some of the more commonly used information can be read from the JCB without defining the
structure by using the following operating-system provided calls;

GetExitJob(pFileNameRet, pcbFileNameRet): dError
GetCmdLine(pCmdLineRet, pdcbCmdLineRet): dError
GetPath(dJobNum, pPathRet, pdcbPathRet): dError
GetUserName(pUserNameRet, pdcbUserNameRet): dError

Basic Keyboard

Internal support is provided for the standard IBM PC AT-compatible 101-key keyboard or
equivalent. The keyboard interface is a system service. Chapter 13, “Keyboard Service,”
provides complete details on the keyboard implementation. A system service allows concurrent

MMURTL V1.0 Page 122 of 667

access to system-wide resources for applications. The keyboard has a built-in device driver that
the keyboard service accesses and controls.

For most applications, the single procedural ReadKbd() operating-system call will suffice. It
provides access to all standard alphanumeric, editing, and special keys. This call returns a 32-bit
value which contains the entire keyboard state (all shifted states such as ALT and CTRL are
included). There are tables in Chapter 13 to show all of the possible values that can be returned.

The first of the two parameters to the ReadKbd() call asks you to point to where the 32-bit
keycode value will be returned, while the second parameter is a flag asking if you want to wait
for a keystroke if one isn’t available.

Basic Video

Each application and system service in MMURTL is assigned a virtual video buffer which is the
same size as the video memory in standard VGA-color character operation. This is 4000 bytes
(even though an entire page is allocated - 4096 bytes).

The video calls built into the operating system provide TTY (teletype) as well as direct screen
access (via PutVidChars() and GetVidChar() calls) for all applications.

MMURTL has a basic character device driver built-in which provides an array of calls to support
screen color, character placement, and cursor positioning.

Positions on the screen are determined in x and y coordinates on a standard 80 X 25 matrix (80
across and 25 down). x is the position across a row and referenced from 0 to 79. y is the position
down the screen and referenced as 0 to 24.

The character set used is the standard IBM PC internal font loaded from ROM when the system
is booted. The colors for TTYOut(), PutChars() and PutAttrs() are made of 16 foreground
colors, 8 background colors and 1 bit for blinking. Even though the attribute is passed in as a
dword, only the least significant byte is used. In this byte, the high nibble is the background, and
low nibble is the foreground. The high bit of each, is the intensity bit.

Tables 9.3, Foreground colors, and 9.4, Background colors describe the attributes. These names
are also defined in standard header files included with the operating-system code and sample
programs.

Table 9.3 - Foreground Colors (Low nibble)

Normal Binary Hex Intensity Bit Set Binary Hex

Black 0000 00h Gray 1000 08h

MMURTL V1.0 Page 123 of 667

Blue 0001 01h Light Blue 1001 09h
Green 0010 02h Light Green 1010 0Ah
Cyan 0011 03h Light Cyan 1011 0Bh
Red 0100 04h Light Red 1100 0Ch
Magenta 0101 05h Light Magenta 1101 0Dh
Brown 0110 06h Yellow 1110 0Eh
White 0111 07h Bright White 1111 0Fh

Table 9.4 - Background Colors (High nibble)

Normal Background Binary Hex Byte

Black 0000 00h
Blue 0001 10h
Green 0010 20h
Cyan 0011 30h
Red 0100 40h
Magenta 0101 50h
Brown 0110 60h
Gray 0111 70h

To specify an attribute to one of the video calls, logically OR the Foreground, Background, and
Blink if desired to form a single value. Look at the following coding example (Hex values are
shown for the Attributes).

#define BLACK 0x00
#define BLUE 1x07
#define GREEN 0x02
#define CYAN 0x03
#define RED 0x04
#define WHITE 0x07
#define GRAY 0x08
#define LTBLUE 0x09
#define LTGREEN 0x0A
#define LTCYAN 0x0B
#define LTRED 0x0C

#define BGBLACK 0x00
#define BGBLUE 1x70
#define BGGREEN 0x20
#define BGCYAN 0x30

dError = PutVidChars(0, 0, "This is a test.", 17, BGBLUE|WHITE);

MMURTL V1.0 Page 124 of 667

Terminating Your Application

The call ExitJob() is provided to end the execution of your program. The exit() function in a
high-level language library will call this function.

It is best to deallocate all system resources before calling ExitJob(). This includes any memory,
exchanges, and other things allocated while you were running. You should also wait for
responses to any requests you made, or system calls.

MMURTL will cleanup after you if you don’t, but an application knows what it allocated and it’s
more efficient to do it yourself from an overall system standpoint. MMURTL has to hunt for
them. Remember, MMURTL is more like a referee on the football field. You will be terminated
and sent to the "sidelines" if necessary.

Any task in your job may call ExitJob(). All tasks in your job will be shutdown at that time and
the application will be terminated.

Replacing Your Application

Your application has the option of "chaining" to another application. This is done by calling the
Chain() function.

This terminates your application and loads another one that you specify. Some of the basic
resources are saved for the new application, such as the job-control block and virtual video
memory. You can pass information to the incoming application by using the SetCmdLine()
function.

Another option to chaining is to tell the operating system what application to run when you exit.
This is done with the SetExitJob() call. You can specify the name of a run file to execute when
your job exits. If no file is specified, all the resources are recovered from the job and it is
terminated.

MMURTL V1.0 Page 125 of 667

Chapter 10, Systems Programming

Introduction

This section is aimed squarely at the MMURTL systems programmer. It describes writing
message based system services and device drivers. Use of the associated operating system calls
is described in a generic format that can be understood by C, Pascal, and Assembly language
programmers.

Systems programming deals with writing programs that work directly with the operating system
and hardware, or provide services to application programs.

Systems programmers require a better understanding of the operating system. Application
programmers shouldn’t have to worry about hardware and OS internal operations to accomplish
their tasks. They should have a basic understanding of multitasking and messaging and be able
to concentrate on the application itself.

If you want (or need) to build device drivers or system services, you should make sure you
understand the material covered in the architecture and Applications Programming chapters.
They contain theory and examples to help you understand how to access services, use messaging,
and memory management operations.

Writing Message-Based System Services

System Services are installable programs or built-in operating system services that provide
system-wide message based services for application programs, as well as for other services.
MMURTL is a message-based operating system and is designed to support programs in a
client/server environment. Many people associate the term client/server only with a separate
computer system that is the server for client workstations. MMURTL takes this down to a single
processor level. A program that performs a specific function or group of functions can be shared
with two or more programs is a system service. This is the basis behind the Request() and
Respond() messaging primitives. Client programs make a Request, the service does the
processing and Responds. It can be compared to Remote Procedure Calls with a twist. The file
system and keyboard services are prime examples of message-based system services.

Initializing Your System Service

The basic steps to initialize your service and start serving requests are listed below:

1. Initialize or allocate any resources required, such as:
Additional memory, if required.
Main Service exchange (clients send requests here).

MMURTL V1.0 Page 126 of 667

Additional exchanges, if needed.
Additional tasks if required.
Anything else you need to prepare for business (Initialize variables etc.)

2. Call RegisterSVC() with your name and Main Service Exchange.
3. Wait for messages, service them, then Respond.

A Simple System Service Example

Listing 10.1 is the world’s simplest system service for the MMURTL operating system. It’s
purpose it to hand out unique numbers to each request that comes in. It’s not very useful, but it’s
a good clean example showing the basic "guts" of a system service. The service name is
"NUMBERS " (note that the name is space-padded). Service names are case-sensitive. The
service will get a pointer in the request block (pData1) that tells it where the user wants the
number returned.

Listing 10.1 - A System Service.

/* Super Simple System Service */

struct RqBlk { /* 64 byte request block structure */
 long ServiceExch;
 long RespExch;
 long RqOwnerJob;
 long ServiceRoute;
 char *pRqHndlRet;
 long dData0;
 long dData1;
 long dData2;
 int ServiceCode;
 char npSend;
 char npRecv;
 char *pData1;
 long cbData1;
 char *pData2;
 long cbData2;
 long RQBRsvd1;
 long RQBRsvd2;
 long RQBRsvd3;
 };

#define ErcOK 0
#define ErcBadSvcCode 32

struct pRqBlk *RqBlk; /* A pointer to a Request Block */
unsigned long NextNumber = 0; /* The number to return */
unsigned long MainExch; /* Where we wait for Requests */
unsigned long Message[2]; /* The Message with the Request */

void main(void)

MMURTL V1.0 Page 127 of 667

{
unsigned long OSError, ErrorToUser;
 OSError = AllocExch(&MainExch); /* get an exchange */
 if (OSError) { /* look for a kernel error */
 exit(OSError);
 OSError = RegisterSvc("NUMBERS ", MainExch);
 if (OSError) { /* look for a system error */
 exit(OSError);
 while (1) { /* WHILE forever */
 OSError = WaitMsg(MainExch, Message); /* Exch & pointer */
 if (!OSError) {
 pRqBlk = Message[0]; /* First DWORD contains ptr to RqBlk */
 if (pRqBlk.ServiceCode == 0) /* Abort request from OS */
 ErrorToUser = ErcOK;
 else if (pRqBlk.ServiceCode == 1) { /* User Asking for Number */
 pRqBlk.pData1 = NextNumber++; / Give them a number */
 ErrorToUser = ErcOK; /* Respond with No error */
 }
 else
 ErrorToUser = ErcBadSvcCode; /* Unknown Service code! */
 OSError = Respond(pRqBlk, ErrorToUser): /* Respond to Request */
 }
 } /* Loop while(1) */
}

The Request Block

As you can see, the system service interface using Request() and Respond() is not
complicated. As a system service, when you receive a Request, Wait returns and the two-dword
message is filled in. The first dword is the Request Block Handle. This value is actually a
pointer to the Request Block itself in unprotected operating system memory. The memory
address of the Request Block, and the aliased pointer to the user’s memory is active and available
only while the request block is being serviced. This gives the system service the opportunity to
look at or use any parts of the Request Block it needs.

Several items in the Request Block are important to the service. How many items you need to
use depends on the complexity of the service you’re writing.

Items In the Request Block

The Request Block contains certain items that the service needs to do it’s job. Programs and the
operating system pass information to the service in various Request Block items. The complexity
of your service, and how much information a program must pass to you, will be determined by
how much information you need to carry out the request. As a system service writer, you define
the data items you need, and it is your responsibility to document this information for application
programmers.

The service must never attempt to write to the request block. In fact, installable services would
find themselves terminated for the attempt. The Request Block is in operating-system memory

MMURTL V1.0 Page 128 of 667

which is read-only to user-level jobs. An installable service will operate at the user level of
protection and access.

The Service Code

A single word (a 16-bit value) is used for the caller to indicate exactly what service they are
requesting from you. This is called the service code. For example, in the File System, one
number represents OpenFile, another CloseFile, and another RenameFile. In the simple
example above, the service only defines one service code that it handles. This is the number 1
(one).

The operating system reserves service code 0 (Zero) for itself in all services. You may not use or
define service code zero to your callers in your documentation. When a service receives a
Request with service code 0, the operating system is telling you that a job (a user program or
another service) has either exited or has been shut down by the operating system. How you
handle this depends on how complex your service is, and whether or not you hold requests from
multiple callers before responding.

For all other values of the service code, you must describe in your documentation what Request
information you expect from the caller, and what service you provide. If you receive a service
code you don’t handle or haven’t defined, you should return the Error Bad Service Code which
is defined in standard MMURTL header files.

Caller Information in a Request

Three dwords are defined to allow a program to pass information to your service that you require
to do your job.

These items are dData0, dData1, and dData2. They are 32-bit values, and whether or not they
are signed or unsigned is up to you (the System Service writer). They are one-way data values
from the caller to you. They may not contain pointers to the caller’s memory area, because the
operating system does not alias them as such. A prime example of their use is in the File System
service, where callers pass in a file handle using these data items.

For larger data movement to the service, or any data movement back to the caller, the request
block items pData1 and pData2 must be used. These two request block items are specifically
designed as pointers to a data area in the caller’s memory space. The size of the area is defined
by the accompanying 32-bit values, cbData1 and cbData2. The operating system is “aware” of
this, and will alias the pointers so the caller's memory space is accessible to the service. As a
service you must not attempt to access any data in the caller's space other than what is defined
by pData1, cbData1 and pData2, cbData2. Also be aware that these pointers are only valid
from the time you receive the request, until you respond.

MMURTL V1.0 Page 129 of 667

Asynchronous Services

Most services will be synchronous. Synchronous services wait, receive a request, then respond
before waiting for the next request. All operations are handled in a serial fashion. This is the
easiest way to handle requests.

A service may receive and hold more than one request before responding. This type of service is
defined as asynchronous. This type of service may even respond to the second request it
receives before it responds to the first.

This type of service requires one or more additional exchanges to hold the outstanding requests.
The keyboard service is good example of an asynchronous service. In the keyboard service,
callers can make a request to be notified of global key codes. These key codes may not occur for
long periods of time, and many normal key strokes may occur in the meantime. This means the
keyboard service must place the global key code requests on another exchange while they handle
normal requests.

The kernel primitive MoveRequest() takes a request you have received using Wait, and moves
it to another exchange. You can then use WaitMsg() or CheckMsg() to get the requests from
this second hold exchange when you know you can respond to them.

While you are holding requests in an asynchronously, you may receive an Abort Service code
from the operating system (ServiceCode 0). If this happens, you need to ensure that you look at
all the requests you are holding to see if this abort is for one of the requests. If so, you must
respond to it immediately, before responding to any other requests you are holding. This is so
the operating system can reclaim the request block, which is a valuable system resource. The
abort request contains the Job number of the aborted program in dData0. You would look at
each Request Block in the RqOwnerJob field to see if this request came from it. If so, you must
respond without accessing its memory or acting on its request.

System Service Error Handling

When the service Responds, the error (or status) to the user is passed back as the second dword
parameter in the respond call. The first is the request block handle.
When you write system services, you must be aware of conventions used in error passing and
handling. Some operating systems simply give you a true or false style of response as to whether
or not the function you requested was carried out without errors.

MMURTL uses this concept, but carries it one step farther. You return a 0 (zero) if all went well.
 If an error occurred or you need to pass some kind of status back to the caller, you return a
number that indicates what you want to tell them. An example of this is how the file system
handles errors. OpenFile() returns a 0 error code if everything went fine. However, it may
return five or six different values for various problems that can occur during the OpenFile()
process. The file may already be opened by someone else in an incompatible mode, the file may
not exist, or maybe the File System couldn’t allocate an operating system resource it needed to

MMURTL V1.0 Page 130 of 667

open your file. In each of these cases, you would receive a non-zero number indicating the error.
You don’t have to access a global in your program or make another call to determine what went
wrong.

Writing Device Drivers

Device Drivers control or emulate hardware on the system. Disk drives, communications ports
(serial and parallel), tape drives, RAM disks, and network frame handlers are all examples of
devices (or pseudo devices) that require device drivers to control them. MMURTL has
standardized entry points for all devices on the system.

MMURTL is built in layers. The device drivers are the closest layer to the OS. You should not
confuse device drivers with message-based system services. Device drivers are accessed via call
gates transparent to the applications programmer which allow callers to easily and rapidly access
code with a procedural interface from high-level languages (e.g., C and Pascal), or by simply
"pushing" parameters on the stack in assembler and making a call.

MMURTL provides several built-in device drivers including floppy disk, hard disk, basic video,
keyboard, and communication (serial and parallel)

Devices in MMURTL are classified as two different basic types: random- and sequential-
oriented. Random-oriented devices are things like disk drives and RAM disks that require the
caller to tell the driver how much data to read or write, as well as where the data is on the device.
Network frame handlers may also be random because a link layer address is usually associated
with the read and write functions, although they may be sequential too (implementation
dependent). Some types of tape drives allow reading and writing to addresses (sectors) on the
tape and therefore may also be random devices. Sequential devices are things like
communications ports, keyboard, and sequential video access (ANSI drivers etc.) Most byte-
oriented devices tend to be sequential devices because they don’t have a fixed size block and are
not randomly accessed.

The MMURTL standard Device Driver interface can handle both sequential and random devices
with fixed or variable block and/orsector lengths. The interface is non-specific.

All device drivers use a Device Control Block (DCB). The device driver defines and keeps the
DCB in it’s memory space, which actually becomes the OS memory space when you load it.
When a device driver initializes itself with the call InitDevDr(), it passes in a pointer to it’s DCB.
If a device driver controls more than one device, it will pass in a pointer to an array of DCBs.
Things like Device name, Block Size, and Device Type are examples of the fields in a DCB.
Each device driver must also maintain in it’s data area all hardware specific data (variables)
needed to control and keep track of the state of the device.

MMURTL V1.0 Page 131 of 667

Device Driver Theory

MMURTL is a protected-mode, paged memory OS that uses two of the four possible protection
levels of the 386/486 processors. The levels are 0 and 3 and are referred to as System (0) and
User (3). I have made it rather painless to build fast, powerful, device drivers and have even gone
into substantial detail for beginners.

Device drivers must have access to the hardware they control. Device drivers have complete
access to processor I/O ports for their devices without OS intervention. Only System code
(protection level 0) is allowed processor port I/O access. This means message- or request-based
system services and application code (both at User level 3) cannot access ports at all; or a
processor protection violation will occur. For example, the file system is at user level (3). It does
not directly access hardware. The device-driver builder must not access ports other than those
required to control their hardware.

Device drivers must not attempt to directly control the system DMA, timer hardware, interrupt
vectors, the PICUs, or any OS structures. MMURTL provides a complete array of calls to
handle all of the hardware, which ensures complete harmony in MMURTL’s real-time,
multitasking, multi-threaded environment, while providing a fair amount of hardware
independence. MMURTL takes care of synchronization of system-level hardware access so
device driver programmers don’t have to worry about it. Those who have written device drivers
on other systems will appreciate this concept.

Building Device Drivers

When the device driver is installed by the loader, or is included in the OS code at build time, it
has to make a system call to set itself up as a device driver in the system. Other system calls may
also have to be made to allocate or initialize other system resources it requires before it can
handle its device.

Device drivers can be doing anything from simple disk device emulation (e.g., RAM DISK), to
handling complex devices such as hard drives, SCSI ports, or network frame handlers (i.e.
network link layer devices).

The call to setup as a device driver is InitDevDr(). With InitDevDr(), you provided a pointer to
your Device Control Blocks (DCB) after you have filled in the required information. The DCB
is shared by both the device driver and OS code.
Before calling InitDevDr you will most likely have to allocate other system resources and
possibly even set up hardware interrupts that you will handle from your device. Additional
system resources available to device drivers are discussed later in this section.

The device driver looks, and is programmed, like any application in MMURTL. It has a main
entry point which you specify when writing the program. In C this would be main() or in Pascal
it’s the main program block. In assembler this would be the START entry point specified for the
program. This code is immediately executed after loading the driver, just like any other

MMURTL V1.0 Page 132 of 667

program. This code will only execute once to allow you to initialize the driver. The main entry
point will never be called again. This will generally be a very small section of code (maybe 30
lines).

How Callers Reach Your Driver

All device drivers are accessed via one of 3 public calls defined in the OS. You will have
functions in your driver to handle each of these calls. When you fill in the DCB you will fill in
the addresses of these 3 entry points that the OS will call on behalf of the original caller.

Your driver program must interface properly with the three public calls. You can name them
anything you want in your program, but they must have the same number and type of parameters
(arguments) as the PUBLIC calls defined in the OS for all device drivers. The OS defines the
three following PUBLIC calls:

DeviceInit()
DeviceOp()
DeviceStat()

The parameter listings and function expectations are discussed in detail later in this chapter.
Your functions may not have to do anything when called depending on the device you are
controlling. But they must at least accept the calls and return a status code of 0 (for no error) if
they ignore it. When programs call one of these PUBLIC calls, MMURTL does some
housekeeping and then calls your specified function.

Device Driver Setup and Installation

The initialization section of your device driver must make certain calls to set up and install as a
driver. The generic steps are described below. Your actual calls may vary depending on what
system resources you need.

1. Initialize or allocate any resources required:
Allocate any additional memory, if required.
Allocate exchanges, if needed for messaging from a second task or the ISRs (see the
floppy device driver for an example of a device driver with a separate task to handle
hardware interrupts).
Set up interrupt service routines, if needed.
Check or set up the device’s, if needed.
Do anything else you need before being called.

2. Enter the required data in the DCBs to pass to the InitDevDr() call.

3. Enable (UnMaskIRQ()) any hardware interrupts you are servicing, unless this is done in

one of the procedures (such as DeviceInit()) as a normal function of your driver.

MMURTL V1.0 Page 133 of 667

4. Call InitDevDr().

InitDevDr() never returns to you. It terminates your task and leaves your code resident to be
called by the OS when one of the three device-driver calls are made.

At this point, you have three device driver routines that are ready to be called by the OS. It will
be the OS that calls them and not the users of the devices directly. This is because the OS has a
very small layer of code which provides common entry points to the three device driver calls for
all drivers. This layer of code performs several functions for you. One very important function is
blocking for non-re-entrant device drivers. In a multitasking environment it is possible that a
device-driver function could be called while someone else’s code is already executing it,
especially if the driver controls two devices. One of the items you fill out in the DCB is a flag
(fDevReent) to tell the OS if your driver is re-entrant. Most device drivers are NOT re-entrant
so this will normally be set to FALSE (0).

System Resources For Device Drivers

Because they control the hardware, device drivers are very close to the hardware. They require
special operating system resources to accomplish their missions. Many device drivers need to
use DMA and timer facilities, and they must service interrupts from the devices they control.
MMURTL has a complete array of support calls for such drivers.

Interrupts

 Several calls are provided to handle initializing and servicing hardware interrupt service routines
(ISRs) in your code. See the section that deals specifically with ISRs for complete descriptions
and examples of simple ISRs. The floppy and hard-disk device drivers also provide good ISR
examples. ISRs should be written in assembly language for speed and complete code control,
although it’s not a requirement. The following is a list with brief descriptions of the calls you
may need to set up and use in your ISR:

SetIRQVector() is how you tell the OS what function to call when your hardware interrupt
occurs. This is often called an interrupt vector.

EndOfIRQ() sends and "End of Interrupt" signal to the Programmable Interrupt Controller
Units (PICU), and should be called by you as the last thing your ISR does. In other operating
systems, specifically DOS, the ISR usually sends the EOI sequence directly to the PICU. Do not
do this in MMURTL as other code may be required to execute in later versions of MMURTL
which will render your device driver obsolete.
MaskIRQ() and UnMaskIRQ() are used to turn on and off your hardware interrupt by masking
and unmasking it directly with the PICU. More detail about each of these calls can be found in
the alphabetical listing of OS calls in Chapter 15,”API Specification.”

MMURTL V1.0 Page 134 of 667

Direct Memory Access Device (DMA)

If your device uses DMA, you will have to use the DMASetUp() call each time before
instructing your device to make the programmed DMA transfer. DMASetUp() lets you set a
DMA channel for the type, mode, direction, and size of a DMA move. DMA also has some
quirks you should be aware of such as it’s inability to cross-segment physical boundaries (64Kb).
 Your driver should use the AllocDMAPage() call to allocate memory that is guaranteed not to
cross a physical segment boundary which also provides you with the physical address to pass to
DMASetUp(). It is important that you understand that the memory addresses your program uses
are linear addresses and do not equal physical addresses. MMURTL uses paged memory, and
the addresses you use will probably never be equal to the physical address! Another thing to
consider is that DMA on the ISA platforms is limited to a 16Mb physical address range.
Program code can and will most likely be loaded into memory above the 16Mb limit if you have
that much memory in your machine. This means all DMA transfers must be buffered into
memory that was allocated using AllocDMAPage(). See the OS Public Call descriptions for
more information on DMASetUp() and how to use AllocDMAPage(). Many users of DMA also
need to be able to query the DMA count register to see if the DMA transfer was complete, or
how much was transferred. This is accomplished with GetDMACount().

Timer Facilities

Quite often, device drivers must delay (sleep) while waiting for an action to occur, or have the
ability to "time-out" if an expected action doesn’t occur in a specific amount of time. Two calls
provide these functions. The Sleep() call actually puts the calling process to sleep (makes it
wait) for a specific number of 10-millisecond periods. The Alarm() call will send a message to a
specified exchange after a number of caller-specified 10-millisecond increments. The Alarm()
call can be used asynchronously to allow the device code to continue doing something while the
alarm is counting down. If you use Alarm(), you will most likely need to use KillAlarm() which
stops the alarm function if it hasn’t already fired off a message to you. See the call descriptions
for more information on the Sleep(), Alarm(), and KillAlarm() functions.

Message Facilities for Device Drivers

Interrupt service routines (if you need them in your driver) sometimes require special messaging
features that application programs don’t need. A special call that may be required by some
device drivers is IsendMsg(). IsendMsg() is a special form of SendMsg() that can be used
inside an ISR (with interrupts disabled). It doesn’t force a task switch (even if the destination
exchange has a higher priority process waiting there). IsendMsg() also does not re-enable
interrupts before returning to the ISR that called it, so it may be called from an ISR while
interrupts are disabled. IsendMsg() is used if an ISR must send more than one message from
the interrupted condition. If you must send a message that guarantees a task switch to a higher
priority task, or you only need to send one message from the ISR, you can use SendMsg(). If
you use SendMsg(), it must be the final call in your ISR after the EndOfIRQ() call has been

MMURTL V1.0 Page 135 of 667

made and just before the IRETD() (Return From Interrupt). This will guarantee a task switch if
the message is to a higher priority task.

Detailed Device Interface Specification

The following sections describe the device control block (DCB), each of the three PUBLIC
device calls, and how to implement them in your code.

Device Control Block Setup and Use

The DCB structure is shown in the following table with sizes and offsets specified. How the
structure is implemented in each programming language is different, but easy to figure out. The
length of each field in the DCB is shown in bytes and all values are unsigned. You can look at
some of the included device driver code with MMURTL to help you.

The size of a DEVICE CONTROL BLOCK is 64 bytes. You must ensure that there is no
padding between the variables if you use a record in Pascal, a structure in C, or assembler to
construct the DCB. If your driver controls more than one device you will need to have a DCB
for each one it controls. Multiple DCBs must be contiguous in memory. Table 10.1 presents the
information that needs to be included in the DCB.

Table 10.1-. Device control block definition

Name Size Offset Description
DevName 12 0 Device Name, left justified
sbDevName 1 12 Length of Device name in bytes
DevType 1 13 1 = RANDOM device,
 2 = SEQUENTIAL
NBPB 2 14 Bytes Per Block
 (1 to 65535 max.)
 (0 for variable block size)
dLastDevErc 4 16 Last error code from an operation
ndDevBlocks 4 20 Number of blocks in device (0 for

sequential)
pDevOp 4 24 pointer to device Oper. Handler
 pDevInit 4 28 pointer to device Init handler
pDevStat 4 32 pointer to device Status handler
fDevReent 1 36 Is device handler reentrant?
fSingleUser 1 37 Is device usable from 1 JOB only?
wJob 2 38 If fSingleUser true, this is job
OSUseONLY1 4 40 ALLOCATE and 0, DO NOT MODIFY
OSUseONLY2 4 44 ALLOCATE and 0, DO NOT MODIFY
OSuseONLY3 4 48 ALLOCATE and 0, DO NOT MODIFY
OSuseONLY4 4 52 ALLOCATE and 0, DO NOT MODIFY
OSuseONLY5 4 56 ALLOCATE and 0, DO NOT MODIFY
OSuseONLY6 4 60 ALLOCATE and 0, DO NOT MODIFY

MMURTL V1.0 Page 136 of 667

The fields of the DCB must be filled in with the initial values for the device you control before
calling InitDevDr(). Most of the fields are explained satisfactorily in the descriptions next to the
them, but the following fields require detailed explanations:

DevName - Each driver names the device it serves. Some names are standardized in MMURTL,
but this doesn’t prevent the driver from assigning a non-standard name. The name is used so that
callers don't need to know a device’s number in order to use it. For instance, floppy disk drives
are usually named FD0 and FD1, but a driver for non-standard floppy devices can name them
anything (up to 12 characters). Each device name must be unique.

sbDevName - a single byte containing the number of bytes in the device name.
DevType - this indicates whether the device is addressable. If data can be reached at a specific
numbered address as specified in the DeviceOP() call parameter dLBA (Logical Block
Address), then it's considered a random device and this byte should contain a 1. If the device is
sequential, and the concept of an address for the data has no meaning (such as with a
communications port), then this should contain a 2.

znBPB - number of bytes per block. Disk drives are divided into sectors. Each sector is
considered a block. If the sectors are 512-byte sectors (MMURTL standard) then this would be
512. If it is another device, or it's a disk driver that is initialized for 1024-byte sectors then this
would reflect the true block size of the device. If it is a single-byte oriented device such as a
communications port or sequential video then this would be 1. If the device has variable length
blocks then this should be 0.

dLastDevErc - When a driver encounters an error, usually an unexpected one, it should set this
variable with the last error code it received. The driver does not need to reset this value as
MMURTL resets it to zero on entry to each call to DeviceOP for each device.

ndDevBlocks - This is the number of addressable blocks in your device. For example, on a
floppy disk this would be the number of sectors x number of cylinders x number of heads on the
drive. MMURTL expects device drivers to organize access to each random device by 0 to n
logical addresses. An example of how this is accomplished is with the floppy device driver. It
numbers all sectors on the disk from 0 to nTotalSectors (nTotalSectors is nHeads *
nSecPerTrack * nTracks). The head number takes precedence over track number when
calculating the actual position on the disk. In other words, if you are on track zero, sector zero,
head zero, and you read one sector past the end of that track, we then move to the next head, not
the next track. This reduces disk arm movement which, increases throughput. The Hard disk
driver operates the same way. Addressing with 32 bits limits address access to 4Gb on a single-
byte device and 4Gb x sector size on disk devices, but this is not much of a limitation. If the
device is mountable or allows multiple media sizes this value should be set initially to allow
access to any media for identification; this is device dependent.

pDevOp, pDevInit, and pDevStat are pointers to the calls in your driver for the following
PUBLIC device functions:

MMURTL V1.0 Page 137 of 667

• DeviceOp - Performs I/O operations in device
• DeviceInit - Initializes or resets the device
• DeviceStats - Returns device-specific status

MMURTL uses indirect 32-bit near calls to your driver’s code for these three calls. The return
instruction you use should be a 32-bit near return. This is usually dictated by your compiler or
assembler and how you define the function or procedure. In C-32 (MMURTL’s standard C
compiler), defining the function with no additional attributes or modifiers defaults it to a 32-bit
near return. In assembler, RETN is the proper instruction.

fDevReent - This is a 1-byte flag (0 false, non-zero true) that tells MMURTL if the device
driver is re-entrant. MMURTL handles conflicts that occur when more than one task attempts to
access a device. Most device drivers have a single set of variables that keep track of the current
state of the device and the current operation. In a true multitasking environment more than one
task can call a device driver. For devices that are not re-entrant, MMURTL will queue up tasks
that call a device driver currently in use. The queuing is accomplished with an exchange, the
SendMsg(), and WaitMsg() primitives. A portion of the reserved DCB is used for this purpose.
 On very complicated devices such as a SCSI driver, where several devices are controlled though
one access point, the driver may have to tell MMURTL it’s re-entrant, and handle device
conflicts internally.

fSingleUser - If a device can only be assigned and used by one Job (user) at a time, this flag
should be true (non-zero). This applies to devices like communications ports that are assigned
and used for a session.

wJob - If the fSingleUser is true, this will be the job that is currently assigned to the device. If
this is zero, no job is currently assigned the device. If fSingleUser is false this field is ignored.

OSUseONLY1,2,3,4,5,6 - These are reserved for OS use and device drivers should not alter the
values in them after the call to InitDevDr. They must be set to zero before the call to InitDevDr.

Standard Device Call Definitions

As described previously, all calls to device drivers are accessed through three pre-defined
PUBLIC calls in MMURTL. They are:

DeviceOp(dDevice, dOpNum, dLBA, ndBlocks, pData):dError
DeviceInit(dDevice, pInitData, sdInitdata):dError
DeviceStat(dDevice, pStatRet, sdStatRetmax):dError

Detailed information follows for each of these calls. The procedural interfaces are shown with
additional information such as the call frame offset, where the parameters will be found on the
stack after the function has set up its stack frame using Intel standard stack frame entry
techniques. Note that your function should also remove these parameters from the stack. All
functions in MMURTL return errors via the EAX register. Your function implementations must

MMURTL V1.0 Page 138 of 667

do the same. Returning zero indicates successful completion of the function. A non-zero value
indicates and error or status that the caller should act on. Standard device errors should be used
when they adequately describe the error or status you wish to convey to the caller. Device
specific error codes should be included with the documentation for the driver.

DeviceOp Function Implementation

The DeviceOp() function is used by services and programs to carry out normal operations such
as Read and Write on a device. The call is not device specific and allows any device to be
interfaced through it. The dOpNum parameter tells the driver which operation is to be
performed. An almost unlimited number of operations can be specified for the Device Operation
call (2^32). The first 256 operations (dOp number) are pre-defined or reserved. They equate to
standard device operations such as read, write, verify, and format. The rest of the dOp Numbers
may be implemented for any device-specific operations so long as they conform to the call
parameters described here.

dError = DeviceOp(dDevice,dOpNum,dLBA,dnBlocks,pData);

The call frame offsets for assembly language programmers are these:

 dDevice [EBP+24]
 dOpNum [EBP+20]
 dLBA [EBP+16]
 dnBlocks [EBP+12]
 pData [EBP+08]

Parameter Descriptions:
dDevice the device number

dOpNum identifies which operation to perform

0 Null operation
1 Read (receive data from the device)
2 Write (send data to the device)
3 Verify (compare data on the device)
4 Format Block (tape or disk devices)
5 Format Track (disk devices only)
6 Seek Block (tape or disk devices only)
7 Seek Track (disk devices only)
(Communications devices)
10 OpenDevice (communications devices)
11 CloseDevice (communications devices)
(RS-232 devices with explicit modem control)
15 SetDTR
16 SetCTS
Undefined operation number below 255 are reserved

MMURTL V1.0 Page 139 of 667

256-n Driver Defined (driver specific)

Dlba Logical Block Address for I/O operation.

For sequential devices this parameter will
be ignored.

dnBlocks Number of contiguous Blocks for the
 operation specified. For sequential
 devices, this will simply be the number
 of bytes.

pData Pointer to data (or buffer for reads) for specified operation

DeviceStat Function Implementation

The DeviceStat function provides a way to for device-specific status to be returned to a caller if
needed. Not all devices will return status on demand. In cases where the function doesn’t or can’t
return status, you should return 0 to pdStatusRet and return the standard device error
ErcNoStatus.

DError = DeviceStat(dDevice,pStatRet,dStatusMax,pdStatusRet);

The call frame offsets for assembly language programmers are:

dDevice [EBP+20]
pStatRet [EBP+16]
dStatusMax [EBP+12]
pdStatusRet [EBP+08]

Parameter Descriptions:

dDevice Device number to status
pStatBuf Pointer to buffer where status will be returned
dStatusMax caller sets this to tell you the max size of status to return in bytes
pdStatusRet Pointer to dword where you return size of status returned in bytes

DeviceInit Function Implementation

Some devices may require a call to initialize them before use or to reset them after a catastrophe.
 An example of initialization would be a communications port for baud rate, parity, and so on.
The size of the initializing data and its contents are device specific and should be defined with
the documentation for the specific device driver.

MMURTL V1.0 Page 140 of 667

DError = DeviceInit(dDevice,pInitData,dInitData);

The call frame offsets for assembly language programmers are:

DDevice [EBP+16]
IInitData [EBP+12]\
dInitData [EBP+08]

Parameter Descriptions:

dDevice dword indicating Device number
pInitData Pointer to device specific data for initialization be returned
dInitData dword indicating maximum size of status to return in bytes

Initializing Your Driver

InitDevDr() is called from a device driver after it is first loaded to let the OS integrate it into the
system. After the Device driver has been loaded, it should allocate all system resources it needs
to operate and control its devices while providing service through the three standard entry points.
 A 64-byte DCB must be filled out for each device the driver controls before this call is made.
When a driver controls more than one device it must provide the Device Control Blocks for each
device. The DBCs must be contiguous in memory. If the driver is flagged as not re-entrant, then
all devices controlled by the driver will be locked out when the driver is busy. This is because
one controller, such as a disk or SCSI controller, usually handles multiple devices through a
single set of hardware ports, and one DMA channel if applicable, and can’t handle more than one
active transfer at a time. If this is not the case, and the driver can handle two devices
simultaneously the driver should be broken into two separate drivers.

The definition and parameters to InitDevDr() are as follows:

InitDevDr(dDevNum, pDCBs, nDevices, fReplace)

dDevNum This is the device number that the driver is controlling. If the driver controls
more than one device, this is the first number of the devices. This means the devices are
number consecutively.

pDCBs This is a pointer to the DCB for the device. If more than one device is
controlled, this is the pointer to the first in an array of DCBs for the devices. This means
the second DCB must be located at pDCBs + 64, the second at pDCBs + 128, and so
on.

nDevices This is the number of devices that the driver controls. It must equal the
number of contiguous DCBs that the driver has filled out before the InitDevDr call is
made.

MMURTL V1.0 Page 141 of 667

fReplace If true, the driver will be substituted for the existing driver functions already
in place. This does not mean that the existing driver will be replaced in memory, it only
means the new driver will be called when the device is accessed. A driver must specify at
least as many devices as the original driver handled.

OS Functions for Device Drivers

The following is a list of functions that were specifically designed for device drivers. They
perform many of the tedious functions that would otherwise require assembly language, and a
very good knowledge of the hardware. Please use the MMURTL API reference for a detailed
description of their use.

AllocDMAMem() Allocates memory that will be compatible with DMA operations. It
also returns the physical address of the memory which is required for the DMASetUp
call.
EndOfIRQ() Resets the programmable interrupt controller unit (PICU) at the end of the
ISR sequence.
MaskIRQ() Masks one interrupt (prevents it from interrupting) by programming the
PICU.
SetIRQVector() Sets up a vector to your ISR.
DMASetUp() Programs the DMA hardware channel specified to move data to or from
your device.
UnMaskIRQ() Allows interrupts to occur from a specified channel on the PICU.

Standard Device Error Codes

The MMURTL device-driver interface code will return errors for certain conditions such as a
device being called that’s not installed. Your device drive will also return error codes for
problems it has honoring the device call. If an error code already defined in MMURTL’s
standard header file will adequately describe the error or status, then use it.

MMURTL V1.0 Page 142 of 667

Chapter 11, The Monitor Program

Introduction

The Monitor program is included as part of the operating system. Many of the functions
performed by the monitor are for testing the system. The monitor also serves as a context display
controller by monitoring for global keys that indicate the user’s desire to change, or terminate,
the job he is currently viewing. When the user presses these global keys, the keyboard, as well as
the video display, is assigned to the new job or is terminated.

In future versions of MMURTL, many of the functions now performed by the monitor will be
moved to external programs. If you intend to write an operating system, you will find a need for
something similar to the monitor as an initial piece of code built into the operating system for
testing.

Active Job (Video & keyboard)

When multiple jobs are running in MMURTL, only one job at a time can be displayed or accept
keyboard input. The Monitor program enables you to select which job you are currently
interacting with. This is done by pressing the CTRL-ALT-PageDown keys to move forward
through the active jobs until you see the one you want. The current job may also be terminated
by pressing CTRL-ALT-Delete.

Even when a Job is not being displayed, it is still running unless it’s waiting for something such
as keyboard input or some form of communication. If it’s displaying video data, it continues to
run because a job never actually knows if it is displaying data to the real screen or it’s own virtual
screen, a buffer in memory.

Initial Jobs

After all internal device drivers and services are loaded, the monitor attempts to open a text file
in the system directory call INITIAL.JOB.

This file contains the file names of one or more run files you want to execute automatically on
boot up. The format is very simple. Each line lists the full file specification of a RUN file. The
name must start in the first column of a line. No spaces, tabs or other characters are allowed
before the RUN file name. A line that begins with a semicolon is ignored and considered a
comment line. Listing 11.1 shows a sample INITIAL.JOB file.

MMURTL V1.0 Page 143 of 667

Listing 11.1. Sample Initial.Job file.

;INITIAL.JOB - This is the initial jobs file.
;You may list the jobs that you wanted executed upon
;system boot in this file. One run file name per line,
;no spaces in front of the name and a proper end-of-line
;after each entry. Any spaces, tabs or comments after
;the run file name are ignored. No parameters are passed
;to the run file. The file name must contain the FULL
;file name including path. (e.g., Drive:\DIR\NAME.RUN)
;Comment lines begin with a semi-colon
;Maximum line length is 80 characters total.
;
C:\MSamples\Service\Service.run
C:\MMSYS\CLI.RUN <---- this will be loaded on bootup
;End of file

If the executable job listed is CLI.RUN, the video and keyboard will be assigned to this job and
taken away from the monitor.

Monitor Function Keys

The Monitor also provides other functions such as system resource display, job display, and
access to the built-in debugger. The functions are provided with function keys which are labeled
across the bottom of the display. Table 11.1 describes the function of each assigned key.

Table 11.1. Monitor Function Keys

Key Label Function
F1 LDCLI Loads a Command Line Interpreter
F2 JOBS List Jobs
F3 STATS Show System Resource Status
F8 BOOT Reboots the system (hard reset)
F10 DEBUG Enter the Debugger

Monitor Program Theory

After all internal static and dynamic structures are initialized, the monitor is reached with a JMP
instruction.

MMURTL V1.0 Page 144 of 667

The first thing accomplished by the monitor is the initialization of all internal device drivers and
system services. During this process, any errors returned are displayed. A status code of Zero
indicates successful initialization.

The device drivers that are initialized include the hard and floppy disk, RS-232 serial
communications, and the parallel port (LPT) driver.

The initialized services include the keyboard and the file system. The initialization also includes
starting two tasks inside the monitor code. The first additional task provides the context-
switching capabilities by leaving a global key request with the keyboard service. It looks for
Ctrl-Alt-PageDown and shifts the keyboard and video to the next job in numerical order. This
task also looks for the Ctrl-Alt-Delete key combination which terminates a job. The second task
is used to recover resources when a job ends or is terminated for ill behavior (memory access or
other protection violations).

Once the initialization is complete, user interaction is provided via the functions keys discussed
in table 11.1. The monitor echoes other keys to the screen to show you it is working properly.
They are displayed as typed.

Performance Monitoring

Performance monitoring is provided by sampling statistic-gathering public variables the
operating system maintains and updates. The statistics provide a snap-shot of system resources
every half second.
These statistics include:

Free 4K memory pages - This is the total number of 4K memory pages available for allocation
by the memory-management code.

Task switches total - This is the total count of task switches since boot up.

priority task.

CPU idle ticks (no work) - This is the number of times the operating system had nothing to do.
There were no tasks ready to run. This number does not directly relate the timer ticks because
this can happen several times between the time interrupt interval.

Tasks Ready to Run - This is the number of tasks currently queued to run. If this number is
greater than zero, you will see the preemptive task switch count increase.

Free Task State Segments - These are task-management structures. The memory they occupy is
dynamically allocated, but the count is fixed at OS build time. Each new task uses one of these.

Free Job Control Blocks - This is the number of free job control blocks left. They are also
dynamically allocated with a fixed count at OS build time. Each job uses one.

MMURTL V1.0 Page 145 of 667

Response is made by the service, the request block is returned for re-use. These structures are
also in dynamically allocated memory, but have a fixed count at OS build time.

Free Link Blocks - A small structure used by all messages sent and received, including requests.
This number may seem a little high, but dozens of messages may be sent between tasks, even in
the same job, that don’t get picked up right away. These are static and the count is determined at
OS build time.

Free Exchanges - This is the number of free exchanges that can be allocated. These are also
dynamically allocated with a fixed count at OS build time.

Monitor Source Listing

Text-formatting functions are provided with the xprintf() function defined in the monitor. I
include no C library code in the operating system itself. In future versions when a lot of the
monitor functionality is moved out of the operating system, the C library code can be used. See
listing 11.2.

Listing 11.2.Monitor program source listing.

#define U32 unsigned long
#define S32 long
#define U16 unsigned int
#define S16 int
#define U8 unsigned char
#define S8 char

#include "MKernel.h"
#include "MMemory.h"
#include "MData.h"
#include "MTimer.h"
#include "MVid.h"
#include "MKbd.h"
#include "MJob.h"
#include "MFiles.h"
#include "MDevDrv.h"

#define ok 0
#define ErcNoDevice 504

static char rgStatLine[] =
"mm/dd/yy 00:00:00 MMURTL Monitor Tick:0
 ";

static char rgMonMenu1[] = "LdCLI\xb3Jobs \xb3Stats \xb3 ";
static char rgMonMenu2[] = " \xb3 \xb3 \xb3Reboot";
static char rgMonMenu3[] = " \xb3Debug \xb3 \xb3 ";

MMURTL V1.0 Page 146 of 667

static char rgCPR1[]
="MMURTL (tm) - Message based, MUltitasking, Real-Time kerneL";
static char rgCPR2[]
="Copyright (c) R.A. Burgess, 1990-1995, All Rights Reserved";

static char *CRLF = "\r\n\r\n";

static unsigned long Color = WHITE|BGBLACK; /* Color test for xprintf */

static long time, date, tick;

unsigned long KillExch; /* Messaging for stat task KILL proc */

static unsigned long KillMsg[2]; /* First DWORD = TSSExch, second is ERROR
*/
static unsigned long KillError;
static unsigned long KillJobNum;
static unsigned char fKilled;

static unsigned long MngrExch; /* Messaging for stat task */
static unsigned long MngrMsg[2];
static unsigned long MngrHndl;
static unsigned long gcode;

static unsigned long GPExch; /* Messaging for main */
static unsigned long GPMsg[2];
static unsigned long GPHndl;

static unsigned long GP1Exch; /* Extra Messaging for main */
static unsigned long GP1Msg[2];
static unsigned long GP1Hndl;

/* Structure for disk device driver status and setup */

static struct diskstattype {
 U32 erc;
 U32 blocks_done;
 U32 BlocksMax;
 U8 fNewMedia;
 U8 type_now; /* current disk type for drive selected */
 U8 resvd1[2]; /* padding for DWord align */
 U32 nCyl; /* total physical cylinders */
 U32 nHead; /* total heads on device */
 U32 nSectors; /* Sectors per track */
 U32 nBPS; /* Number of bytes per sect */

 U32 LastRecalErc0;
 U32 LastSeekErc0;
 U8 LastStatByte0;
 U8 LastErcByte0;
 U8 fIntOnReset; /* Interrupt was received on HDC_RESET */
 U8 filler0;
 U32 LastRecalErc1;
 U32 LastSeekErc1;
 U8 LastStatByte1;
 U8 LastErcByte1;

MMURTL V1.0 Page 147 of 667

 U8 ResetStatByte; /* Status Byte immediately after RESET */
 U8 filler1;
 U32 resvd1[2]; /* out to 64 bytes */
 };

static struct diskstattype DiskStatus;

#define nMaxJCBs 34 /* 32 dynamic plus 2 static */
static struct JCBRec *pJCB;

static long StatStack[256]; /* 1024 byte stack for Stat task */

static long MngrStack[256]; /* 1024 byte stack for Mngr task */

static unsigned char Buffer[512];
static unsigned long nMemPages;

extern unsigned long oMemMax;
extern unsigned long nSwitches;
extern unsigned long nSlices;
extern unsigned long nHalts;
extern unsigned long nReady;
extern unsigned long nRQBLeft;
extern unsigned long nJCBLeft;
extern unsigned long nTSSLeft;
extern unsigned long nLBLeft;
extern unsigned long nEXCHLeft;
extern unsigned long BootDrive;

/*============ protos (NEAR MMURTL support calls) =================*/

extern long InitKBDService(void); /* From Keyboard.asm */
extern long fdisk_setup(void); /* From Floppy.c */
extern long hdisk_setup(void); /* From HardIDE.c */
extern long coms_setup(void); /* From RS232.c */
extern long lpt_setup(void); /* From Parallel.c */
extern long InitFS(void); /* From Fsys.c */

extern long GetExchOwner(long Exch, char *pJCBRet);
extern long DeAllocJCB(long *pdJobNumRet, char *ppJCBRet);

/*=================== START OF CODE ====================*/

/**
 Formatted output routines for monitor program
 xprintf, xsprintf.
***/

#include <stdarg.h>

#define S_SIZE 100

/***
* Determine if a character is a numeric digit
**/

static long isdigit(long chr)

MMURTL V1.0 Page 148 of 667

{
;
#asm
 MOV EAX,[EBP+8]
 CMP AL, 30h ;0
 JL isdigit0 ;No
 CMP AL, 39h ;
 JLE isdigit1 ;Yes
isdigit0:
 XOR EAX,EAX ;No
 JMP SHORT isdigit2
isdigit1:
 MOV EAX, -1
isdigit2:

#endasm
}

static long strlen(char *cs)
{
;
#asm
 XOR EAX, EAX
 MOV ESI,[EBP+8]
_strlen0:
 CMP BYTE PTR [ESI],0
 JE _strlen1
 INC ESI
 INC EAX
 JMP SHORT _strlen0
_strlen1:
#endasm
}

/***
 This does the actual parsing of the format and also moves to
 the next arg(s) in the list from the passed in arg pointer.
 The number of chars written is returned (not incl \0).
**/
static long _ffmt(char *outptr, char *fmt, long *argptr)
{
char numstk[33], *ptr, justify, zero, minus, chr;
unsigned long width, value, i, total;

 total = 0;
 while(chr = *fmt++)
 {
 if(chr == ’%’)
 { /* format code */
 chr = *fmt++;
 ptr = &numstk[32];
 *ptr = justify = minus = 0;
 width = value = i = 0;
 zero = ’ ’;
 if(chr == ’-’)
 { /* left justify */
 --justify;

MMURTL V1.0 Page 149 of 667

 chr = *fmt++;
 }
 if(chr == ’0’) /* leading zeros */
 zero = ’0’;
 while(isdigit(chr))
 { /* field width specifier */
 width = (width * 10) + (chr - ’0’);
 chr = *fmt++;
 }

 value = *--argptr; /* get parameter value */

 switch(chr)
 {
 case ’d’ : /* decimal number */
 if(value & 0x80000000)
 {
 value = -value;
 ++minus;
 }
 case ’u’ : /* unsigned number */
 i = 10;
 break;
 case ’x’ : /* hexadecimal number */
 case ’X’ :
 i = 16;
 break;
 case ’o’ : /* octal number */
 i = 8;
 break;
 case ’b’ : /* binary number */
 i = 2;
 break;
 case ’c’ : /* character data */
 *--ptr = value;
 break;
 case ’s’ : /* string */
 ptr = value; /* value is ptr to string */
 break;
 default: /* all others */
 *--ptr = chr;
 ++argptr; /* backup to last arg */
 }

 if(i) /* for all numbers, generate the ASCII string */
 do
 {
 if((chr = (value % i) + ’0’) > ’9’)
 chr += 7;
 *--ptr = chr;
 }
 while(value /= i);

 /* output sign if any */

 if(minus)
 {

MMURTL V1.0 Page 150 of 667

 *outptr++ = ’-’;
 ++total;
 if(width)
 --width;
 }

 /* pad with ’zero’ value if right justify enabled */

 if(width && !justify)
 {
 for(i = strlen(ptr); i < width; ++i)
 *outptr++ = zero;
 ++total;
 }

 /* move in data */

 i = 0;
 value = width - 1;

 while((*ptr) && (i <= value))
 {
 *outptr++ = *ptr++;
 ++total;
 ++i;
 }

 /* pad with ’zero’ value if left justify enabled */

 if(width && justify)
 {
 while(i < width)
 {
 *outptr++ = zero;
 ++total;
 ++i;
 }
 }
 }
 else
 {
 /* not format char, just move into string */
 *outptr++ = chr;
 ++total;
 }
 }

 *outptr = 0;
 return total;
}

/************************************
 Formatted print to screen
*************************************/

long xprintf(char *fmt, ...)
{

MMURTL V1.0 Page 151 of 667

 va_list ap;
 long total;
 char buffer[S_SIZE];

 va_start(ap, fmt); /* set up ap pointer */
 total = _ffmt(buffer, fmt, ap);
 TTYOut(buffer, strlen(buffer), Color);
 va_end(ap, fmt);
 return total;
}

/************************************
 Formatted print to string s
*************************************/

long xsprintf(char *s, char *fmt, ...)
{
 va_list ap;
 long total;

 va_start(ap, fmt); /* set up ap pointer */
 total = _ffmt(s, fmt, ap);
 va_end(ap, fmt);
 return total;
}

/**
 Checks to ensure we don’t scroll the function
 keys off the screen.
**/

void CheckScreen()
{
long iCol, iLine;

 GetXY(&iCol, &iLine);
 if (iLine >= 23)
 {
 ScrollVid(0,1,80,23,1);
 SetXY(0,22);
 }
}

/***
 This is called to initialize the screen.
***/

static void InitScreen(void)
{
 ClrScr();
 xsprintf(&rgStatLine[70], "%d", tick);
 PutVidChars(0,0, rgStatLine, 80, WHITE|BGBLUE);
 PutVidChars(0, 24, rgMonMenu1, 26, BLUE|BGWHITE);
 PutVidChars(27, 24, rgMonMenu2, 26, BLUE|BGWHITE);
 PutVidChars(54, 24, rgMonMenu3, 25, BLUE|BGWHITE);
 SetXY(0,1);
 return;

MMURTL V1.0 Page 152 of 667

}

/***
 This is the status task for the Monitor.
 Besides displaying the top status line for
 the monitor, it has the job of looking for
 messages from the job code that indicate
 a job has terminated. When it gets one,
 it recovers the last of the resources and
 then notifies the user on the screen.
***/

static void StatTask(void)
{
unsigned long erc, i, Exch, Msg[2];
U8 *pPD, *pVid;

for(;;)
{
 GetCMOSTime(&time);
 rgStatLine[10] = ’0’ + ((time >> 20) & 0x0f);
 rgStatLine[11] = ’0’ + ((time >> 16) & 0x0f);
 rgStatLine[13] = ’0’ + ((time >> 12) & 0x0f);
 rgStatLine[14] = ’0’ + ((time >> 8) & 0x0f);
 rgStatLine[16] = ’0’ + ((time >> 4) & 0x0f); /* seconds */
 rgStatLine[17] = ’0’ + (time & 0x0f);

 GetCMOSDate(&date);
 rgStatLine[0] = ’0’ + ((date >> 20) & 0x0f); /* month */
 rgStatLine[1] = ’0’ + ((date >> 16) & 0x0f);
 rgStatLine[3] = ’0’ + ((date >> 12) & 0x0f); /* Day */
 rgStatLine[4] = ’0’ + ((date >> 8) & 0x0f);
 rgStatLine[6] = ’0’ + ((date >> 28) & 0x0f); /* year */
 rgStatLine[7] = ’0’ + ((date >> 24) & 0x0f);

 GetTimerTick(&tick);
 xsprintf(&rgStatLine[70], "%d", tick);
 PutVidChars(0,0, rgStatLine, 80, WHITE|BGBLUE);

 Sleep(50); /* sleep 0.5 second */

 GetTimerTick(&tick);
 xsprintf(&rgStatLine[70], "%d", tick);
 PutVidChars(0,0, rgStatLine, 80, WHITE|BGBLUE);

 Sleep(50); /* sleep 0.5 second */

 /* Now we check for tasks that are Jobs that are killing
 themselves (either due to fatal errors or no exitjob).
 The message has Error, TSSExch in it.
 */

 erc = CheckMsg(KillExch, KillMsg);
 if (!erc)
 { /* someone’s there wanting to terminate...*/

 /* Get and save the error (KillMsg[0]) */

MMURTL V1.0 Page 153 of 667

 KillError = KillMsg[0];

 /* Call GetExchOwner which gives us pJCB */

 erc = GetExchOwner(KillMsg[1], &pJCB);
 if (!erc)
 {

 KillJobNum = pJCB->JobNum;
 Tone(440,50);
 xprintf("Job number %d terminated. Error: %d\r\n",
 KillJobNum, KillError);
 CheckScreen();

 pPD = pJCB->pJcbPD;
 pVid = pJCB->pVirtVid;

 /* Must change video to monitor if this guy owned it */

 GetVidOwner(&i);
 if (i == KillJobNum)
 {
 GetTSSExch(&Exch); /* Use our TSS exchange for Request */
 SetVidOwner(1);
 erc = Request("KEYBOARD", 4, Exch, &i, 0,
 0, 0, 0, 0, 1, 0, 0);
 erc = WaitMsg(Exch, Msg);
 }

 /* Now we deallocate the JCB and the TSSExch
 which will free the TSS automatically!
 */

 DeAllocExch(KillMsg[1]);
 DeAllocJCB(pJCB); /* No error returned */

 /* When the JCB was created, the PD and it’s 1st
 PDE (PT) were allocated as two pages next to each other
 in linear memory. So we can just deallocate both
 pages in one shot. Then we deallocate the single
 page for virtual video.
 */

 DeAllocPage(pPD, 2);
 DeAllocPage(pVid, 1);

 fKilled = 1;
 /* We’re done (and so is he...) */
 }
 }

} /* for EVER */
}

/***
 This is the Manager task for the Monitor.
 It allows us to switch jobs with the

MMURTL V1.0 Page 154 of 667

 CTRL-ALT-PageDown key.
 We don’t actually switch jobs, we just
 reassign video and keyboard to the next
 active job (except the Debugger).
 Also, if the debugger has the video...
 we don’t do it at all!
 This also looks for CTRL-ALT-DELETE which kills
 the job that owns the keyboard/Video so long as it’s
 not the Monitor or the Debugger.
***/

static void MngrTask(void)
{
long erc, i, j, fDone;
char *pJCB;

/* Leave a Global Key Request outstanding with KBD service
 for the status task
*/

erc = Request("KEYBOARD", 2, MngrExch, &MngrHndl, 0, &gcode,
 4, 0, 0, 0, 0, 0);

for(;;)
{
 erc = WaitMsg(MngrExch, MngrMsg);

 if (!erc)
 {
 if ((gcode & 0xff) == 0x0C)
 {
 /* Find next valid Job that is NOT the
 debugger and assign Vid and Keyboard to
 it.
 */

 erc = GetVidOwner(&j);
 fDone = 0;
 i = j;
 while (!fDone)
 {
 i++;
 if (i==2) i = 3;
 else if (i>34) i = 1;
 erc = GetpJCB(i, &pJCB); /* erc = 0 if valid JCB */
 if ((!erc) || (i==j))
 fDone = 1;
 }
 if (i != j)
 {
 SetVidOwner(i);
 erc = Request("KEYBOARD", 4, MngrExch, &MngrHndl, 0,
 0, 0, 0, 0, i, 0, 0);
 erc = WaitMsg(MngrExch, MngrMsg);

 }
 }

MMURTL V1.0 Page 155 of 667

 else if ((gcode & 0xff) == 0x7F) /* CTRL-ALT-DEL (Kill)*/
 {
 erc = GetVidOwner(&j);
 erc = KillJob(j);
 }

 /* leave another global key request */
 erc = Request("KEYBOARD", 2, MngrExch, &MngrHndl, 0, &gcode,
 4, 0, 0, 0, 0, 0);
 }

} /* for EVER */
}

/***
 This simply does a software interrupt 03 (Debugger).
***/

static void GoDebug(void)
{
;
#asm
 INT 03
#endasm
return;
}

/***
 This strobes keyboard data port 60h with 00 after
 sending 0D1 command to Command port. We have to loop
 reading the status bit of the command port to make
 sure it’s OK to send the command. This resets the
 processor which then executes the boot ROM.
***/

static void Reboot(void)
{
;
#asm
 CLI ;first we clear interrupts
 MOV ECX, 0FFFFh ;check port up to 64K times
Reboot0:
 IN AL,64h ;Read Status Byte into AL
 TEST AL,02h ;Test The Input Buffer Full Bit
 LOOPNZ Reboot0
 MOV AL,0FEh ;Strobe bit 0 of keyboard crtlr output
 OUT 64h,AL
 STI
#endasm
return;
}

/***
 This reads a file called Initial.Job from the system
 directory and loads all jobs specified in the file.
 Video and keyboard are not assigned to any of these
 jobs unless it is cli.run and the last job loaded.

MMURTL V1.0 Page 156 of 667

***/

void LoadJobFile(void)
{
long erc, fh, sjobfile, cbrunfile, i, j, job;
unsigned char sdisk;
char ajobfile[50];
char arunfile[80];
char fdone, fcli;

 GetSystemDisk(&sdisk);
 sdisk &= 0x7F;
 sdisk += 0x41; /* 0=A, 1=B, 2=C etc. */
 ajobfile[0] = sdisk;
 CopyData(":\\MMSYS\\INITIAL.JOB\0", &ajobfile[1], 20);
 sjobfile = strlen(ajobfile);

 erc = OpenFile(ajobfile, sjobfile, 0, 1, &fh);
 if (!erc)
 {
 fdone = 0;
 job = 0;
 fcli = 0;
 while (!fdone)
 {
 i = 0;
 do
 {
 erc = ReadBytes(fh, &arunfile[i++], 1, &j);

 } while ((!erc) && (arunfile[i-1] != 0x0A) && (i < 80));

 if ((!erc) && (i > 1))
 {
 if (arunfile[0] == ’;’) /* a comment line */
 continue;

 cbrunfile = 0;
 while ((arunfile[cbrunfile] != 0x0A) &&
 (arunfile[cbrunfile] != 0x0D) &&
 (arunfile[cbrunfile] != 0x20) &&
 (arunfile[cbrunfile] != 0x09) &&
 (arunfile[cbrunfile]))
 cbrunfile++;

 if (cbrunfile > 2)
 {
 arunfile[cbrunfile] = 0; /* null terminate for display */

 if ((cbrunfile > 8) &&
 (CompareNCS(&arunfile[cbrunfile-7],
 "cli.run", 7) == -1))
 fcli = 1;
 else
 fcli = 0;

 xprintf("Loading: %s...\r\n", arunfile);

MMURTL V1.0 Page 157 of 667

 CheckScreen();
 erc = LoadNewJob(arunfile, cbrunfile, &job);
 if (!erc)
 {
 xprintf("Successfully loaded as job %d\r\n", job);
 CheckScreen();
 Sleep(50);
 }
 else
 {
 xprintf("ERROR %d Loading job\r\n", erc);
 CheckScreen();
 Sleep(50);
 job = 0;
 erc = 0;
 }
 }
 }
 else fdone = 1;
 }
 CloseFile(fh);

 /* if the last successfully loaded job was a cli,
 assign the keyboard and video to it.
 */

 if ((job > 2) && (fcli))
 {
 SetVidOwner(job);
 erc = Request("KEYBOARD", 4, GP1Exch, &GP1Hndl, 0,
 0, 0, 0, 0, job, 0, 0);
 if (!erc)
 erc = WaitMsg(GP1Exch, GP1Msg);
 }
 }
 else
 {
 xprintf("INITIAL.JOB file not found in system directory.\r\n");
 CheckScreen();
 }
}

/***
 This Loads the MMURTL Command Line Interpreter
 and switches video and keyboard to give the
 user access to it.
***/

static long LoadCLI(void)
{
long erc, job;
unsigned char sdisk, acli[40];

 GetSystemDisk(&sdisk);
 sdisk &= 0x7F;
 sdisk += 0x41; /* 0=A, 1=B, 2=C etc. */

MMURTL V1.0 Page 158 of 667

 acli[0] = sdisk;
 CopyData(":\\MMSYS\\CLI.RUN\0", &acli[1], 16);
 xprintf("Loading: %s...", acli);

 erc = LoadNewJob(acli, strlen(acli), &job);
 if (!erc)
 {
 xprintf("New CLI Job Number is: %d\r\n", job);
 CheckScreen();
 Sleep(50);
 SetVidOwner(job);
 erc = Request("KEYBOARD", 4, GP1Exch, &GP1Hndl, 0,
 0, 0, 0, 0, job, 0, 0);
 if (!erc)
 erc = WaitMsg(GP1Exch, GP1Msg);
 }
return erc;
}

/***
 This is the main procedure called from the OS after
 all OS structures and memory are initialized.
***/

void Monitor(void)
{
long erc, i, j, k, iCol, iLine;
unsigned long ccode, ccode1;
unsigned char c;
char text[70];

InitScreen();

Tone(250,15); /* 250 Hz for 150ms */
Tone(1000,33); /* 250 Hz for 330ms */

/* Allocate an exchange for the Manager task global keycode */

erc = AllocExch(&MngrExch);
if (erc)
 xprintf("AllocExch (Mngr Exch) Error: %d\r\n", erc);

erc = SpawnTask(&StatTask, 24, 0, &StatStack[255], 1); /* Task 4 */
if (erc)
 xprintf("SpawnTask (StatTask) Error: %d\r\n", erc);

erc = AllocExch(&KillExch);
if (erc)
 xprintf("AllocExch (Kill Exch) Error: %d\r\n", erc);

Color = YELLOW|BGBLACK;
xprintf("MMURTL (tm) - Message based, MUltitasking, Real-Time kerneL\r\n");
xprintf("Copyright (c) R.A.Burgess, 1991-1995 ALL RIGHTS RESERVED\r\n\r\n");

Color = WHITE|BGBLACK;

c = ((BootDrive & 0x7f) + 0x41);

MMURTL V1.0 Page 159 of 667

xprintf("BootDrive: %c\r\n", c);

i = (oMemMax+1)/1024;
xprintf("Total memory (Kb): %d\r\n", i);

erc = QueryPages(&nMemPages);
i = (nMemPages*4096)/1024;
xprintf("Free memory (Kb): %d\r\n", i);

erc = InitKBDService();
xprintf("Init KBD Service Error: %d\r\n", erc);

erc = coms_setup();
xprintf("Init Serial Comms Device Driver Error: %d\r\n", erc);

erc = lpt_setup();
xprintf("Init Parallel LPT Device Driver Error: %d\r\n", erc);

/* Allocate general purpose exchanges to use in the monitor */

erc = AllocExch(&GPExch);
if (erc)
 xprintf("AllocExch Error: %d\r\n", erc);

erc = AllocExch(&GP1Exch);
if (erc)
 xprintf("AllocExch GP1 Error: %d\r\n", erc);

xprintf("Init floppy device driver... Error: ");
erc = fdisk_setup();
xprintf("%d\r\n", erc);

xprintf("Init hard disk device driver... Error: ");
erc = hdisk_setup();
xprintf("%d\r\n", erc);

xprintf("Initializing file system...\r\n");
erc = InitFS();
xprintf("File System... Error: %d\r\n", erc);

/* Spawn manager task */

SpawnTask(&MngrTask, 10, 0, &MngrStack[255], 1);

/*
 Call LoadJobFile to read job file from system directory
 and execute and jobs listed there.
*/

LoadJobFile();

for (;;) /* Loop forEVER looking for user desires */
{

 /* Make a ReadKbd Key Request with KBD service. Tell it
 to wait for a key.
 */

MMURTL V1.0 Page 160 of 667

 erc = Request("KEYBOARD", 1, GPExch, &GPHndl, 0, &ccode,
 4, 0, 0, 1, 0, 0);
 if (erc)
 xprintf("Kbd Svc Request KERNEL ERROR: %d\r\n", erc);

 /* wait for the keycode to come back */

 erc = WaitMsg(GPExch, GPMsg);
 if (erc)
 xprintf("KERNEL Error from Wait msg: %d\r\n", erc);

 c = ccode & 0xff; /* lop off everything but the key value */

 switch (c)
 {
 case 0x0F: /* F1 Run */
 erc = LoadCLI();
 if (erc)
 xprintf("Error from LoadCLI: %d\r\n", erc);
 break;
 case 0x10: /* F2 Jobs */
 InitScreen();
 j = 2; /* Line */
 k = 0; /* Col offset */
 for (i=1; i<nMaxJCBs; i++)
 {
 if (j > 20)
 k = 40;
 erc = GetpJCB(i, &pJCB); /* erc = 0 if valid JCB */
 if (!erc)
 {
 SetXY(k,j);
 xprintf("Job: %d\r\n", pJCB->JobNum);
 SetXY(k+10,j);
 CopyData(&pJCB->sbJobName[1], text, 13);
 text[pJCB->sbJobName[0]] = 0;
 xprintf("Name: %s\r\n", text);
 j++;
 }
 }
 break;
 case 0x11: /* F3 Stats - loops displaying status till key is hit */
 InitScreen();
 while (erc = ReadKbd(&ccode1, 0))
 { /* ReadKbd no wait until no error */
 SetXY(0,1);
 erc = QueryPages(&nMemPages);
 xprintf("Any key to dismiss status... \r\n");
 xprintf("Free 4K memory pages: %d\r\n", nMemPages);
 xprintf("Task switches total: %d\r\n", nSwitches);
 xprintf("Preemptive task switches: %d\r\n", nSlices);
 xprintf("CPU idle ticks (no work): %d\r\n", nHalts);
 xprintf("Tasks Ready to Run: %d\r\n", nReady);
 xprintf("Free Task State Segments: %d\r\n", nTSSLeft);
 xprintf("Free Job Control Blocks: %d\r\n", nJCBLeft);
 xprintf("Free Request Blocks: %d\r\n", nRQBLeft);

MMURTL V1.0 Page 161 of 667

 xprintf("Free Link Blocks: %d\r\n", nLBLeft);
 xprintf("Free Exchanges: %d\r\n", nEXCHLeft);
 SetXY(0,1);
 PutVidChars(29, 1, "|", 1, GREEN|BGBLACK); Sleep(9);
 PutVidChars(29, 1, "/", 1, GREEN|BGBLACK); Sleep(9);
 PutVidChars(29, 1, "-", 1, GREEN|BGBLACK); Sleep(12);
 PutVidChars(29, 1, "\\", 1, GREEN|BGBLACK); Sleep(9);
 PutVidChars(29, 1, "|", 1, GREEN|BGBLACK); Sleep(9);
 PutVidChars(29, 1, "/", 1, GREEN|BGBLACK); Sleep(9);
 PutVidChars(29, 1, "-", 1, GREEN|BGBLACK); Sleep(12);
 PutVidChars(29, 1, "\\", 1, GREEN|BGBLACK); Sleep(9);
 PutVidChars(29, 1, " ", 1, GREEN|BGBLACK);
 }
 SetXY(0,12);
 xprintf ("\r\n");
 break;
 case 0x16: /* F8 Reboot */
 xprintf("\r\nF8 again to reboot, any other key to cancel");
 erc = ReadKbd(&ccode1, 1);
 if ((ccode1 & 0xff) == 0x16)
 Reboot();
 xprintf("...Cancelled\r\n");
 break;
 case 0x18: /* F10 Debug */
 GoDebug();
 break;
 case 0x00: /* No Key */
 Sleep(3); /* Sleep for 30 ms */
 break;
 case 0x12: /* F4 - future use */
 case 0x13: /* F5 */
 case 0x14: /* F6 */
 case 0x15: /* F7 */
 case 0x17: /* F9 */
 case 0x19: /* F11 */
 case 0x1A: /* F12 */
 break;
 default:
 if (((c > 0x1F) && (c < 0x80)) ||
 (c==0x0D) || (c==8))
 {
 if (c==0x0D)
 TTYOut (CRLF, 2, WHITE|BGBLACK);
 else
 TTYOut (&c, 1, WHITE|BGBLACK);
 }
 }
 GetXY(&iCol, &iLine);
 if (iLine >= 23)
 {
 ScrollVid(0,1,80,23,1);
 SetXY(0,22);
 }
} /* for EVER */
}

MMURTL V1.0 Page 162 of 667

Chapter 12, Debugger

Introduction

The debugger is built into the operating system. It is not a separate run file. The debugger
provides the following functions:

• Display of instructions (disassembled)
• Dumping of linear memory as Bytes or dwords
• Display of Exchanges, and messages or tasks waiting
• Display of active tasks
• Set and Clear an instruction breakpoint
• Full register display
• Selection of Linear Address to display
• Display of important OS structure addresses

Using the Debugger

In it’s current incarnation, the debugger is an assembly language, non-symbolic debugger.
Intimate knowledge of the Intel processor instruction set is required to properly use the
debugger.

Entering the Debugger

The Debugger may be entered using the Debugger function key in the monitor, the Debug
command in the command-line interpreter, or by placing and INT 03 instruction anywhere in
your application's assembly language file. See “Debugger Theory” section for more information
on INT 03 instruction usage.
The debugger may also start on its own if certain exceptions occur. Some exceptions are
designed to take you directly into the debugger and display an error code to indicate the problem.
The most common exceptions are the General Protection Fault (0D hex) and the Page Fault (0E
hex). When this occurs, the debugger is entered, and a red banner is displayed, along with the
exception number that caused it. The registers can be examined to see where it happened, and
why. This usually provides enough information to correct the offending code.

Exiting the Debugger

Pressing the Esc key will exit the debugger and begin execution at the next instruction.

If the debugger was entered on a fault, pressing Esc will restart the debugger at the offending
address and you will re-enter the debugger again. See “Debugger Theory” for more information.

MMURTL V1.0 Page 163 of 667

The debugger will also exit using the Single Step command (F1 function key), and will be re-
entered immediately following the execution of the next complete instruction.

Debugger Display

The debugger display is divided into 3 sections. The complete general register set is displayed
along the right side of the screen, function keys are across the bottom, and the left side is the
instruction and data display area.

Certain debugger display functions, such as dumping data, will clear the screen for display. The
registers and function keys will be redisplayed when the function is finished.

Debugger Function Keys

Each of the debugger function key actions are described below:

• F1 SStep - Single Step. This returns to the application and executes one instruction, after
which it immediately returns to the debugger where the next active code address and its
associated instruction are displayed.

• F2 SetBP - Set Breakpoint. This sets the breakpoint at the currently displayed instruction.
You may move down through the instructions, without executing them, with the down
arrow key. You may also use F8 CrntAdd (Current Address) to select a new address to
display before setting the breakpoint.

• F3 ClrBP - Clear Breakpoint. This clears the single breakpoint.
• F4 CS:EIP - Goto CS:EIP. This redisplays the current instruction pointer address. This

becomes the active address.
• F5 Exch - Display Exchanges. This displays all exchanges and shows messages or tasks

that may be waiting there. Only exchanges that actually have a message or task will be
displayed.

• F6 Tasks - Display Tasks. This displays all active tasks on the system. The task number,
the associated Job number, the address of the task’s JCB, the address of the TSS, and the
priority of the task are displayed with each one.

• F8 CrntAdd - Change Current Address. This allows you to set the code address the
debugger is displaying (disassembling). This does not change the address that is
scheduled for execution. The F4 CS:EIP function key can be used to return to the next
address scheduled for execution.

• F9 DumpB - Dump Bytes. This requests a linear address, and then dumps the bytes
located at that address. The address is displayed on the left, and all the data as well as the
ASCII is shown to the right. The format is the same as the dump command in the CLI.

• F10 - Dump Dwords. This requests a linear address, and then dumps the dwords located
at the that address. The address is displayed on the left, and all the data as well as the
ASCII is show to the right. Each byte of a dword is displayed is in the proper order (High

MMURTL V1.0 Page 164 of 667

order, next, next, low order). This is useful for dumping structures that are dword
oriented, as most of them are.

• F12 AddInfo - Address Information. This lists names and linear addresses of important
structures used during OS development. These structures can also be very useful during
program debugging. These values are hard coded at system build. The abbreviations are
given in the following list, with the name of the structure and what use it may be during
debugging.

IDT - Interrupt Descriptor Table. This can be dumped to view interrupt vector types and
addresses. This may be useful if you have set up an interrupt and you want to ensure it
was encoded properly and placed in the table.

GDT - Global Descriptor Table. This can be dumped to view all of the GDT entries. The
GDT contains many items, some of which include the TSS descriptor entries for you
program. TSS descriptors point to your task state segment and also indicate the privilege
level of the task.

RQBs - Request Block Array. This is the address of the first request block in the array of
request blocks allocated during system initialization. The request handle that you receive
from the request primitive is actually a pointer, a linear address, that will be somewhere
in this array.

TSS1 - First TSS. The first two task state segments are static structures and are used for
the operating system Monitor and debugger. This is the address of the Monitor TSS. The
Debugger TSS is 512 bytes after this address.

TSS3 - Dynamic TSSs. The rest of the task state segments are in several pages of
allocated memory and are initialized during system startup. TSSs are numbered
sequentially, which makes the first of the dynamic TSSs number 3. Each TSS is 512
bytes.

LBs - Link Blocks. These are 16-byte structures used as links in chains of messages and
tasks waiting at an exchange. The array of link blocks are allocated as a static array.

RdyQ - Ready Queue. This is the address of the 32 queue structures where tasks that are
ready to run are queued.

JCBs - Job Control Blocks. This the address of the array of Job Control Blocks. This is
an array of 512-byte structures. The JCB is discussed in detail in Chapter 9, “Application
Programming.”

SVCs - Services Array. - This is the address of the array of currently registered services.
The names of the services and the exchanges they service are contained here.
Exch - Exchanges. This is the address of the array of exchanges in allocated memory.
When you receive an exchange number form the AllocExch() function, it is the index of
that exchange in the array. Each exchange is 16 bytes.

MMURTL V1.0 Page 165 of 667

aTmr - Timer Blocks. This is the address of the array of timer blocks. The Sleep() and
Alarm() functions each set up a timer block.

Debugging Your Application

If your application is "going south" on you (crashing, locking up, entering the debugger, or
whatever), you can set breakpoints in several locations of your program by editing the .ASM
files, listed in your ATF file. You would insert the INT 03 instruction wherever you feel would
be useful.

In some cases, just knowing how far your program made it is enough to solve the problem. You
can start by searching for _main in your primary assembly language file generated by the C
compiler, or for .START in an assembly language program, and placing an INT 03 instruction
there.

It may help you to be able to identify high-level entry and exit code sequences (begin and end of
a C function), and also how local variables are accessed.
The following example shows typical entry and exit code found in a high-level procedure.

PUSH EBP
MOV EBP, ESP
; Lots of code here
MOV ESP, EBP
POP EBP
RETN

When local variables are accessed they are always referenced below the frame pointer in
memory. A single 4-byte integer is referenced as [EBP-4] or [EBP+FFFFFFFC],and displayed as
an unsigned number.

Stack parameters (arguments) are always referenced above the frame pointer, such as [EBP+12].
With near calls like you would make inside your program, the last parameter is always [EBP+8].

There is a symbolic debugger in MMURTL’s near future, but for right now, its down and dirty
troubleshooting.

Debugger Theory

The Intel 32-bit processors have very powerful debugging features. They have internal debug
registers that allow you to set code and data breakpoints. What this means is that you can set the
processor to execute an interrupt, actually a trap, whenever any linear memory location is
accessed, or at the beginning of any instruction.

MMURTL V1.0 Page 166 of 667

The INT 03 instruction may also be placed in your code, like the older processors, without
having to fill in special registers. There are four debug address registers in the processor, which
means you can have four active breakpoints in your program if you only use the registers. The
MMURTL debugger currently only uses one of these registers and allows only instruction
breakpoints to be set.

The INT 03 interrupt is just like any other on the system. When it occurs, entry 3 in the interrupt
table is used to vector to a procedure or task. In MMURTL, it is an interrupt procedure that will
switch to the debugger task after some fix-ups have been completed.

Debugging in a multitasking operating system is complicated to say the least. The 386/486
processors makes it much easier because they let you determine if the breakpoint is local to a
single task or global to all tasks. Remember that several tasks may be executing exactly the
same piece of code. If you set a breakpoint using the INT 03 instruction, every task that executes
it will produce the interrupt and enter the debugger. For applications, this really doesn’t apply as
much because they each have their own linear address space. The paging hardware translates the
linear address to a physical address for its own use.

MMURTL’s debugger is set up as a separate job. It has its own Job Control Block (JCB) and one
task (its own TSS). The debugger is the highest priority task on the system (level 1). No other
task operates at a priority that high. The debugger also has its own virtual screen, just like
applications do.

When writing an operating system, the debugger becomes one of the most important tools you
can have. If you have problems before the debugger is initialized, it can mean hours of grueling
debugging with very little indication of what’s going on, usually a blank screen and nothing else.

Even though the debugger has its own JCB and looks like another application, it has special
privileges that allow to it to operate outside of the direct control of the kernel. It can remove the
currently running task and make itself run, and do the reverse without the kernel even begin
aware of what has happened. The debugger must be able to do this to get its job done.

When the debug interrupt activates, you initially enter an interrupt procedure that places the
running task in a hold status. Hold status simply means that it is not placed on the ready queue
as if it were a normal task switch. Instead, the current pRunTSS, a pointer to the currently
running TSS, is saved by the debugger, and the interrupt procedure does a task switch to the
debugger’s task. The debugger becomes the active job. This effectively replaces the running task
with the debugger task.

A few housekeeping chores must be done before the task switch is made. These include copying
the interrupted task’s Page Directory Entry into the debugger’s JCB and the debugger’s TSS. This
is so the debugger is using the tasks exact linear memory image. If you are going to debug a task,
you must be able to access all of its memory, including allocated memory.

MMURTL V1.0 Page 167 of 667

The debugger cannot debug itself. It’s actually an orphan when it comes to being a program in
its own right. It doesn’t have its own Page Directory or Page Tables like other jobs (programs).
It almost, but not quite, becomes a task in the job it interrupted.

The INT 03 interrupt is not the only way to enter MMURTL’s debugger. MMURTL’s debugger
is also entered when other fatal processor exceptions occur. If you look through the 386/486
documentation, you will see that there are many interrupts, called exceptions, or faults, that can
occur. Some of these are used by the OS to indicate something needs to be done, while others
should not happen and are considered fatal for the task that caused them. Until MMURTL uses
demand page virtual memory, a page fault is fatal to a task. It means it tried to access memory
that didn’t belong to it. The exceptions that cause entry into the debugger include Faults, Traps,
and Aborts (processor fatal) and are shown in table 12.1.

Table 12.1.Processor exceptions.

No Type Description
0* F Divide by zero
1 T/F Debug Exception (debugger uses for single step)
3 T Breakpoint (set by debugger, or INT 03 in code)
4 T Overflow (INT0 instruction)
5* F Bounds Check (from Bound Instruction)
6* F Invalid Opcodes (reserved instructions)
7* F Coprocessor Not available (on ESC and wait)
8* A Double fault (real bad news...)
9
10* F Invalid TSS
11* F Segment Not Present
12* F Stack Fault
13* F/T General Protection Fault
14* F Page Fault
16 F Coprocessor error

(*) The asterisk indicates that the return address points to faulting instruction. This return address is used by the
debugger entry code.

Some of the exceptions even place an error code on the stack after the return address. MMURTL
has a very small interrupt procedure for each of these exceptions. These procedures get the
information off the stack before switching to the debugger. The debugger uses this information
to help you find the problem. When the debugger is entered, it displays the registers from the
interrupted task. To do this, it uses the values in the task’s Task State Segment (TSS). All of the
values are just the way they were when the exception occurred except the CS and EIP. These
contain the address of the exception handler. To fix this so that you see the proper address of the
code that was interrupted, we must get the return address from the stack and place it back into
the TSS. This also has the effect of starting the task back at the instruction after it was
interrupted which is the next instruction to execute. This makes the debugger transparent, which

MMURTL V1.0 Page 168 of 667

is exactly what you want. This also allows you to restart the application after a breakpoint at the
proper place.

If the debugger was entered because of a fault, you should kill the offending job and restart,
setting a breakpoint before the exception occurs, then single step while watching the registers to
see where the problem is.

The debugger exit code is just about the reverse of the code used to enter the debugger. The
debugger removes himself as the running task and returns the interrupted task to the running
state with the values in the TSS. This also includes switching the video back to the rightful
owner.

While you are in the debugger, all of the registers from the task that was interrupted are
displayed, along with any error that may have been removed from the stack on a fault.

MMURTL V1.0 Page 169 of 667

Chapter 13, Keyboard Service

Introduction

The keyboard is handled with a system service. As described in chapter 10, “system
programming,” system services are accessed with the Request primitive. It is a service because it
is a shared resource just like the file system. Several programs can have outstanding requests to
the keyboard service at one time. Only one program (job) will be assigned to receive keystrokes
at any one time. The exception to this rule is the Global Keyboard request to receive CTRL-ALT
keystrokes.

The Service Name is KEYBOARD (uppercase as always). Each of the functions is identified by
its Service Code number. Here is an example of a Keyboard Service request:

erc = Request(
 "KEYBOARD", /* Service Name */
 1, /* wSvcCode for ReadKbd */
 MyExch, /* dRespExch */
 &MyRqhandle, /* pRqHndlRet */
 0, /* npSend (no Send Ptrs) */
 &KeyCode /* pData1 */
 4, /* cbData1 (size of KeyCode)*/
 0 /* pData2 - not used (0) */
 0, /* Not used (0) */
 1, /* dData0 - fWait for Key */
 0, /* dData1 - Not used (0) */
 0); /* dData2 - Not used (0) */

All message-based services use the same request interface. Using the Request interface allows
for asynchronous program operation. You can make a request then go do something else before
you return to wait or to check the function to see if it's completed (yes boys and girls, this is true
multitasking).

If you don't need asynchronous keyboard access, the public call ReadKbd() is provided which is
a blocking call with only 2 parameters. It's easier to use, but not as powerful. I’ll describe it after
I discuss the following services.

MMURTL V1.0 Page 170 of 667

Available Services

Table 13.1 shows the services provided by the service code.

Service Code Function

1 Read Keyboard
2 Notify On Global Keys
3 Cancel Notify on Global Keys
4 Assign Keyboard

Table 13.1.Available Keyboard Services

The four functions are described in the following section.

Read Keyboard

The Read Keyboard function (1) allows a program to request keyboard input from the service.
The first request pointer points to an unsigned dword where the key code will be returned. The
key codes are described in detail in tables later in this chapter. The dData0 determines if the
service will hold the request until a key is available. A value of 0 means the request will be sent
back to you immediately, even if a key is not available. The error from the service is
ErcNoKeyAvailable (700) if no key was available. The key code is undefined if this occurs (so
you must check the error). A value of 1 in dData0 will cause the service to hold your request
until a key is available. In this case, the error should be 0.

Request Parameters for Read Keyboard:

 wSvcCode = 1
 npSend = 0
 pData1 = Ptr where the KeyCode will be returned
 dcbData1 = 4 - Count of bytes in the code
 pData2 = 0 - Not used
 dcbData2 = 0 - Not used.
 dData0 = fWaitForKey (0 or 1)
 0 - Return with error if no key waiting
 1 - Wait for Key
 dData1 = 0 - Not used
 dData2 = 0 - Not used

MMURTL V1.0 Page 171 of 667

Notify On Global Keys

The Notify On Global Keys function (2) allows a program to look for any keystroke that was
entered with the CTRL and ALT keys depressed. This allows for "hot-key" operation.

Unlike regular keystrokes, keys that are pressed when the CTRL-ALT keys are depressed are not
buffered. This means that users of the Read Keyboard function (1) will not see these keys. It also
means that your application must have an outstanding Notify request with the keyboard service
to receive these keys. If you have an outstanding Notify request, and you no longer want to
receive Global key notifications, you should send a Cancel Notify request (service code 3). The
Global key codes returned are identical to the regular key codes, described in detail later.

Parameters for Notify On Global Keys function:

 wSvcCode = 2
 npSend = 0
 pData1 = Ptr where the KeyCode will be returned
 dcbData1 = 4 - Count of bytes in the code
 pData2 = 0 - Not used
 dcbData2 = 0 - Not used
 dData0 = 0 - Not used
 dData1 = 0 - Not used
 dData2 = 0 - Not used

Cancel Notify On Global Keys

The Cancel Notify On Global Keys function (3) cancels an outstanding Notify On Global keys
request. If you have an outstanding Notify request, this cancels it. The Notify request will be sent
back to the exchange with an error stating it was canceled. The Cancel Notify request will be
returned also. This cancels all outstanding Notify requests from the same job number for your
application.

Parameters for Notify On Global Keys function:

 wSvcCode = 3
 npSend = 0
 pData1 = 0 - Not used
 dcbData1 = 0 - Not used
 pData2 = 0 - Not used
 dcbData2 = 0 - Not used
 dData0 = 0 - Not used
 dData1 = 0 - Not used
 dData2 = 0 - Not used

MMURTL V1.0 Page 172 of 667

Assign Keyboard

The Assign Keyboard Request assigns a new job to receive keys from the service. This request
should only be used by services such as the Monitor or a program that manages multiple jobs
running under the MMURTL OS.

Parameters for Assign Keyboard request:

wSvcCode = 3
npSend = 0
pData1 = 0 - Not used
dcbData1 = 0 - Not used
pData2 = 0 - Not used
dcbData2 = 0 - Not used
dData0 = x - New Job Number (1 to nJobs)
dData1 = 0 - Not used
dData2 = 0 - Not used

Key codes and Status

MMURTL supports the standard AT 101-key advanced keyboard. All ASCII text and
punctuation is supported directly, while providing complete keyboard status to allow further
translation for all ASCII control codes.

Alpha-Numeric Key Values

The Key code returned by the keyboard service is a 32-bit (4 byte) value. The low-order byte is
the actual key code, as shown in table 13.4.

To eliminate all the key status from the 4-byte key code to get the keystroke value itself,
logically AND the key code by 0FFh (0xff in C). This will leave you with the 8-bit code for the
key. The key will be properly shifted according to the state of the Shift and Lock keys.

The upper 3 bytes provide the status of special keys (Shifts, Locks, etc.). The second byte
provides the shift state which is six bits for Shift, Alt & Ctrl, shown in table 13.2. The third byte
is for lock states (3 bits for Caps, Num, and Scroll), as shown in table 13.3. The high-order byte
is for the Numeric Pad indicator and is described later.

(D) Shift State Byte (Second Byte)
If you need to know the shift state of any of the shift keys (Ctrl, Alt or Shift), you can use the
second byte in the 32-bit word returned. Table 13.2, shows how the bits are defined.

MMURTL V1.0 Page 173 of 667

Table 13.2 - .Shift State Bits

Bit Meaning When Set (1)

0 Left CTRL key down
1 Right CTRL key down
2 Left Shift key down
3 Right Shift key down
4 Left Alt key down
5 Right Alt key down
6 Not used (0)
7 Not used (0)

The following masks in assembly language can be used to determine if Control, Shift or Alt keys
were depressed for the key code being read:

CtrlDownMask EQU 00000011b
ShftDownMask EQU 00001100b
AltDownMask EQU 00110000b

Lock-State Byte (third byte)

If you need to know the lock state of any of the lock capable keys (Caps, Num or Scroll), you
can use the third byte in the 32-bit word returned. Table 13.3 shows how the bits are defined.

Table 13.3 - Lock State Bits

Bit Meaning When Set (1)

0 Scroll Lock On
1 Num Lock On
2 Caps Lock On
3 Not used (0)
4 Not used (0)
5 Not used (0)
6 Not used (0)
7 Not used (0)

The following masks in assembly language can be used to determine if one of the lock keys was
active for the key code being read.

CpLockMask EQU 00000100b

MMURTL V1.0 Page 174 of 667

NmLockMask EQU 00000010b
ScLockMask EQU 00000001b

Numeric Pad Indicator

Only one bit is used in the high-order byte of the key code. This bit (Bit 0, LSB) will be set if the
keystroke came from the numeric key pad. This is needed if you use certain keys from the
numeric pad differently than their equivalent keys on the main keyboard. For example, the Enter
key on the numeric keypad might do something differently in your program than the typewriter
Enter key.

Key Codes

Table 13.4 shows the hexadecimal value provided in the low-order byte of the key code (least
significant) by the keyboard service for each key on a 101-key keyboard. The Shift Code column
shows the value returned if the Shift key is active. The Caps Lock key does not affect the keys
shown with an asterisk (*) in the Shift Code column. A description is given only if required.

If a shift code is not shown, the same value is provided in all shifted states (Shift, Ctrl, Alt, or
Locks). All codes are 7-bit values (1 to 127 - 1h to 7Fh). Zero and values above 127 will not be
returned.

Table 13.4 - .Keys Values

Base Key Desc. KeyCode Shifted

Key
Shift
Code

Desc

Esc Escape 1Bh
1 31h ! 21h Exclamation
2 32h @ 40h At
3 33h # 23h pound
4 34h $ 24h dollar
5 35h % 25h percent
6 36h ^ 5Fh carat
7 37h & 26h ampersand
8 38h * 2Ah asterisk
9 39h (28h open paren
0 30h) 29h close paren
- minus 2Dh _ 5Fh underscore
= equal 3Dh + 2Bh
BS backspace 08h
HT tab 09h
a 61h A 41h
b 62h B 42h
c 63h C 43h

MMURTL V1.0 Page 175 of 667

d 64h D 44h
e 65h E 45h
f 66h F 46h
g 67h G 47h
h 68h H 48h
I 69h I 49h
j 6Ah J 4Ah
k 6Bh K 4Bh
l 6Ch L 4Ch
m 6Dh M 4Dh
n 6Eh N 4Eh
o 6Fh O 4Fh
p 70h P 50h
q 71h Q 51h
r 72h R 52h
s 73h S 53h
t 74h T 54h
u 75h U 55h
v 76h V 56h
w 77h W 57h
x 78h X 58h
y 79h Y 59h
z 7Ah Z 5Ah
[5Bh { 7Bh open brace
\ 5Ch | 7Ch vert. bar
] 5Dh } 7Dh close brace
‘ accent 60h ~ 7Eh tilde
CR Enter ODh
; semicolon 3Bh : 3Ah colon
’ apostr. 27h " 22h quote
, comma 2Ch < 3Ch less
. period 2Eh > 3Eh greater
/ slash 2Fh ? 3Fh question
Space 20h

Function Strip Key Codes

Shift and Lock states do not affect the function key values. Shift and Lock state bytes must be
used to determine program functionality. Table 13.5 shows the key code value returned.

MMURTL V1.0 Page 176 of 667

Table 13.5 - Function Key Strip Codes

Base Key KeyCode

F1 0Fh
F2 10h
F3 11h
F4 12h
F5 13h
F6 14h
F7 15h
F8 16h
F9 17h
F10 18h
F11 19h
F12 1Ah

Numeric Pad Key Codes

The Shift values shown in Table 13.6 are returned when the shift keys or Num Lock are active.
Caps lock does not affect these keys.

Table 13.6 - Numeric Pad Key Codes

Base Key KeyCode Shift Code Shifted key

End 0Bh 31h 1
Down 02h 32h 2
Pg Dn 0Ch 33h 3
Left 03h 34h 4
Blank Key 1Fh 35h 5 (Extra Code)
Right 04h 36h 6
Home 06h 37h 7
Up 01h 38h 8
Pg Up 05h 39h 9
Insert 0Eh 30h 0
Delete 7Fh 2Eh . (Period)
- Dash 2Dh
* Asterisk 2Ah
/ Slash 2Fh
+ Plus 2Bh
CR Enter 0Dh

MMURTL V1.0 Page 177 of 667

Cursor, Edit, and Special Pad Key Codes

None of the keys in these additional key pads are affected by Shift or Lock states. The values
returned as the key code are shown in table 13.7.

13.7.Additional Key Codes

Base Key KeyCode

Print Screen 1Ch
Pause 1Dh
Insert 0Eh
Delete 7Fh
Home 06h
End 0Bh
Pg Up 05h
Pg Dn 0Ch
Up 01h
Down 02h
Left 03h
Right 04h

Your Keyboard Implementation

You may not want all of the functionality in your system that I provided, or you may want more,
such as international key translations. The keyboard translation tables could be used to
nationalize this system, if you desire.

You may also want the keyboard more deeply embedded in your operating system code. Chapter
25,”Keyboard Code,” contains the source code behind the system service described in this
chapter. Pieces of it may be useful for your system.

I also recommend that you concentrate on the documentation for your keyboard implementation,
as I have tried to do in this chapter. Remember, when all else fails, the programmer will read the
documentation.

MMURTL V1.0 Page 178 of 667

Chapter 14, The File System Service

Introduction

The file system included with MMURTL is compatible with the MS-DOS FAT (File Allocation
Table) file system. This means that MMURTL can read and write MS-DOS disks (Hard and
Floppy). This was done so MMURTL could be used without reformatting your hard disks or
working from floppies. It certainly wasn’t done because I liked the design or the filename length
limitations. MS-DOS has the unenviable task of being compatible with its previous versions.
This ties its hands so to speak. There are better file systems (disk formats) in use, but none as
wide spread.

The internal management of a file system is no trivial matter. Because you are simply accessing
one that was designed by someone else, there isn’t anything new about the format, just how we
access it. I have tried to keep with the simplicity motto, and limited the number of functions to
what is necessary for decent operation. The Service Name is "FILESYS ".

File Specifications

A filename consists of one to eight characters, a period, then up to three more characters. For
example, filename.txt

A full file specification for the FAT-compatible file system consist of a drive letter identifier
followed by a colon, then the path – which is each directory separated by the backslash character
- and finally the filename itself. For example:

C:\Dir1\Dir2\Dir3\Filename.txt

Network File Request Routing

File system requests are routed based on the full file specification. A filename that is prefixed
with a node name, and optionally, a network name, will be routed to the service with the same
name.
A full network file specification consists of three parts:

1. The first part is the Network name enclosed in brackets []
2. The second part is the Node name on that network enclosed in braces { }.
3. The third part is the filename as described above. A complete network filename looks

like this:

[network]{Node}C:\Dir1\Dir2\Filename.txt

MMURTL V1.0 Page 179 of 667

If the network name is omitted from the specification, and a node name is specified, the default
name NETWORK is used.

The network name matches the name of the network service when it was installed, hence the
default system service name for a network routing service is network. This also means that
network names are limited to eight characters. Even though service names must be capitalized
and space padded, this is not necessary with Network names because the file system fixes them.

When a network file is opened, the network service receives the request from the file system.
The file handle that is returned will be unique on the system that originated the request.

The filename across a network may not be limited to the MS-DOS file naming conventions
described above. This depends on the type of file system on the node being accessed.

File Handles

When a file is opened, in any mode or type, a number called a file handle is returned to you.
Make no assumptions about this number. The file handle is used in a all subsequent file
operations on that file. This number is how you refer to that file until closed. A file handle is a
32-bit unsigned number (dword).

File Open Modes

A file may be opened for reading and writing, or just reading alone. These two modes are called
modify(Read and Write) and read(Read-only).

Only a single user may open a file in Modify mode. This user is granted exclusive access to the
file while it is open.

Multiple users may open and access a Read-mode file. When a file is opened in Read mode, it
may not be opened in Modify mode by any user.

File Access Type

A file may be opened in Block or Stream mode.

Block Mode

Block mode operation is the fastest file access method because no internal buffering is required.
The data is moved in whole blocks in the fastest means determined by the device driver. No
internal file buffers are allocated by the file system in Block mode. The only restriction is that

MMURTL V1.0 Page 180 of 667

whole blocks must be read or written. The standard block size is 512 bytes for disk devices.
Block mode operation allows use of the following file system functions:

ReadBlock()
WriteBlock()
CloseFile()
GetFileSize()
SetFileSize()
DeleteFile()

Stream Mode

In Stream mode, the file system allocates an internal buffer to use for all read and write
operations. This is a one page, 4096 byte buffer. Stream mode operation allows use of the
following file system functions:

CloseFile()
ReadBytes()
WriteBytes()
SetFileLFA()
GetFileLFA()
GetFileSize()
SetFileSize()
DeleteFile()

Errors will be returned from any function not compatible with the file-access type you specified
when the file was opened.

Logical File Address

All files are logically stored as 1-n Bytes. The Logical File Address (LFA) is an unsigned dword
(dLFA). This is the byte offset in the file to read or write from. LFA 0 is the beginning of the
file. The file size minus 1 is the last logical byte in the file.
Block Access file system functions require to you specify a Logical File Address (LFA). Block
access files have no internal buffers and do not maintain a current LFA, or file pointer.

Stream Access files have internal buffers and maintain your Current LFA. This is called a file
pointer in some systems. For Stream files, you do not specify an LFA to read or write from. The
current LFA for stream files is updated with each ReadBytes() and WriteBytes() function.
Additional functions are provided to allow you to find and set the current LFA. When a file is
initially open for Stream access the file pointer is set to 0, no matter what Mode the file was
opened in.

MMURTL V1.0 Page 181 of 667

File System Requests

The file system is a message-based system service. This means it can be accessed directly with
the Request primitive. The procedural interface for Request has 12 parameters. The file system is
an ideal candidate for a message-based service. It meets all the requirements. The small amount
of time for message routing will not make any measurable difference in the speed of it’s
operation because most of the time is spent accessing hardware. It also provides the shared
access required for a true multitasking system. The file system actually runs as a separate task.

Listing 14.1 is an example of a File System request in the C programming language.

Listing 14.1 - Openfile request in C

dError = Request(
 "FILESYS ", /* ptr to name of service */
 1, /* wSvcCode -- 1 for OpenFile */
 MyExch, /* dRespExch -- respond here */
 &MyRqhandle, /* pRqHndlRet -- may be needed */
 1, /* nSendPtrs -- 1 Send ptr */
 &"AnyFile.doc", /* pData1 -- ptr to name */
 11, /* cbData1 -- size of name */
 &FileHandle /* pData2 -- returned handle */
 4, /* cbData2 -- Size of a handle */
 1, /* dData0 -- ModeRead */
 0, /* dData1 -- Block Type Access */
 0); /* dData2 -- not used */

Unused Request parameters must be set to 0.

All message-based services use the same request-based interface. Using the Request interface
allows for asynchronous program operation. You can make a request, then go do something else
before you come back to wait or check the function to see if it’s completed (true multitasking).
Each of the functions is identified by its Service Code number. Table 14.1 shows the service
codes the file system supports.

Table 14.1 - File System Service Codes

Function Service Code

OpenFile 1
CloseFile 2
ReadBlock 3
WriteBlock 4
ReadBytes 5

MMURTL V1.0 Page 182 of 667

WriteBytes 6
GetFileLFA 7
SetFileLFA 8
GetFileSize 9
SetFileSize 10
CreateFile 11
RenameFile 12
DeleteFile 13
CreateDirectory 14
DeleteDirectory 15
GetDirectorySector 16

Procedural Interfaces

If you don’t have a need for asynchronous disk access, you can use a blocking procedural
interface which is included in the file system itself. The procedural interface actually makes the
request for you using your TSS Exchange. The request is transparent to the caller. It is easier to
use because it has less parameters. This means there is a simple procedural interface call for
each file system function. The blocking procedural interface is described with each of the call
descriptions that follow later in this chapter.

Device Access Through the File System

Teletype fashion stream access to the NUL, VID and KBD devices may be accessed through the
file system, but only through the procedural interfaces. The Request interface will not allow
device access. High-level language libraries that implement device access (such as putchar() in
C) must use the procedural interfaces for file access.

All system device names are reserved and should not be used as filenames on the system. Table
14.2 lists the device names that are reserved and also the mode of stream access supported.

Table 14.2 - Device Stream Access

Device Description Access
NUL NULL device Write-Only
KBD Keyboard read-only
VID Video Write-Only
LPT1 Printer 1 None
LPT2 Printer 2 None
COM1 RS-232 1 None
COM2 RS-232 2 None
COM3 RS-232 3 None
COM4 RS-232 4 None

MMURTL V1.0 Page 183 of 667

FD0 Floppy Disk None
FD1 Floppy Disk None
HD0 Hard disk None
HD1 Hard disk None

Device access is currently implemented for NUL, KBD and VID devices only.

File System Functions in Detail

The following pages detail each of the file system functions that are available.

OpenFile

Procedural interface:

OpenFile (pName, dcbname, dOpenMode, dAccessType, pdHandleRet): dError

OpenFile() opens an existing file in the current path for Block or Stream operations. A full file
specification may be provided to override the current job path.

Opening in ModeModify excludes all others from opening the file. Multiple users can open a file
in ModeRead. If a file is open in ModeRead, it can not be opened in ModeModify by any
other users.

Procedural parameters:

 pName - pointer to the filename or full file specification.
 dcbName - DWord with length of the filename
 dOpenMode - READ = 0, MODIFY = 1
 dAccessType - Block = 0, Stream = 1.
 pdHandleRet - pointer to a dword where the handle to the file will be
returned to you.

Request Parameters for OpenFile:

wSvcCode 1
nSend 1
pData1 pName
cbData1 dcbName
pData2 pdHandleRet
cbData2 4 (Size of a file handle)
dData0 dOpenMode
dData1 dAccessType
dData2 Not used (0)

MMURTL V1.0 Page 184 of 667

CloseFile

Procedural interface:

CloseFile (dHandle): dError

CloseFile() closes a file that was previously opened. If stream access type was specified, all
buffers are flushed and deallocated.

Procedural parameters:

 dHandle - a dword that was returned from OpenFile().

Request Parameters for CloseFile:

wSvcCode = 2
nSend = 0
pData1 = 0
cbData1 = 0
pData2 = 0
cbData2 = 0
dData0 = dHandle
dData1 = 0
dData2 = 0

ReadBlock

Procedural interface:

ReadBlock(dHandle, pDataRet, nBytes, dLFA, pdnBytesRet): dError

This reads one or more blocks from a file. The file must be opened for Block access or an error
occurs.

Procedural parameters:

 dhandle - DWord with a valid file handle (as returned from OpenFile.
 pDataRet - Pointer to a buffer large enough to hold the count of blocks you specify to read.
 nBytes - DWord with number of bytes to read. This must be a multiple of the block size for the
512-byte disk.
 dLFA - Logical File Address to read from. This MUST be a multiple of the block size.
 pdnBlkRet - pointer to a dword where the count of bytes successfully read will be returned.
This will always be a multiple of the block size (n * 512).

Request parameters for ReadBlock:

wSvcCode = 3

MMURTL V1.0 Page 185 of 667

nSend = 0
pData1 = pDataRet
cbData1 = nBytes (multiple of 512)
pData2 = pdnBytesRet
cbData2 = 4 (size of dnBytesRet)
dData0 = dHandle
dData1 = 0
dData2 = 0

WriteBlock

Procedural interface:

WriteBlock(dHandle, pData, nBytes, dLFA, pdnBytesRet): dError

This writes one or more blocks to a file. The file must be opened for Block access in Modify
mode or an error occurs. Writing beyond the current file length is not allowed. SetFileSize()
must be used to extend the file length if you intend to write beyond the current file size. See the
SetFilesize() section.

Procedural parameters:

 dHandle - DWord with a valid file handle as returned from OpenFile.
 pData - Pointer to the data to write
 nBytes - DWord with number of bytes to write. This must always be a multiple of 512. One
Block = 512 bytes.
 dLFA - Logical File Address to write to. This must be a multiple of the block size.
 pdnBytesRet - pointer to a dword where the number of bytes successfully written will be
returned. This will always return a multiple of 512.
Request parameters for ReadBlock:

wSvcCode = 4
nSend = 1
pData1 = pData
cbData1 = nBytes (512 = 1 Block)
pData2 = pdnBytesRet
cbData2 = 4 (size of dnBytesRet)
dData0 = dHandle
dData1 = 0
dData2 = 0

ReadBytes

Procedural interface:

ReadBytes(dHandle, pDataRet, nBytes, pdnBytesRet): dError

MMURTL V1.0 Page 186 of 667

This reads one or more bytes from a file. The file must be opened for Stream access or an error
occurs. The bytes are read from the current LFA. The LFA is updated to the next byte address
following the data you read. Use SetFileLFA() to move the stream file pointer if you want to
read from an LFA other than the current LFA. GetFileLFA may be used to find the current LFA.

Parameters:

 dhandle - Dword with a valid file handle (as returned from OpenFile).
 pDataRet - Pointer to a buffer large enough to hold the count of bytes you specify to read.
 nBytes - Dword with number of bytes to read.
 pdnBytesRet - pointer to a Dword where the number of bytes successfully read will be
returned.

Request Parameters for ReadBytes:

wSvcCode = 5
nSend = 0
pData1 = pDataRet
cbData1 = nBytes
pData2 = pdnBytesRet
cbData2 = 4 (size of dnBytesRet)
dData0 = dHandle
dData1 = 0
dData2 = 0

WriteBytes

Procedural interface:

WriteBytes(dHandle, pData, nBytes, pdnBytesRet): dError

This writes one or more bytes to a file. The file must be opened for stream access in Modify
mode or an error occurs. The bytes are written beginning at the current LFA. The LFA is
updated to the next byte address following the data you wrote. The file length is extended
automatically if you write past the current End Of File. Use SetFileLFA() to move the stream
file pointer if you want to read from an LFA other than the current LFA. GetFileLFA() may be
used to find the current LFA.

Procedural parameters:

 dHandle - Dword with a valid file handle (as returned from OpenFile).
 pData - Pointer to the data to write.
 nBytes - Dword with number of bytes to write.
 pdnBytesRet - pointer to a Dword where the number of bytes successfully written will be
returned.
Request parameters for ReadBytes:

MMURTL V1.0 Page 187 of 667

wSvcCode = 6
nSend = 1
pData1 = pData
cbData1 = nBytes
pData2 = pdnBytesRet
cbData2 = 4 (size of dnBytesRet)
dData0 = dHandle
dData1 = 0
dData2 = 0

GetFileLFA

Procedural Interface:

GetFileLFA(dHandle, pdLFARet): dError

This gets the current LFA for files with stream mode access. An error occurs if the file is opened
for Block access.

Procedural parameters:

 dHandle - Dword with a valid file handle, as returned from OpenFile
 pdLFARet - a pointer to a Dword where the current LFA will be returned.

Request parameters for GetFileLFA:

wSvcCode = 7
nSend = 0
pData1 = pdLFARet
cbData1 = 4
pData2 = 0
cbData2 = 0
dData0 = dHandle
dData1 = 0
dData2 = 0

SetFileLFA

Procedural interface:

SetFileLFA(dHandle, dLFA): dError

This sets the current LFA (file pointer) for Stream Access files. An error occurs if the file is
opened for Block access. The file LFA can not be set past the End Of File (EOF). The file will
be set to EOF if you specify 0FFFFFFFF hex (-1 for a signed long value in C).

Procedural parameters:

MMURTL V1.0 Page 188 of 667

 dhandle - Dword with a valid file handle, as returned from OpenFile()
 dLFA - a Dword with the LFA you want to set. 0FFFFFFFF hex will set the current LFA to
End Of File.

Request parameters for SetFileLFA:

wSvcCode = 8
nSend = 0
pData1 = 0
cbData1 = 0
pData2 = 0
cbData2 = 0
dData0 = dHandle
dData1 = dLFA
dData2 = 0

GetFileSize

Procedural interface:

GetFileSize(dHandle, pdSizeRet): dError

This gets the current file size for files opened in any access mode.
Procedural parameters:

 dhandle - Dword with a valid file handle, as returned from OpenFile()
 pdSizeRet - a pointer to a Dword where the current size of the file will be returned.

Request parameters for GetFileLFA:

wSvcCode = 9
nSend = 0
pData1 = pdSizeRet
cbData1 = 4
pData2 = 0
cbData2 = 0
dData0 = dHandle
dData1 = 0
dData2 = 0

SetFileSize

Procedural interface:

SetFileSize(dHandle, dSize): dError

This sets the current file size for Stream and Block Access files. The file length, and allocated
space on the disk, will be extended or truncated as necessary to accommodate the size you

MMURTL V1.0 Page 189 of 667

specify. The current LFA is not affected for Stream files unless it is now past the new EOF in
which case it is set to EOF automatically.

Procedural parameters:

 dHandle - Dword with a valid file handle, as returned from OpenFile()
 dSize - a Dword with the new size of the file.

Request Parameters for SetFileSize:

wSvcCode = 10
nSend = 0
pData1 = 0
cbData1 = 0
pData2 = 0
cbData2 = 0
dData0 = dHandle
dData1 = dSize
dData2 = 0

CreateFile

Procedural interface:

CreateFile (pName, dcbName, dAttributes): dError

This creates a new, empty file in the path specified. The file is closed after creation, and ready to
be opened and accessed.

Procedural parameters:

 pName - pointer to the filename or full file specification to create.
 dcbName - Dword with length of the filename
 dAttributes - A Dword with one of the following values:
 0 = Normal File
 2 = Hidden File
 4 = System File
 6 = Hidden, System file

Request parameters for CreateFile:

wSvcCode = 11
nSend = 1
pData1 = pName
cbData1 = dcbName
pData2 = 0
cbData2 = 0
dData0 = dAttributes
dData1 = 0

MMURTL V1.0 Page 190 of 667

dData2 = 0

RenameFile

Procedural interface:

RenameFile (pName, dcbname, pNewName dcbNewName): dError

This renames a file. The file must not be opened by anyone in any mode.
Procedural parameters:

 pName - pointer to the current filename or full file specification.
 dcbName - Dword with length of the current filename
 pNewName - pointer to the new filename or full file specification.
 dcbNewName - Dword with length of the new filename

Request parameters for RenameFile:

wSvcCode = 12
nSend = 1
pData1 = pName
cbData1 = dcbName
pData2 = pNewname
cbData2 = dcbNewname
dData0 = 0
dData1 = 0
dData2 = 0

DeleteFile

Procedural interface:

DeleteFile (dHandle): dError

This deletes a file from the system. No further access is possible, and the filename is available
for re-use. The file must be opened in Modify mode (which grants exclusive access).

Procedural parameters:

 dHandle - Dword that was returned from OpenFile.
Request parameters for DeleteFile:

wSvcCode = 13
nSend = 0
pData1 = 0
cbData1 = 0
pData2 = 0
cbData2 = 0
dData0 = dHandle

MMURTL V1.0 Page 191 of 667

dData1 = 0
dData2 = 0

CreateDirectory

Procedural interface:

CreateDirectory (pPath, dcbPath): dError

This creates a new, empty directory for the path specified. The path must contain the new
directory name as the last element. This means all subdirectories above the last directory
specified must already exist. If only the new directory name is specified, as opposed to a full
path, the directory is created in your current path, specified in the Job Control Block.

Procedural parameters:

 pPath - pointer to the path (directory name) to create.
 dcbPath - Dword with length of the path

Request parameters for CreateDirectory:

wSvcCode = 14
nSend = 1
pData1 = pPath
cbData1 = dcbPath
pData2 = 0
cbData2 = 0
dData0 = 0
dData1 = 0
dData2 = 0

DeleteDirectory

Procedural interface:

DeleteDirectory (pPath, dcbPath, fAllFiles): dError

This deletes a directory for the path specified. The path must contain the directory name as the
last element. If only the existing directory name is specified, as opposed to a full path, the name
is appended to the path from your job control block. All files and sub-directories will be deleted
if fAllFiles is non-zero.

Procedural parameters:

 pPath - pointer to the path, or directory name to delete.
 dcbPath - Dword with length of the path

MMURTL V1.0 Page 192 of 667

 fAllFiles - If set to non-zero, all files in this directory, all subdirectories, and files in
subdirectories will be deleted.

Request parameters for DeleteDirectory:

wSvcCode = 15
nSend = 1
pData1 = pPath
cbData1 = dcbPath
pData2 = 0
cbData2 = 0
dData0 = 0
dData1 = 0
dData2 = 0

GetDirSector

Procedural Interface:

GetDirSector (pPath, dcbPath, pSectRet, dSectNum): dError

Directories on the disk are one or more sectors in size. Each sector contain 16 directory entries.
This call returns one sector from a directory.

You specify which logical directory sector you want to read (from 0 to nTotalSectors-1). The
directory must exist in the path specified. If no path is specified, the path in your JCB will be
used.

A single directory entry looks like this with 16 per sector:

Name 8 Bytes
Ext 3 Bytes
Attribute 1 Byte
Reserved 10 Bytes
Time 2 Bytes
Date 2 Bytes
StartClstr 2 Bytes
FileSize 4 Bytes

The fields are read and used exactly as MS-DOS uses them.

Procedural parameters:

 pPath - pointer to the path, or directory name, to read tj sector from
 dcbPath - Dword with length of the path
 pSectRet - a pointer to a 512-byte block where the directory sector will be returned
 dSectNum - a Dword with the logical sector number to return

MMURTL V1.0 Page 193 of 667

Request parameters for GetDirSector:

wSvcCode = 16
nSend = 1
pData1 = pPath
cbData1 = dcbPath
pData2 = pSectRet
cbData2 = 512
dData0 = dSectNum
dData1 = 0
dData2 = 0

File System Theory

Understanding a bit more about how the file system is managed may help you make better use of
it.

Internal File System Structures

The file system has several internal structures it uses to manage the logical disks and open files.
Some structures are dynamically allocated, while others are part of the operating system data
segment.

File Control Blocks

All file system implementations have some structure that is used to manage an open file. Quite a
few of them use this same name, FCB.
The file system allocates file system structures dynamically when it is initialized. The
maximum number of open files is currently limited to 128 files by this initial allocation.

The file system starts with an initial 4Kb (one memory page) of FCBs. Each FCB is 128 bytes.
Each opened file is allocated an FCB. If the file is opened in Stream mode, you allocate a one
page buffer(4Kb) for reading and writing.

The FCB actually contains a copy of the 32-byte directory entry from the disk. This is read into
the FCB when the file is opened.

File User Blocks

Because this is a multitasking operating system, the FCB is not directly associated with the job
that opened the file. Another structure called the File User Block (FUB), is what links the user of
a file to the FCB. There is one FUB for each instance of a user with an open file.

The FUBs contain the file pointer, the open mode, buffer pointers, and other things that are
required to manage the user’s link to the file. The file handle is actually a pointer to the FUB.

MMURTL V1.0 Page 194 of 667

Because it is a pointer, extra checking is done to ensure it is valid in every call. A bad pointer
could do some real damage here if you let it.

The FCB keeps track of the number of FUBs for the file. When it reaches 0, the FCB is
deallocated for re-use.

FAT Buffers

In the FAT file system, the location of every cluster of 1 or more sectors of a file is managed in a
linked list of sorts. This linked list is contained in a table called the File Allocation Table. A
more accurate name would be cluster allocation table because its actually allocating clusters of
disk space to the files, it’s not allocating files.

The disk is allocated in clusters, with each cluster having an associated entry in the FAT. On
most hard disks, they use what is called a FAT16. This means each FAT entry is a 16-bit word.
The beginning of the FAT represents the beginning of the usable data area on the logical disk.

Lets look at an example of how you use the FAT to locate all parts of file on the disk. In this
example, you’ll assume that each FAT entry is worth 4Kb on disk, which is cluster size, and we’ll
assume the file size is 12Kb, or three entries.

Assume the directory entry you read says the first FAT entry is number 4. X = not your file. L =
Last entry in your file.

FAT Position 1 2 3 4 5 6 7 8 9 10
Entry in FAT X X X 5 6 L

This means our file occupies the fourth, fifth and sixth cluster in the data area on the disk. The
fourth entry points to the fifth, the fifth points to the sixth, and the sixth is marked as the last.
Ever get lost clusters when you ran a Chkdsk in MS-DOS? Who hasn’t? It usually means it
found some clusters pointing to other clusters that don’t end, or it found a beginning cluster with
no corresponding directory entry pointing to it.

From this example you can see that every file we access will require a minimum of two disk
accesses to read the file, unless the piece of the FAT you need is already in memory.

This means it’s important to attempt to keep as much FAT information in memory as you can and
manage it wisely. If your disk isn’t too badly fragmented and you are sequentially reading all of
a file into memory (such as loading an executable file), you can usually do it quite rapidly. Just
1Kb of FAT space represents 2Mb of data space on the disk if clusters are 4Kb. A badly
fragmented disk can force as many as four or five accesses to different parts of the FAT just to
read one file.

The disk controller (IDE/MFM) can read 256 contiguous sectors in one read operation. That’s
128Kb. That’s a lot of FAT (or file). However, because of the design of the FAT file system, the
actual contiguous read will usually be limited to the size of a cluster.

MMURTL V1.0 Page 195 of 667

A great number of files are read and written sequentially. Run files being executed, source files
for compilers, the initial filling of buffers for a word processor (and the final save usually),
vector, and raster image files. The list could go on and on. Large database files are the major
random users, and only a good level-4 mind reader knows where, inside of a 400 Mb file, the
user will strike next.

MMURTL’s DOS FAT file system allocates a 1Kb FAT buffer based on file access patterns. A
simple LRU (least recently used) algorithm ensures the most accessed FAT sectors will remain
in memory.

File Operations

Reading a file is a multipart process. Let’s look what the file system has to go through to open,
read and close a file:

1. Look through the FCBs to see if someone already has it open in ModeRead. If so,
allocate an FUB and attach it. If it’s open in ModeWrite, return an error ErcFileInUse.

2. Locate the directory entry and read it into the FCB. Directories are stored as files. This
means that you have to go to the FAT to find where the whole directory is stored so you
can look through it. This is in itself is time-consuming.

3. Load FAT buffer if required. The first cluster of the file is listed in the directory entry.
From this, you calculate which disk sector in the FAT has this entry, and you read it into
the FAT buffer if it is not already in one. The file is open.

Read

What actually happens on a read depends on whether the file is opened in Block or Stream mode.
If opened in Block mode, you simply issue the read to the device driver to read the sectors into
the caller’s buffer (locating them using the FAT). The hardware is limited to 128Kb reads in one
shot, and can only do this if 128Kb of the file is located in contiguous sectors. Usually, the
commands to the device driver will be broken up into several smaller reads as the file system
finds each contiguous section listed in the FAT.

Write

Writing to a file is a little more complicated, and depends on how the file was opened. If opened
in block mode, you issue the write command to the device driver to write out the sectors as
indicated by the user. It sounds simple, but much overhead is involved. If the sectors have
already been allocated in the FAT, you simply write over the existing data while you follow the
cluster chain. If the file is being extended, you must find unallocated clusters, attach them to the
chain, then write the data. On many disks there are also two copies of the FAT for integrity
purposes. Both copies must be updated.

MMURTL V1.0 Page 196 of 667

Close

This is the easy part. You flush buffers to disk if necessary for Write Mode. Then we deallocate
the FUB and FCB.

MMURTL V1.0 Page 197 of 667

Chapter 15, API Specification

 Introduction

This section describes all operating system public calls. They are listed by functional group first;
then an alphabetical list provides details for each call and possibly an example of its use.

If you are going to write your own operating system, you’ll find the documentation to be almost
30 percent of the work – and it’s a very important part of the entire system, I might add. An
improperly, or poorly described function call can cause serious agony and hair loss in a
programmer.

Function calls that are provided by system services (accessed with Request and Respond
interface) are described in detail in the chapters of the book that apply to that service (e.g.,
Chapter 14, “File System Service”).

Public Calls

Public Calls are those accessible through a call gate and can be reached from "outside" programs.
 They are defined as far and require a 48-bit call address. The call address consists of a selector
and an offset. The selector is the call gate entry in the Global Descriptor Table (GDT), while the
offset is ignored by the 386/486 processor. The offset should be 0. The descriptor for the call
gate defines the actual address called and the number of dwords of stack parameters to be passed
to the operating system call.

Parameters to Calls (Args)

All stack parameters are described by their names. The prefixes indicate the size and type of the
data that is expected. Table 15.1 lists the prefixes.

Table 15.1 - Size and Type Prefixes

Prefix Description
b Byte (1 byte unsigned)
w Word (2 bytes unsigned)
d Double Word (dword - 4 bytes unsigned)
 d is the default when b or w is not present.
ib Integer Byte (1 Byte signed)
iw Integer Word (2 bytes signed)
id Integer DWord (4 bytes signed)
p Pointer (4 bytes - 32 bit near)

MMURTL V1.0 Page 198 of 667

Additional descriptive prefixes may be used to help describe the parameter. These are known as
compound descriptions. Table 15.2 lists these additional prefix characters.

Table 15.2 - Additional Prefixes

Prefix Description
a Array (of)
c Count (of)
s Size (of)
o Offset (into)
n Number (of)

Examples of compound prefixes are shown in table 15.3.

Table1 5.3 - Compound Prefixes

Prefix Description
pab Pointer to an array of bytes
pad Pointer to an array of Double words
pdcb Pointer to a DWord that is a count of bytes
pib Pointer to a signed byte
pb pointer to a byte
cb DWord that contains a count of bytes

(defaults to size d if not preceded by other)
n DWord than is a number of something
ppd Pointer to a Pointer that points to a Double word

Descriptive suffixes may also be used to help describe some parameters. Ret means Returned,
Max means Maximum, and Min means Minimum.

Each compound set of prefixes - and optionally suffixes - accurately describes the provided or
expected data types. Combine these prefixes with variable or parameter names and you have a
complete description of the data. The following are examples of parameter names using prefixes
and suffixes.

dcbFileName - Dword that contains the Count of Bytes of a filename.
pdDataRet - a Pointer to a Dword where data is returned.
dcbDataRetMax - Dword with the maximum count of bytes that can, or should be, be returned.

Stack Conventions

MMURTL keeps a dword (4 Byte) aligned stack. It is processor (hardware) enforced. Bytes and
words (8- or 16-bit values) are pushed as dwords automatically. The caller need not worry about
whether the upper part of a dword on the stack is cleared or set when a value is pushed because

MMURTL V1.0 Page 199 of 667

MMURTL will only use as much of it as is defined by the call. If a parameter is a byte,
MMURTL procedures will only get the byte from the stack while the upper three bytes of the
dword are ignored. MMURTL high-level languages follow this convention. This information is
provided for the assembly language programmers.

Calls Grouped by Functionality

The following is a list of all currently implemented operating system public calls, grouped by
type. The parameter (argument) names follow the naming convention described earlier. Many of
these calls will not be used by the applications programmer.

The operating-system calls are described in a generic fashion that does not directly correspond to
a particular programming language such as C, Pascal, or Assembler. The function name is
followed by the parameters, and finally, if a value is returned by the function, a colon with the
returned value. The dError, the most common returned value shown, indicates a dword error or
status code is returned from the function.

Messaging

Respond(dRqHndl, dStatRet): dError AllocExch(pdExchRet): dError
DeAllocExch(dExch): dError
SendMsg (dExch, dMsg1, dMsg2): dError
CheckMsg(dExch, pMsgsRet) : dError
ISendMsg (dExch, dMsg1, dMsg2): dError
WaitMsg(dExch,pqMsgRet):dError
Request(pSvcName, wSvcCode, dRespExch, pRqHndlRet, npSend, pData1, cbData1,
pData2, cbData2, dData0, dData1, dData2) : dError
MoveRequest(dRqBlkHndl, dDestExch) : dError

Job Management

Chain(pFileName, dcbFileName, dExitError):dError
ExitJob(dExitError): dError
LoadNewJob(pFileName, dcbFileName, pdJobNumRet):dError
GetpJCB(dJobNum, pJCBRet): dError
GetJobNum(pdJobNumRet):dError
SetJobName(pJobName, dcbJobName): dError
SetExitJob(pFileName, dcbFileName): dError
GetExitJob(pFileNameRet, pcbFileNameRet): dError
SetCmdLine(pCmdLine, dcbCmdLine): dError
GetCmdLine(pCmdLineRet, pdcbCmdLineRet): dError
SetPath(pPath, dcbPath): dError
GetPath(dJobNum, pPathRet, pdcbPathRet): dError
SetUserName(pUserName, dcbUserName): dError
GetUserName(pUserNameRet, pdcbUserNameRet): dError

MMURTL V1.0 Page 200 of 667

SetSysIn(pFileName, dcbFileName): dError
GetSysIn(pFileNameRet, pdcbFileNameRet): dError
SetSysOut(pFileName, dcbFileName): dError
GetSysOut(pFileNameRet, pdcbFileNameRet): dError

Task Management

NewTask(dJobNum, wCodeSeg, dPriority, dfDebug, dExch, dESP, dEIP): dError
SpawnTask(pEntry, dPriority, fDebug, pStack, fOSCode):dError
SetPriority(bPriority): dError
GetTSSExch(pdExchRet): dError

System Service & Device Driver Management

DeviceOp(dDevice, dOpNum, dLBA, dnBlocks, pData): dError
DeviceStat(dDevice, pStatRet, dStatusMax, dStatusRet):dError
DeviceInit(dDevice, pInitData, dInitData): dError
InitDevDr(dDevNum, pDCBs, nDevices, fReplace): dError
RegisterSvc(pSvcName, dExch): dError
UnRegisterSvc(pSvcName): dError

Memory Management

AllocPage(nPages, ppMemRet): dError
AllocDMAPage(nPages, ppMemRet, pdPhyMemRet): dError
AllocOSPage(nPages, ppMemRet): dError
DeAllocPage(pMem, dnPages): dError
AliasMem(pMem, dcbMem, dJobNum, ppAliasRet): dError
DeAliasMem(pAliasMem, dcbAliasBytes, JobNum): dError
GetPhyAdd(dJobNum, LinAdd, pPhyAddRet): dError
QueryPages(pdnPagesRet): dError

High Speed Data Movement

FillData(pDest, cBytes, bFill)
CompareNCS(pS1, pS2, dSize): returned offset or -1
Compare(pS1, pS2, dSize): returned offset or -1
CopyData(pSource, pDestination, dBytes)
CopyDataR(pSource, pDestination, dBytes)

Timer and Timing

Alarm(dExchRet, dTicks): dError
KillAlarm (dAlarmExch): dError
Sleep(nTicks): dError
MicroDelay (dn15us): dError

MMURTL V1.0 Page 201 of 667

GetCMOSTime(pdTimeRet): dError
GetCMOSDate(pdDateRet): dError
GetTimerTick(pdTickRet): dError

ISA Hardware Specific I/O

DmaSetUp(dPhyMem, sdMem, dChannel, fdRead, dMode): dError
GetDMACount(dChannel, pwCountRet): dError
InByte(dPort): Byte
InWord(dPort): Word
InDWord(dPort): DWord
InWords(dPort, pDataIn,dBytes)
OutByte(Byte, dPort)
OutWord(Word,dPort)
OutDWord(DWord, dPort)
OutWords(dPort, pDataOut, dBytes)
ReadCMOS(bAddress):Byte

Interrupt and Call Gate Management

AddCallGate: dError
AddIDTGate: dError
SetIRQVector(dIRQnum, pVector)
GetIRQVector (dIRQnum, pVectorRet): dError
MaskIRQ (dIRQnum): dError
UnMaskIQR (dIRQnum): dError
EndOfIRQ (dIRQnum)

Keyboard, Speaker, & Video

SetVidOwner(dJobNum): dError
GetVidOwner(pdJobNumRet): dError
GetNormVid(pdNormVidRet): dError
SetNormVid(dNormVidAttr): dError
Beep(): dError
ClrScr(): dError
GetXY(pdXRet, pdYRet): dError
SetXY(dNewX, dNewY): dError
PutVidChars(dCol, dLine, pbChars, nChars, dAttrib): dError
GetVidChar(dCol, ddLine, pbCharRet, pbAttrRet): dError
PutVidAttrs(dCol, dLine, nChars, dAttr): dError
ScrollVid(dULCol, dULline, nCols, nLines, dfUp): dError
ReadKbd (pdKeyCodeRet, dfWait): dError
Tone(dHz, dTicks10ms): dError
TTYOut (pTextOut, dTextOut, dAttrib): dError

MMURTL V1.0 Page 202 of 667

EditLine(pStr, dCrntLen, dMaxLen, pdLenRet,
 pbExitChar, dEditAttr): dError

Alphabetical Call Listing

The remaining sections of this chapter describe each of the operating system calls available to
programmers.

AddCallGate

AddCallGate: dError

AddCallGate() makes an entry in the Global Descriptor Table (GDT) for a publicly available
operating-system function. AddCallGate() is primarily for operating system use, but can be
used by experienced systems programmers.

This call doesn’t check to see if the GDT descriptor for the call is already defined. It assumes you
know what you are doing and overwrites the descriptor if it is already there. The selector number
is checked to make sure you’re in range (40h through maximum call gate number). Unlike most
other operating system calls, the parameters are not stack-based. They are passed in registers.
AddCallGate() can only be executed by code running at supervisor level (0).

Parameters:
AX - Word with Call Gate ID type as follows:
 DPL entry of 3 EC0x (most likely)
 DPL entry of 2 CC0x
 DPL entry of 1 AC0x
 DPL entry of 0 8C0x
 (x = count of dword parameters 0-F)
CX - Selector number for call gate in GDT (constants!)
ESI - Offset of entry point in segment of code to execute
EAX - Returns an error, or 0 if all went well.

AddIDTGate

AddIDTGate: dError

AddIDTGate() makes an entry in the Interrupt Descriptor Table for traps, exceptions, and
interrupts. AddIDTGate ()is primarily for operating system use, but can be used by experienced
systems programmers.

AddIDTGate() builds and adds an IDT entry for trap gates, exception gates and interrupt gates.
This call doesn’t check to see if the IDT descriptor for the call is already defined. It assumes you
know what you are doing and overwrites one if already defined. Unlike most other operating

MMURTL V1.0 Page 203 of 667

system calls, the parameters are not stack based. They are passed in registers. AddIDTGate()
can only be executed by code running at supervisor level (0).

The Selector of the call is Always 8 (operating-system code segment) for interrupt or trap, and is
the TSS descriptor number of the task for a task gate.

Parameters:
AX - Word with Gate ID type as follows:
 Trap Gate with DPL of 3 8F00h
 Interrupt Gate with DPL of 3 8E00h
 Task Gate with DPL of 3 8500h
BX - Selector of gate (08 or TSS selector for task gates)
CX - Word with Interrupt Number (00-FF)
ESI - Offset of entry point in operating system code to execute. This must be zero (0) for task
gates.
EAX Returns Error, else 0 if all went OK

Alarm

Alarm(dExchRet, dnTicks): dError
Alarm() is public routine that will send a message to an exchange after a specified period of 10-
millisecond increments has elapsed. Alarm() can be used for a number of things. One important
use would be a time-out function for device drivers that wait for interrupts but may never get
them due to hardware difficulties. Alarm() is similar to Sleep(), except it can be used
asynchronously. This means you can set an alarm, do some other processing, and then
"CheckMsg()" on the exchange to see if it has gone off. In fact, you can set it to send a message
to the same exchange you are expecting another message, then see which one gets their first by
simply waiting at the exchange. This would be for the time-out function described above.
Alarm() should not be called for extremely critical timing in applications. The overhead
included in entry, exit and messaging code makes the alarm delay timing a little more than 10
milliseconds and is not precisely calculable, even though it’s very close. The larger dnTicks is,
the more precise the timing. Alarm() is accomplished using the same timer blocks as Sleep(),
except you provide the exchange, and don’t get placed in a waiting condition. The message that
is sent is two dwords, each containing 0FFFFFFFF hex (-1).

Parameters:
 dnTicks - Dword with the number of 10 millisecond periods to wait before sending a message
the specified exchange.

AliasMem

AliasMem(pMem, dcbMem, dJobNum, ppAliasRet): dError

MMURTL V1.0 Page 204 of 667

AliasMem() provides an address conversion between application addresses. Each application has
its own linear address space. Even addresses of identical numeric values are not the same
addresses when shared between applications. This procedure is used by the operating system to
perform address conversions when passing data using the Request() and Respond() primitives.

Parameters:
 pMem - A pointer to the memory address from the other application’s space that needs to be
aliased.
 dcbMem - The count of bytes pMem is pointing to. You must not attempt to access more than
this number of bytes from the other application’s space. If you do, you will cause a fault and your
application will be terminated.
 dJobNum - Job number from the other application.
 ppAliasRet - A pointer to the pointer you want to use to access the other application’s memory.
(The address the aliased memory pointer you will use).

AllocDMAPage

AllocDMAPage(nPages, ppMemRet, pdPhyMemRet): dError
AllocDMAPage() allocates one or more pages of Memory and adds the entry(s) to the callers
page tables. Memory is guaranteed to be contiguous and will be within reach of the DMA
hardware. It will always begin on a page boundary. No cleanup is done on the caller’s memory
space. If the caller continuously allocates pages and then deallocates them this could lead to
fragmentation of the linear memory space. The allocation routine uses a first-fit algorithm.

Parameters:
 nPages - Dword (4 BYTES). This is the count of 4Kb pages to allocate.
 ppRet - a pointer to 4-byte area where the pointer to the memory is returned.
 pdPhyMemRet - a pointer to 4-byte area where the physical address of the memory is
returned. This pointer is only valid when used with the DMA hardware. Using it as a normal
pointer will surely cause horrible results.

AllocExch

AllocExch(pdExchRet): dError
The kernel Allocate Exchange primitive. This procedure allocates an exchange (message port)
for the job to use. Exchanges are required in order to use the operating system messaging system
(SendMsg, WaitMsg, etc.).

Parameters:
 pdExchRet is a pointer to the dword where the exchange number is returned.

MMURTL V1.0 Page 205 of 667

AllocOSPage

AllocOSPage(nPages, ppMemRet): dError
Allocate Operating System Page allocates one or more pages of memory and adds the entry(s) to
the operating system page tables. Memory is guaranteed to be contiguous and to always begin on
a page boundary. No cleanup is done on the caller’s memory space. If the caller continuously
allocates pages and then deallocates them this could lead to fragmentation of the linear memory
space. The allocation routine uses a first fit-algorithm.

Parameters:
 nPages - a dword (4-bytes). This is the count of 4Kb pages to allocate.
 ppRet - a pointer to 4-byte area where the pointer to the memory is returned.

AllocPage

AllocPage(nPages, ppMemRet): dError

Allocate Page allocates one or more pages of memory and adds the entry(s) to the callers page
tables in upper linear memory. Memory is guaranteed to be contiguous and will always begin on
a page boundary. No cleanup is done on the caller’s memory space. If the caller continuously
allocates pages and then deallocates them this could lead to fragmentation of the linear memory
space. The allocation routine uses a first fit algorithm.

Parameters:
 nPages - a dword (4-bytes). This is the count of 4Kb pages to allocate.
 ppRet - a pointer to 4-byte area where the pointer to the memory is returned.

Beep

Beep: dError
A Public routine that sounds a 250-millisecond tone at 800Hz.
Parameters: None

Chain

Chain(pFileName, dcbFileName, dExitError): dError

Chain() is called by applications and services to replace themselves with another application (as
specified by the filename). Chain()terminates all tasks belonging to the calling job and frees
system resources that will not be used in the new job. If chain cannot open the new job or the
new run file is corrupted, ErcBadRunFile, or similar errors, may be returned to the application
and the chain operation will be canceled. If the chain is too far along, and running the new

MMURTL V1.0 Page 206 of 667

application fails, the ExitJob, if the JCB contained a valid one, will be loaded and run. If
there is no exit job specified, the Job will be terminated as described in the ExitJob() call.

Parameters:
 pFilename - this points to the name of a valid executable run file.
 dcbRunFilename - A Dword containing the length of the run file name.
dExitError - A Dword containing an error code to place in the ErrorExit field of the JCB. The
chained application may or may not use this error value.

CheckMsg

CheckMsg(dExch, pMsgsRet) : dError

The kernel CheckMsg() primitive allows a Task to receive information from another task
without blocking the caller. In other words, if no message is available, Checkmsg() returns with
an error to the caller. If a message is available, the message is returned to the caller immediately.
 The caller is never placed on an exchange and the Task Ready Queue is not evaluated. This call
is used to check for non-specific messages and responses from services.

The first dwords value (dMsgHi) determines if it’s a non-specific message or a response from a
service. If the value is less than 80000000h (a positive-signed long in C) it is a response from a
service, otherwise it is a non-specific message that was sent to this exchange by SendMsg() or
IsendMsg(). If it was a response from a service, the second dword is the status code from the
service.

IMPORTANT: The value of the first dword is an agreed-upon convention. If you allocate an
exchange that is only used for messaging between two of your own tasks within the same job,
then the two dwords of the message can represent any two values you like, including pointers to
your own memory area. If you intend to use the exchange for both messages and responses to
requests, you should use the numbering convention. The operating system follows this
convention with the Alarm() function by sending 0FFFFFFFFh as the first and second dwords of
the message.

Parameters:
 dExch - is the exchange to check for a waiting message
 pMsgsRet - is a Pointer to two dwords in contiguous memory where the two dword messages
should be returned if a message is waiting at this exchange.
 dError - returns 0 if a message was waiting, and has been placed in qMsg, else ErcNoMsg is
returned.

MMURTL V1.0 Page 207 of 667

ClrScr

ClrScr()

This clears the virtual screen for the current Job. It may or may not be the one you are viewing
(active screen).
Parameters: None

Compare

Compare(pS1, pS2, dSize) : returned offset or -1
This is a high-speed string compare function using the Intel string instructions. This version is
ASCII case sensitive. It returns the offset of the first byte that doesn’t match between the pS1
and pS2, or it returns -1 (0xffffffff) if all bytes match out to dSize.
 pS1 and pS2 - Pointers to the data strings to compare.
 DSize - Number of bytes to compare in pS1 and pS2.

CompareNCS

CompareNCS(pS1, pS2, dSize) : returned offset or -1

This is a high-speed string compare function using the Intel string instructions. This version is
not case sensitive(NCS). It returns the offset of the first byte that doesn’t match between the pS1
and pS2, or it returns -1 (0xffffffff) if all bytes match (ignoring case) out to dSize.
 pS1 and pS2 - Pointers to the data strings to compare.
 DSize – Number of bytes to compare in pS1 and pS2.

CopyData

CopyData(pSource, pDestination, dBytes)

This is a high-speed string move function using the Intel string move intrinsic instructions. Data
is always moved as dwords if possible.

Parameters:
 pSource - Pointer to the data you want moved.
 pDestination - Pointer to where you want the data moved.
 dBytes - Count of bytes to move.

CopyDataR

CopyDataR(pSource, pDestination, dBytes)

MMURTL V1.0 Page 208 of 667

This is a high-speed string move function using the Intel string move intrinsic instructions. This
version should be called if the pSource and pDest address overlap. This moves the data from
the highest address down so as not to overwrite pSource.

Parameters:
 pSource - Pointer to the data you want moved.
 pDestination - Pointer to where you want the data moved.
 dBytes - Count of bytes to move.

DeAliasMem

DeAliasMem(pAliasMem, dcbAliasBytes, dJobNum): dError

This invalidates the an aliased pointer that you created using the AliasMem() call. This frees up
pages in your linear address space. You should use this call for each aliased pointer when you no
longer need them.

Parameters:
 pAliasMem - The linear address you want to dealias. This should be the same value that was
returned to you in the AliasMem() call.
 dcbAliasBytes - Size of the memory area to dealias. This must be the same value you used
when you made the AliasMem() call.
 dJobNum - This is the job number of the application who’s memory you had aliased. This
should be the same job number you provided for the AliasMem() call.

DeAllocExch

DeAllocExch(dExch): dError

DeAllocate Exchange releases the exchange back to the operating system for reuse. If tasks or
messages are waiting a the exchange they are released and returned as reusable system resources.

Parameters:
 dExch - the Exchange number that is being released.

DeAllocPage

DeAllocPage(pMem, dnPages) : dError

DeAllocate Page deletes the memory from the job’s page table. This call works for any memory,
OS and DMA included. Access to this memory after this call will cause a page fault and
terminate the job.

MMURTL V1.0 Page 209 of 667

Parameters:
 pMem - Pointer which should contain a valid memory address, rounded to a page boundary, for
previously allocated pages of memory.
 dnPages - Dword with the count of pages to deallocate. If dnPages is greater than the
existing span of pages allocated at this address an error is returned, but as many pages as can be,
will be deallocated. If fewer pages are specified, only that number will be deallocated.

DeviceInit

DeviceInit(dDevice, pInitData, dInitData) : dError

Some devices may require a call to initialize them before use, or to reset them after a catastrophe.
 An example of initialization would be a Comms port, for baud rate, parity, and so on. The size
of the initializing data and it’s contents are device-specific and are defined with the
documentation for the specific device driver.

Parameters:
 dDevice - Dword indicating device number
 pInitData - Pointer to device-specific data for initialization. This is documented for each
device driver.
 dInitData - Total number of bytes in the initialization data.

DeviceOp

DeviceOp(dDevice, dOpNum, dLBA, dnBlocks, pData): dError

The DeviceOp() function is used by services and programs to carry out normal operations such
as Read and Write on all installed devices. The dOpNum parameter tells the driver which
operation is to be performed. The first 256 operation numbers, out of over 4 billion, are pre-
defined or reserved. These reserved numbers correspond to standard device operations such as
read, write, verify, and format. Each device driver documents all device operation numbers it
supports.

All drivers must support dOpNum 0 (Null operation). It is used to verify the driver is installed.
Most drivers will implement dOpNums 2 and 3 (Read and Write). Disk devices (DASD - Direct
Access Storage Devices) will usually implement the first eight or more.

Parameters:
 dDevice - the device number
 dOpNum - identifies which operation to perform 0 Null operation
 1 Read (receive data from the device)
 2 Write (send data to the device)
 3 Verify (compare data on the device)

MMURTL V1.0 Page 210 of 667

 4 Format Block
 5 Format Track (disk devices only)
 6 Seek Block
 7 Seek Track (disk devices only)
 8-255 RESERVED
 256-n Driver Defined (driver specific)
 dLBA - Logical Block Address for I/O operation. For sequential devices this parameter will
usually be ignored. See the specific device driver documentation.
 dnBlocks - Number of continguous blocks for the operation specified. For sequential devices
this will probably be the number of bytes (e.g., COMMS). Block size is defined by the driver.
Standard Block size for disk devices is 512 bytes.
 pData - Pointer to data, or return buffer for reads, for specified operation

DeviceStat

DeviceStat(dDevice, pStatRet, dStatusMax, dStatusRet):dError

The DeviceStat() function returns device-specific status to the caller if needed. Not all devices
will return status on demand. In cases where the driver doesn’t, or can’t, return status,
ErcNoStatus will be returned. The status information will be in record or structure format that is
defined by the specific device driver documentation.

Parameters:
 dDevice - Device number to status
 pStatBuf - Pointer to buffer where status will be returned
 dStatusMax - This is the maximum number of bytes of status you will accept.
 pdStatusRet - Pointer to dword where the number of bytes of status returned to is reported.

DMASetUp

DMASetUp(dPhyMem, sdMem, dChannel, fdRead, dMode): dError

This is a routine used by device drivers to set up a DMA channel for a device read or write.
Typical use would be for a disk or comms device in which the driver would setup DMA for the
move, then setup the device, which controls DMA through the DREQ/DACK lines, to actually
control the data move.

Parameters:
 dPhyMem - is physical memory address. Device drivers can call the GetPhyAdd() routine to
convert linear addresses to physical memory addresses.
 sdMem - number of bytes to move
 dChannel - legal values are 0, 1, 2, 3, 5, 6, and 7. Channels 5, 6 and 7 are for 16-bit devices,
and though they move words, you must specify the length in bytes using sdMem.

MMURTL V1.0 Page 211 of 667

 fdRead - any non zero value sets DMA to read (Read is a read from memory which sends data
to a device).
 dMode - 0 is Demand Mode , 1 is Single Cycle mode (Disk I/O uses single cycle), 2 is Block
mode, and 3 is Cascade mode, which is for operating system use only.

EditLine

EditLine(pStr, dCrntLen, dMaxLen, pdLenRet, pbExitChar, dEditAttr): dError

This function displays a single line of text and allows it to be edited on screen. Display and
keyboard input are handled inside of EditLine(). The line must be on a single row of the display
with no character wrap across lines. The first character of the line is displayed at the current X
and Y cursor coordinates for the caller’s video screen.

Parameters:
 pStr - a pointer to the character string to be edited.
 dCrntLen - the current length of the string (80 Max.).
 dMaxlen - the maximum length of the string (80 Max.).
 pdLenRet - a pointer to a dword where the length of the string after editing will be returned.
PbExitCharRet - is a pointer to a Byte where the exit key from the edit operation is returned.
 dEditAttr - editing attribute.
The display and keyboard are handled entirely inside EditLine(). The following keys are
recognized and handled internally for editing features. Any other key causes EditLine() to exit,
returning the contents and length of the string in it’s current condition
 08 (Backspace) move cursor to left replacing char with 20h which is a destructive backspace
 Left-Arrow - Same as Backspace (destructive)
 20-7E Hex places character in current position and advances position
Special shift keys combination (CTRL and ALT) are not interpreted (CTRL-D = D, etc.).

EndOfIRQ

EndOfIRQ (dIRQnum)

This call is made by an interrupt service routine to signify it has completed servicing the
interrupt. End of Interrupt commands are sent to the proper PICU(s) for the caller.

Parameters:
 dIRQnum - the hardware interrupt request number for the IRQ that your ISR has finished
serving. For a description of hardware IRQs, see the call description for SetIRQVector().

ExitJob

ExitJob(dExitError): dError

MMURTL V1.0 Page 212 of 667

ExitJob() is called by applications and services to terminate all tasks belonging to the job, and to
free system resources. This is the normal method to terminate your application program. A high-
level language’s exit function would call ExitJob().

After freeing certain resources for the job, ExitJob() attempts to load the ExitJob() Run File as
specified in the SetExitJob() call. It is kept in the JCB. Applications can exit and replace
themselves with another program of their choosing, by calling SetExitJob(), and specifying the
Run filename, before calling ExitJob(). A Command Line Interpreter, or executive, which runs
your program from a command line would normally call SetExitJob(), specifying itself so it will
run again when your program is finished.

If no ExitJob is specified, ExitJob() errors out with ErcNoExitJob and frees up all resources
that were associated with that job, including, but not limited to, the JCB, TSSs, Exchanges, Link
Blocks, and communications channels. If this happens while video and keyboard are assigned to
this job, the video and keyboard are reassigned to the OS Monitor program.
Parameters:
dExitError - this is a dword that indicates the completion state of the application. The operating
system does not interpret, or act on this value, in any way except to place it in the Job Control
Block.

FillData

FillData(pDest, cBytes, bFill)

This is used to fill a block of memory with a repetitive byte value such as zeroing a block of
memory. This uses the Intel string intrinsic instructions.

Parameters:
 PDest - is a pointer to the block of memory to fill.
 Cbytes - is the size of the block.
 BFill - is the byte value to fill it with.

GetCmdLine

GetCmdLine(pCmdLineRet, pdcbCmdLineRet): dError

Each Job Control Block has a field to store the command Line that was set by the previous
application or command line interpreter. This field is not directly used or interpreted by the
operating system. This call retrieves the Command Line from the JCB. The complimentary call
SetCmdLine() is provided to set the Command Line. The CmdLine is preserved across
ExitJobs, and while Chaining to another application.

High-level language libraries may use this call to retrieve the command line and separate or
expand parameters (arguments) for the applications main function.

MMURTL V1.0 Page 213 of 667

Parameters:
 pabCmdLineRet - points to an array of bytes where the command line string will be returned.
 This array must be large enough to hold the largest CmdLine (79 characters).
 pdcbCmdLineRet - is a pointer to a dword where the length of the command line returned will
be stored.

GetCMOSTime

GetCMOSTime(pdTimeRet) : dError

This retrieves the time from the on-board CMOS battery backed up clock. The time is returned
from the CMOS clock as a dword as:
 Low order byte is the seconds (BCD),
 Next byte is the minutes (BCD),
 Next byte is the hours (BCD 24 hour),
 High order byte is 0.

Parameters:
 pdTimeRet - A pointer to a dword where the time is returned in the previously described
format.

GetCMOSDate

GetCMOSDate(pdDateRet): dError

This retrieves the date from the on-board CMOS battery backed up clock. The date is returned
from the CMOS clock as a dword defined as:
Low order byte is the Day of Week (BCD 0-6 0=Sunday),
Next byte is the Day (BCD 1-31),
Next byte is the Month (BCD 1-12),
High order byte is year (BCD 0-99).

Parameters:
 pdTimeRet - A pointer to a dword where the date is returned in the previously described
format.

GetDMACount

GetDMACount(dChannel, pwCountRet): dError

A routine used by device drivers to get the count of bytes for 8-bit channels, or words for 16-bit
DMA channels, left in the Count register for a specific DMA channel.

MMURTL V1.0 Page 214 of 667

Parameters:

 dChannel - legal values are 0, 1, 2, 3, 5, 6, and 7
 (Note: Channels 5, 6 and 7 are for 16-bit devices.)
 pwCountRet - This is the value found in the DMA count register for the channel specified.
Note that even though you specify bytes on 16-bit DMA channel to the DMASetUp call, the
count returned is always the exact value found in the count register for that channel. The values
in the DMA count registers are always programmed with one less than the count of the data to
move. Zero (0) indicates one word or byte. 15 indicates 16 words or bytes. If you program a 16-
bit DMA channel to move data from a device for 1024 words (2048 bytes) and you call
GetDMACount() which returns 1 to you, this means all but two words were moved.

GetExitJob

GetExitJob(pabExitJobRet, pdcbExitJobRet): dError

Each Job Control Block has a field to store the ExitJob filename. This field is used by the
operating system when an application exits, to see if there is another application to load in the
context of this job (JCB). Applications may use this call to see what the ExitJob filename. The
complimentary call SetExitJob() is provided. The ExitJob remains set until it is set again.
Calling SetExitJob() with a zero length value clears the exit job file name from the JCB.

Parameters:
 pabExitJobRet - points to an array of bytes where the ExitJob filename string will be
returned. This array must be large enough to hold the largest ExitJob filename (79 characters).
 pdcbExitJobRet - is a pointer to a dword where the length of the ExitJob filename returned
will be stored.

GetIRQVector

GetIRQVector (dIRQnum, pVectorRet): dError

The Get Interrupt Vector call returns the 32-bit offset address in operating system address space
for the ISR that is currently serving dIRQnum.
Parameters:
 dIRQnum - the hardware interrupt request number for the vector you want returned. For a
description of IRQs see the call description for SetIRQVector().
 pVectorRet - A pointer where the address of the ISR will be returned.

GetJobNum

GetJobNum(pdJobNumRet):dError

MMURTL V1.0 Page 215 of 667

This returns the job number for the task that called it. All tasks belong to a job.

Parameters:
 pbJobNumRet - a pointer to a dword where the job number is returned.

GetNormVid

GetNormVid(pdNormVidAttrRet): dError

Each Job is assigned a video screen, virtual or real. The normal video attributes used to display
characters on the screen can be different for each job. The default foreground color which is the
color of the characters themselves, and background colors may be changed by an application.
The normal video attributes are used with the ClrScr() call, and are also used by stream output
from high level language libraries. This returns the normal video attribute for the screen of the
caller. See SetNormVid() for more information.

Parameters:
 pdNormVidAttrRet - this points to a dword where the value of the normal video attribute will
be returned. The attribute value is always a byte but is returned as a dword for this, and some
other operating system video calls.
See Chapter 9, “Application Programming,” for a table containing values for video attributes.

GetPath

GetPath(dJobNum, pPathRet, pdcbPathRet): dError

Each Job Control Block has a field to store and application’s current path. The path is
interpreted and used by the File System. Refer to File System documentation. This call allows
applications and the file system to retrieve the current path string.

Parameters:
 dJobNum - this is the job number for the path string you want.
 pPathRet - this points to an array of bytes where the path will be returned. This string must be
long enough to contain the longest path (69 characters).
 pdcbPathRet - this points to a dword where the length of the path name returned is stored.

GetPhyAdd

GetPhyAdd(dJobNum, dLinAdd, pdPhyRet): dError

This returns a physical address for given Linear address. This is used by device drivers for DMA
operations on DSeg memory.

MMURTL V1.0 Page 216 of 667

Parameters:
 dJobNum - is the job number of owner of
 d LinAdd - is the Linear address you want the physical address for.
This is the address itself, not a pointer it.
 pdPhyRet - points to the dword where the physical address is returned

GetpJCB

GetpJCB(dJobNum, ppJCBRet): dError

This returns a pointer to the Job Control Block for the specified job number. Each job has a
structure to control and track present job resources and attributes. The data in a JCB is read-only
to applications and system services.

Parameters:
 dJobNum - this is the job number for the Job Control Block you want a pointer to.
 ppJCBRet - this is a pointer that points to a pointer where the pJCB will be returned.

GetSysIn

GetSysIn(pFileNameRet, pdcbFileNameRet): dError

This returns the name of the standard output file, or device, from the application’s Job Control
Block.

Parameters:
 pFileNameRet - Pointer to an array where the name will be returned. This array must be at
least 30 characters long.
 pdcbFileNameRet - Pointer to a dword where the length of the name will be returned.

GetSysOut

GetSysIn(pFileNameRet, pdcbFileNameRet): dError

This returns the name of the standard output file or device from the application’s Job Control
Block.

Parameters:
 pFileNameRet - Pointer to an array where the name will be returned. This array must be at
least 30 characters long.
 pdcbFileNameRet - Pointer to a dword where the length of the name will be returned.

MMURTL V1.0 Page 217 of 667

GetTimerTick

GetTimerTick(pdTickRet) : dError

This returns the operating system tick counter value. When MMURTL is first booted it begins
counting 10-millisecond intervals forever. This value will roll over every 16 months or so. It is
an unsigned dword.

Parameters:
 pdTickRet - A pointer to a dword where the current tick is returned.

GetTSSExch

GetTSSExch(pdExchRet): dError

This returns the exchange that belongs to the task as assigned by the operating system during
SpawnTask() or NewTask(). This exchange is used by some direct calls while blocking a
thread on entry to non-reentrant portions of the operating system. It can also be used by system
services or library code as an exchange for the request primitive for that task so long as no timer
functions will be used, such as Alarm() or Sleep().

Parameters:
 pdExchRet - a pointer to a dword where the TSS Exchange will be returned.

GetUserName

GetUserName(pUserNameRet, pdcbUserNameRet): dError

The Job Control Block for an application has a field to store the current user’s name of an
application. This field is not directly used or interpreted by the operating system. This call
retrieves the user name from the JCB. The complimentary call SetUserName() is provided to
set the user name. The name is preserved across ExitJobs, and while Chaining to another
application.

Parameters:
pabUsernameRet - points to an array of bytes where the user name will be returned.
 dcbUsername - is the length of the string to store.

GetVidChar

GetVidChar(dCol, ddLine, pbCharRet, pbAttrRet): dError

This returns a single character and its attribute byte from the caller’s video screen.

MMURTL V1.0 Page 218 of 667

Parameters:
 dCol - The column, or X position, of the character you want returned.
 dLine - The line location, or Y position, of the character you want returned.
 pbCharRet - a pointer to a byte where the character value will be returned.
 pbAttrRet - a pointer to a byte where the video attribute for the character is returned.

GetVidOwner

GetVidOwner(pdJobNumRet): dError

This returns the job number for the owner of the real video screen, the one you are viewing.

Parameters:
 pdJobNumRet - pointer to a dword where the current video owner will be returned.

GetXY

GetXY(pdXRet, pdYRet): dError

This returns the current X and Y position of the cursor in your virtual video screen.

Parameters:
 PdXRet - is a pointer where you want the current horizontal cursor position returned.
 PdYRet - is a pointer where you want the current vertical cursor position returned.

InByte

InByte(dPort) : Byte

This reads a single byte from a port address and returns it from the function.

Parameters:
 DPort - The address of the port.

InDWord

InDWord(dPort) : DWord

This reads a single dword from a port address, and returns it from the function.

Parameters:

MMURTL V1.0 Page 219 of 667

 DPort - The address of the port.

InWord

InWord(dPort) : Word

This reads a single word from a port address, and returns it from the function.

Parameters:
 DPort - The address of the port.

InWords

InWords(dPort, pDataIn, dBytes)

InWords reads one or more words from a port using the Intel string read function. The data is
read from dPort and returned to the address pDataIn. dBytes is the total count of bytes to read
(WORDS * 2). This call is specifically designed for device drivers.

Parameters:
 DPort - The address of the port.
 PDataIn - The address where the data string will be returned.
 DBytes - The total number of bytes to be read. This number is the number of words you want
to read from the port times two.

InitDevDr

InitDevDr(dDevNum, pDCBs, nDevices, fReplace) : dError

InitDevDr() is called from a device driver after it is first loaded to let the operating system
integrate it into the system. After the Device driver has been loaded it should allocate all system
resources it needs to operate and control it’s devices, while providing the three standard entry
points. A 64-byte DCB must be filled out for each device the driver controls before this call is
made.

When a driver controls more than one device it must provide the device control blocks for each
device. The DBCs must be contiguous in memory. If the driver is flagged as not reentrant, then
all devices controlled by the driver will be locked out when the driver is busy. This is because
one controller, such as a disk or SCSI controller, usually handles multiple devices through a
single set of hardware ports, and one DMA channel if applicable, and can’t handle more than one
active transfer at a time. If this is not the case, and the driver can handle two devices
simultaneously at different hardware ports, then it may be advantageous to make it two separate
drivers.

MMURTL V1.0 Page 220 of 667

See Chapter 10, “System Programming,” for more detailed information on writing device
drivers.

Parameters:
 dDevNum - This is the device number that the driver is controlling. If the driver controls more
than one device, this is the first number of the devices. This means the devices are numbered
consecutively.
 pDCBs - This is a pointer to the DCB for the device. If more than one device is controlled, this
is the pointer to the first in an array of DCBs for the devices. This means the second DCB would
be located at pDCBs + 64, the third at pDCBs + 128, etc.
 nDevices - This is the number of devices that the driver controls. It must equal the number of
contiguous DCBs that the driver has filled out before the InitDevDr() call is made.
 fReplace - If true, the driver will be substituted for the existing driver functions already in
place. This does not mean that the existing driver will be replaced in memory, it only means the
new driver will be called when the device is accessed. A driver must specify and control at least
as many devices as the original driver handled.

ISendMsg

ISendMsg (dExch, dMsgHi, dMsgLo): dError

This is the Interrupt Send primitive. This procedure provides access to the operating system to
allow an interrupt procedure to send information to another task via an exchange. This is the
same as SendMsg() except no task switch is performed and interrupts remain cleared. If a task
is waiting at the exchange, the message is associated with that task and it is moved to the Ready
Queue. It will get a chance to run the next time the RdyQ is evaluated by the Kernel. Interrupt
tasks can use ISendMsg ()to send single or multiple messages to exchanges during their
execution.

IMPORTANT: Interrupts are cleared on entry in ISendMsg() and will not be set on
exit. It is the responsibility of the caller to set them if desired. This procedure
should only be used by device drivers and interrupt service routine.

The message is two double words that must be pushed onto the stack independently. When
WaitMsg(), or CheckMsg() returns these to your intended receiver, it will be into an array of
dwords, unsigned long msg[2] in C. dMsgLo will be in the lowest array index (msg[0]), and
dMsgHi will be in the highest memory address (msg[1]).

Parameters:
 dExch - a dword (4 bytes) containing the exchange to where the message should be sent.
 dMsgHi - the upper dword of the message.
 dMsgLo - the lower dword of the message.

MMURTL V1.0 Page 221 of 667

KillAlarm

KillAlarm (dAlarmExch) : dError

A Public routine that kills an alarm message that was set to be sent to an exchange by the
Alarm() operating system function. All alarms set to fire off to the exchange you specify are
killed. For instance, if you used the Alarm() function to send a message to you in three seconds
so you could time-out on a piece of hardware, and you didn’t need it anymore, you would call
KillAlarm(). If the alarm is already queued through the kernel, nothing will stop it and you
should expect the Alarm() message at the exchange.

Parameters:
 dAlarmExch - is the exchange you specified in a previous Alarm() operating system call.

LoadNewJob

LoadNewJob(pFileName, dcbFileName, pdJobNumRet) : dError

This loads and executes a run file. This allocates all the system resources required for the new
job including a Job Control Block, Page Descriptor, initial Task State Segment, Virtual Video,
and the memory required to run code, stack, and data pages.

Parameters:
 pFilename - pointer to the filename to run.
 dcbFileName - length of the run filename.
 pdJobNumRet - pointer to a dword where the new job number will be returned.

MaskIRQ

MaskIRQ (dIRQnum) : dError

This masks the hardware Interrupt Request specified by dIRQnum. When an IRQ is masked in
hardware, the CPU will not be interrupted by the particular piece of hardware even if interrupts
are enabled.

Parameters:
 dIRQnum - the hardware interrupt request number for the IRQ you want to mask. For a
description of IRQs see the call description for SetIRQVector().

MicroDelay

MicroDelay(dn15us) : dError

MMURTL V1.0 Page 222 of 667

MicroDelay is used for very small, precise, delays that may be required when interfacing with
device hardware. It will delay further execution of your task by the number of 15-microsecond
intervals you specify. You should be aware that your task does not go into a wait state, but
instead is actually consuming CPU time for this interval.

Interrupts are not disabled, so the time could be much longer, but a task switch will probably not
occur during the delay even though this is possible. MicroDelay guarantees the time to be no
less than n-15us where n is the number of 15-microseconds you specify. The timing is tied
directly to the 15us RAM refresh hardware timer.

The recommended maximum length is 20-milliseconds, although longer periods will work.
Interrupt latency of the system is not affected for greater delay values, but application speed or
appearance may be affected if the priority of your task is high enough, and you call this often
enough.

Parameters:
 dn15us - A dword containing the number of 15-microsecond intervals to delay your task.

MoveRequest

MoveRequest(dRqBlkHndl, DestExch) : dError

The kernel primitive MoveRequest() allows a system service to move a request to another
exchange it owns. An example of use is when a system receives a request it can’t answer
immediately. It would move it to a second exchange until it can honor the request.

This cannot be used to forward a request to another service or Job because the data pointers in
the outstanding request block have been aliased for the service that the request was destined for.

Parameters:
 dRqBlkHndl - handle of the Request Block to forward
 DestExch - exchange where the Request is to be sent.

NewTask

NewTask(dJobNum, dCodeSeg, dPriority, dfDebug, dExch, dESP, dEIP) : dError

This allocates a new Task State Segment (TSS), then fills in the TSS from the parameters to this
call and schedules it for execution. If the priority of this new task is greater then the running
task, it is made to run, else it’s placed on the Ready Queue in priority order.

Most applications will use SpawnTask() instead of NewTask() because it’s easier to use. The
operating system uses this to create the initial task for a newly loaded job.

MMURTL V1.0 Page 223 of 667

Parameters:
 JobNum - Job number the new task belongs to (JCB)
 CodeSeg - Which code segment, OS=8 or User=18
 Priority - 0-31 Primary Application tasks use 25
 fDebug - Non-zero if you want the enter the debugger immediately upon execution.
 Exch - Exchange for TSS.
 ESP - Stack pointer (offset in DSeg)
 EIP - Initial instruction pointer (offset in CSeg)

OutByte

OutByte(Byte, dPort)

This writes a single byte to a port address. No error is returned.

Parameters:
 Byte - The byte value to write to the port.
 DPort - The address of the port.

OutDWord

OutDWord(DWord, dPort)

This writes a single dword from a port address and returns it from the function.

Paramters:
 Dword - The dword value to write to the port.
 DPort - The address of the port.

OutWord

OutWord(Word, dPort)
This writes a single word from a port address and returns it from the function.

Parameters:
 Word - The word value to write to the port.
 DPort - The address of the port.

OutWords

OutWords(dPort, pDataOut, dBytes)

MMURTL V1.0 Page 224 of 667

This uses the processor string intrinsic function OUTSW to write the words pointed to by
pDataOut to dPort. You specify the number of bytes total (Words * 2).

Parameters:
 DPort - The address of the port.
 PdataOut - A pointer to one or more dwords to send out the port.
 DBytes - The count of bytes to write to the port address. This is the number of Words * 2.

PutVidAttrs

PutVidAttrs(dCol, dLine, dnChars, dAttr): dError

This applies the video attribute specified to the characters at the column and line specified on the
video screen, or virtual screen, if not displayed.
This is done independently of the current video stream which means X and Y cursor coordinates
are not affected.

Parameters:
 dCol - column to start on (0-79)
 dLine - line (0-24)
 dnChars - Dword with number of characters to apply the attribute to.
 dAttr - number of characters pbChars is pointing to. The Basic Video section in Chapter 9,
“Application Programming,” describes all of the attribute values.

PutVidChars

PutVidChars(dCol, dLine, pbChars, nChars, dAttrib): dError

This places characters with the specified attribute directly on the caller's video screen. It is
independent of the current video stream which means X and Y cursor coordinates are not
affected.

Parameters:
 dCol - column to start on (0-79)
 dLine - line (0-24)
 pbChars - pointer to the text to be displayed
 nChars - number of characters pbChars is pointing to
 dAtrib - color/attribute to use during display. The “Basic Video” section in Chapter 9
describes all of the attribute values.

MMURTL V1.0 Page 225 of 667

QueryPages

QueryPages(pdnPagesRet): dError

This returns the number of free physical memory pages left in the entire operating system
managed memory space. Each page of memory is 4096 byte.

Parameters:
pdnPagesRet - a pointer to a dword where the current count of free pages will be returned.

ReadCMOS

ReadCMOS(bAddress):Byte

This reads a single byte value at the address specified in the CMOS RAM and returns it from the
function. This is specific to the ISA/EISA PC architecture.

Parameters:
 BAddress - The address of the byte you want from 0 to MaxCMOSSize

ReadKbd

ReadKbd (pdKeyCodeRet, fWait) : dError

ReadKbd() is provided by the keyboard system service as the easy way for an application to
read keystrokes. Access to all other functions of the keyboard service are only available through
the Request and Wait primitives.
This call blocks your task until completion. If fWait is true (non-zero), the call will wait until a
key is available before returning. If fWait is false (0), the call will return the keycode to
pdKeyCodeRet and return with no error. If no key was available, error ErcNoKeyAvailable
will be returned.

Parameters:
 pdKeyCodeRet - A pointer to a dword where the keycode will be returned. See the
documentation on the Keyboard Service for a complete description of KeyCodes.
 fWait - If true (non-zero), the call will wait until a keycode (user keystroke) is available before
returning.

RegisterSvc

RegisterSvc(pSvcName, dExch) : dError

MMURTL V1.0 Page 226 of 667

This procedure registers a message-based system service with the operating system. This will
identify a system service name with a particular exchange. This information allows the
operating system to direct requests for system services without the originator (Requester) having
to know where the actual exchange is located, or on what machine the request is being serviced,
if forwarded across a network.

Parameters:
 pSvcName - a pointer to an 8-byte string. The string must be left justified, and padded with
spaces (20h). Service names are case sensitive. Examples: "KEYBOARD" and "FILESYS "
 dExch - the exchange to be associated with the service name.

Request

Request(pSvcName,
 wSvcCode,
 dRespExch,
 pRqHndlRet,
 npSend,
 pData1,
 cbData1,
 pData2,
 cbData2,
 dData0,
 dData1,
 dData2): dError

This is the operating system Request primitive. It allows a caller to send a "request for services"
to a message-based system service.
With all kernel primitives, dError, the value returned from the Request() call itself, is an
indication of whether or not the Request() primitive functioned normally. Zero will be returned
if the Request() primitive was properly routed to the service, otherwise an operating system
status code will be returned. For example, if you made a Request() to QUEUEMGR and no
service named QUEUEMGR was installed, a dError indicating this problem would be returned
(ErcNoSuchService). This error is not the error returned by the service. An error from the
service is returned to your exchange (dRespExch) in the response message.

Parameters:
 pSvcName - A pointer to an 8-Byte left justified, space padded, service name. Service name
examples are ’QUEUEMGR’ or ’FAXIN ’. The service must be registered with the operating
system. It must be installed or included in the operating system at build time.
 wSvcCode - The service code is a 16-bit unsigned word that identifies the action the service
will perform for you. Values for the Service Code are documented by each service. Function
Codes 0, 65534 (0FFFEh), and 65535 (0FFFFh) are always reserved by the operating system.
 dRespExch - The exchange you want the response message to be sent to upon completion of
the request. See Respond().

MMURTL V1.0 Page 227 of 667

 pRqHndlRet - a pointer to a dword that will hold the request handle that the request call will
fill in. This is how you identify the fact that it is a request and not a non-specific message when
you receive a message after waiting or checking at an exchange.
 npSend - a number (0, 1 or 2) that indicates how many of the two pData pointers, 1 and 2, are
sending data to the service. If pData1 and pData2 both point to data in your memory area that
is going to the service, then npSend would be 2. What each service expects is documented by
the service for each service code. The descriptions for each service code within a service will
tell you the value of npSend. The service actually knows which pointers it’s reading or writing.
The npSend parameter is so network transport systems will know which way to move data on
the request if it is routed over a network. Always assume it will be network-routed.
 pData1 - a pointer to your memory area that the service can access. This may be data sent to
the service, or a memory area where data will be returned from the service. Use of pData1 and
pData2 are documented by the system service for each service code it handles.
 cbData1 - the size of the memory area in pData1 being sent to, or received from the service.
This must be 0 if pData1 is not used.
 pData2 - same as pData1. This allows a service to access a second memory area in your
space if needed.
 cbData2 - the size of the data being sent to the service. This must be 0 if pData2 is not used.
 dData0, dData1, dData2 - dData0, 1 and 2 are dwords used to pass data to a service.
These are strictly for data and cannot contain pointers to data. The reason for this is that the
operating system does not provide alias memory addresses to the service for them. The use of
dData0, 1 and 2 are defined by each service code handled by a system service.

Respond

Respond(dRqHndl, dStatRet): dError

Respond() is used by message-based system services to respond to the caller that made a
request to it. A service must respond to all requests using Respond(). Do not use SendMsg or
ISendMsg.

With all kernel primitives, dError, the value returned from the Respond() call itself, is an
indication of whether or not the respond primitive functioned normally. Zero will be returned if
all was well, otherwise an operating-system status code will be returned.

Parameters:
 dRqHndl - This is the Request handle that was received at WaitMsg or CheckMsg() by the
service. It identifies a Request Block resource that was allocated by the operating system.
 dStatRet - This is the status or error code that will be placed in the second dword, dMsgLo, of
the message sent back to the requester of the service. This is the error/status that the service
passes back to you to let you know it is handled your request properly.

MMURTL V1.0 Page 228 of 667

ScrollVid

ScrollVid(dULCol,dULline,dnCols,dnLines, dfUp)

This scrolls the described square area on the screen either up or down dnLines. If dfUp is non-
zero the scroll will be up. The line(s) left blank is filled with character 20h and the normal
attribute stored in the JCB.

Parameters:
 DULCol - The upper left column to start on (0-79)
 DULLine - The upper left line (0-24)
 DnCols - The number of columns to be scrolled.
 DnLines - The count of lines to be scrolled.
 DfUp - This non-zero to cause the scroll to be up instead of down.
If you want to scroll the entire screen up one line, the parameters would be
ScrollVid(0,0,80,25,1). In this case the top line is lost, and the bottom line would be blanked.

SendMsg

SendMsg (dExch, dMsgHi, dMsgLo): dError

SendMsg() allows a task to send information to another task. The two-dword message is placed
on the specified exchange. If there was a task waiting at that exchange, the message is
associated, linked with that task, and it is moved to the Ready queue.

Users of SendMsg() should be aware that they can receive responses from services and
messages at the same exchange. The proper way to insure the receiver of the message doesn’t
assume it is a Response is to set the high order bit of dMsgHi, which is the first dword pushed.
If it were a Response from a service, the first dword would be less than 80000000h which is a
positive 32-bit signed value. This is an agreed-upon convention, and is not enforced by the
operating system. If you never make a request that indicates exchange X is the response
exchange, you will not receive a response at the X exchange unless the operating system has
gone into an undefined state - a polite term for crashed.

The message is two double words that must be pushed onto the stack independently. When
WaitMsg() or CheckMsg() returns these to your intended receiver, it will be into an array of
dwords. in C this is unsigned long msg[2]. dMsgLo will be in the lowest array index, msg[0],
and dMsgHi will be in the highest memory address, msg[1].

Parameters:
 dExch - A dword (4 BYTES) containing the exchange where the message should be sent.
 dMsgHi - The upper dword of the message.
 dMsgLo - The lower dword of the message.

MMURTL V1.0 Page 229 of 667

SetCmdLine

SetCmdLine(pCmdLine, dcbCmdLine): dError

Each Job Control Block has a field to store the command line that was set by the previous
application or command line interpreter. This field is not directly used or interpreted by the
operating system. This call stores the command line in the JCB. The complimentary call
GetCmdLine() is provided to retrieve the Command Line. The CmdLine is preserved across
ExitJobs, and while Chaining to another application.

Command line interpreters may use this call to set the command line text in the JCB prior to
ExitJob() or Chain() calls running an application.

Parameters:
 pCmdLine - Points to an array of bytes, the new command line string.
 dcbCmdLine - The length of the command line string to store. The command line field in the
JCB is 79 characters maximum. Longer values will cause ErcBadJobParam to be returned.

SetExitJob

SetExitJob(pabExitJobRet, pdcbExitJobRet): dError

Each Job Control Block has a field to store the ExitJob filename. This call sets the ExitJob
string in the JCB. This field is used by the operating system when an application exits to see if
there is another application to load in the context of this job (JCB). Applications may use this
call to set the name of the next job they want to execute in this JCB. This is typically used by a
command line interpreter.

The complimentary call GetExitJob() is provided. The ExitJob remains set until it is set again.
Calling SetExitJob with a zero-length value clears the exit job file name from the JCB. When a
job exits, and its ExitJob is zero length, the job is terminated and all resources are reclaimed by
the operating system.

Parameters:
 pExitJob - Points to an array of bytes containing the new ExitJob filename. The filename
must not longer than 79 characters.
 dcbExitJob - A dword with the length of the string the pExitJob points to.

SetIRQVector

SetIRQVector(dIRQnum, pVector)
The Set Interrupt Vector call places the address pVector into the interrupt descriptor table and
marks it as an interrupt procedure. pVector must be a valid address in the operating-system
address space because the IDT descriptor makes a protection level transition to system level if

MMURTL V1.0 Page 230 of 667

the interrupt occurred in a user level task, which will happen most often. Initially, all unassigned
hardware interrupts are masked at the Priority Interrupt Controller Units (PICUs). After the
interrupt vector is set, the caller should then call UnMaskIRQ to allow the interrupts to occur.

Parameters:
 dIRQnum - The hardware interrupt request number for the IRQ to be set. This will be 0-7 for
interrupts on 8259 #1 and 8-15 for interrupts on 8259 #2.
Table 15.4 shows the predetermined IRQ uses.

Table 15.4 - Hardware IRQs

IRQ 0 8254 Timer
IRQ 1 Keyboard (8042)
IRQ 2 Cascade from PICU2 (handled internally)
IRQ 3 COMM 2 Serial port *
IRQ 4 COMM 1 Serial port *
IRQ 5 Line Printer 2 *
IRQ 6 Floppy disk controller *
IRQ 7 Line Printer 1 *
IRQ 8 CMOS Clock
IRQ 9 Not pre-defined
IRQ 10 Not pre-defined
IRQ 11 Not pre-defined
IRQ 12 Not pre-defined
IRQ 13 Math coprocessor *
IRQ 14 Hard disk controller *
IRQ 15 Not pre-defined
* - If installed, these should follow ISA hardware conventions. Built-in device drivers assume these values.
 pVector - The 32-bit address in operating system protected address space, of the Interrupt
Service Routine (ISR) that handles the hardware interrupt.

SetJobName

SetJobName(pJobName, dcbJobName): dError

This sets the job name in the Job Control Block. This is a maximum of 13 characters. It is used
only for the display of job names and serves no other function. If no job name is set by the
application, The last 13 characters of the complete path for the run file that is executing is used.

Parameters:
 pJobName - Pointer to the job name you want to store in the job control block.
 dcbJobName - Count of bytes in the pJobName parameter. The maximum length is 13 bytes.
Longer values will be truncated. A zero length, will clear the job name from the JCB.

MMURTL V1.0 Page 231 of 667

SetNormVid

SetNormVid(dNormVidAttr): dError

Each Job is assigned a video screen either virtual or real. The normal video attributes used to
display characters on the screen can be different for each job. The default foreground color, the
color of the characters themselves, and background colors may be changed by an application.
The normal video attributes are used with the ClrScr() call, and also used by stream output from
high level language libraries. If you SetNormVid() to Black On White, then call ClrScr(), the
entire screen will become Black characters on a White background.

Parameters:
 dNormVidAttr - This is a dword containing the value of the video attribute to become the
normal or default. The attribute value is always a byte but passed in as a dword for this and
some other operating system video calls.
See chapter 9 for a table containing values for video attributes.

SetPath

SetPath(pPath, dcbPath): dError

Each Job Control Block has a field to store the applications current path, a text string. The path
is interpreted and used by the File System. Refer to the file System documentation). This call
allows applications to set their path string in the JCB.
Typically, a command line interpreter would use this call to set the current path.

Parameters:
 pPath - This points to an array of bytes containing the new path string.
 dcbPath - This is a dword containing the length of the new Path for the current Job. The path
is 79 characters maximum.

SetPriority

SetPriority(bPriority): dError

This changes the priority of the task that is currently executing. Because the task that is running
is the one that wants its priority changed, you can ensure it is rescheduled at the new priority by
making any operating-system call that causes this task to be suspended. The Sleep() function
with a value of 1 would have this effect.

Parameters:
 bPriority - This is the new priority (0-31).

MMURTL V1.0 Page 232 of 667

SetSysIn

SetSysIn(pFileName, dcbFileName): dError
This sets the name of the standard input file stored in the job control block. The default name, if
none is set by the application, is KBD. The keyboard system service bypasses this mechanism
when you use the request/respond interface. If you desire to read data from a file to drive your
application, you should read stream data from the file system using the procedural interface call
ReadBytes(). Only ASCII data is returned from this call. If the SysIn name is set to KDB, this
has the same effect as calling ReadKbd() with fWait set to true, and only receiving the low
order byte which is the character code.

Parameters:
 pFileName - A maximum of 30 characters with the file or device name.
 dcbFileName - The count of characters pFileName is pointing to.

SetSysOut

SetSysOut(pFileName, dcbFileName): dError

This sets the name of the standard output file stored in the job control block. The default name, if
none is set, is VID. The direct access video calls bypass this mechanism. If you desire to write
data from your application to a file, you should write stream data using the file system
procedural interface call, WriteBytes(). Only ASCII data is saved to the file. If the SysOut
name is VID, writing to the file VID with WriteBytes() is the same as calling TTYOut().

Parameters:
 pFileName - A maximum of 30 characters with the file or device name.
 dcbFileName - The count of characters pFileName is pointing to.

SetUserName

SetUserName(pUserName, dcbUserName): dError
The job control block for an application has a field to store the current user’s name of an
application. This field is not used or interpreted by the operating system. The complimentary
call GetUserName() is provided to retrieve it from the JCB. The name is preserved across
ExitJobs, and Chaining to another application.
Parameters:
 pUsername - points to a text string, which is the user’s name.
 dcbUsername - is the length of the string to store.

MMURTL V1.0 Page 233 of 667

SetVidOwner

SetVidOwner(dJobNum): dError

This selects which job screen will be displayed on the screen. This is used by the MMURTL
Monitor and can be used by another user written program manager.

Parameters:
 DJobNum - The job number for new owner of the active screen, which is the one to be
displayed.

SetXY

SetXY(dNewX, dNewY): dError

This positions the cursor for the caller’s screen to the X and Y position specified. This applies to
the virtual screen, or the real video screen if currently assigned.

Parameters:
 DNewX - The new horizontal cursor position column.
 DNewY - The new vertical cursor position row.

Sleep

Sleep(nTicks): dError

A Public routine that delays the calling process by putting it into a waiting state for the amount
of time specified. Sleep() should not be used for small critical timing in applications less than
20ms. The overhead included in entry and exit code makes the timing a little more than 10ms
and is not precisely calculable. An example of the use of Sleep() is inside a loop that performs a
repetitive function and you do not want to create a busy-wait condition, which may consume
valuable CPU time causing lower priority tasks to become starved. If your task is a high enough
priority, a busy-wait condition may cause the CPU to appear locked up, when it’s actually doing
exactly what it’s told to do.

Sleep sends -1 (0FFFFFFFF hex) for both dwords of the message.
Sleep is accomplished internally by setting up a timer block with the countdown value, and an
exchange to send a message to when the countdown reaches zero. The timer interrupt sends the
message, and clears the block when it reaches zero. The default exchange in the TSS is used so
the caller doesn’t need to provide a separate exchange.

Parameters:
 dnTicks - A dword with the number of 10-millisecond periods to delay execution of the task,
or make it sleep.

MMURTL V1.0 Page 234 of 667

SpawnTask

SpawnTask(pEntry, dPriority, fDebug, pStack, fOSCode):dError

This creates a new task, or thread of execution with the instruction address pEntry. This
allocates a new Task state segment (TSS), then fills in the TSS from the parameters you passed.
Many of the TSS fields will be inherited from the Task that called this function. If the priority of
this new task is greater then the running task, it is made to run; otherwise, it’s placed on the
Ready queue in priority order.

Parameters:
 pEntry - This is a pointer to the function, procedure or code section that will become an
independent thread of execution from the task that spawned it.
 dPriority - This is a number from 0 to 31. Application programs should use priority 25. System
services will generally be in the 12-24 region. Secondary tasks for device drivers will usually be
lower than 12. Device drivers such as network frame handlers may even require priorities as high
as 5, but testing will be required to ensure harmony. Print spoolers and other tasks that may
consume a fair amount of CPU time, and may cause applications to appear sluggish, should use
priorities above 25. Certain system services are higher priority, lower numbers, such as the file
system and keyboard.
 fDebug - A non-zero value will cause the task to immediately enter the debugger upon
execution. The instruction displayed in the debugger will be the first instruction that is to be
executed for the task
 pStack - A memory area in the data segment that will become the stack for this task. 512 bytes
is required for operating system operation. Add the number of bytes your task will require to this
value.
 fOSCode - If you are spawning a task from a device driver or within the operating system code
segment you should specify a non-zero value, 1 is accepted.

Tone

Tone(dHz, dTicks10ms): dError

A Public routine that sounds a tone on the system hardware speaker of the specified frequency
for the duration specified by dTicks. Each dTick10ms is 10-milliseconds.
Parameters:
 dHz - Dword that is the frequency in Hertz, from 30 to 10000.
 dTicks10ms - The number of 10-millisecond increments to sound the tone. A value of 100 is
one second.

MMURTL V1.0 Page 235 of 667

TTYOut

TTYOut (pTextOut, dTextOut, dAttrib)
This places characters on the screen in a TTY (teletype) fashion at the current X & Y coordinates
on the screen for the calling job.
The following characters in the stream are interpreted as follows:
 0A Line Feed - The cursor, next active character placement, will be moved down one line. If
this line is below the bottom of the screen, the entire screen will be scrolled up one line, and the
bottom line will be blanked
 0D Carriage Return - The Cursor will be moved to column zero on the current line.
 08 backspace - The cursor will be moved one column to the left. If already at column 0,
Backspace will have no effect. The backspace is non-destructive, no characters are changed.

For character placement, if the cursor is in the last column of a line, it will be moved to the first
column of the next line. If the cursor is in the last column on the last line the screen will be
scrolled up one line and the bottom line will be blank. The cursor will then be placed in the first
column on the last line.

Parameters:
 PTextOut - A near Pointer to the text.
 DTextOut - The number of characters of text.
 DAttrib - The attribute or color you want.

UnMaskIRQ

UnMaskIQR (dIRQnum) : dError

This unmasks the hardware interrupt request specified by dIRQnum. When an IRQ is masked in
hardware, the CPU will not be interrupted by the particular piece of hardware even if interrupts
are enabled.

Parameters:
 dIRQnum - The hardware interrupt request number for the IRQ you want to unmask. For a
description of IRQs see the call description for SetIRQVector().

UnRegisterSvc

UnRegisterSvc(pSvcName) : dError

This procedure removes the service name from the operating system name registry. The service
with that name will no longer be available to callers. They will receive an error.
Parameters:
 pSvcName - A pointer to an 8-byte string. The string must left justified, and padded with
spaces (20h). Service names are case sensitive. Examples: "KEYBOARD" , "FILESYS "

MMURTL V1.0 Page 236 of 667

This name must exactly match the name supplied by the service when it was registered.

WaitMsg

WaitMsg(dExch,pqMsgRet):dError

This is the kernel WaitMsg() primitive. This procedure provides access to operating system
messaging by allowing a task to receive information from another task. If no message is
available, the task will be placed on the exchange specified. Execution of the process is
suspended until a message is received at that exchange. At that time, the caller’s task will be
placed on the Ready queue and executed in priority order with other ready tasks. If the first 4-
byte value is a valid pointer, less than 8000000h, it is possibly a pointer to a request block that
was responded to. This is an agreed upon convention for the convenience of the programmer. Of
course, you would have had to make the request in the first place, so this would be obvious to
you. You’ve got to send mail to get mail.

Parameters:
 DError - Returns 0 unless a fatal kernel error occurs.
 dExch - The exchange to wait for a message
 pqMsg - A pointer to where the message will be returned, an array of two dwords.

MMURTL V1.0 Page 237 of 667

Chapter 16, MMURTL Sample Software

Introduction

While working with MMURTL, most of my efforts have been directed at the operating system
itself. I wrote literally hundreds of little programs to test detailed aspects of MMURTL. Only in
the last year or so have I made any real effort to produce even the simplest of applications or
externally executable programs.

One of the first was a simple command-line interpreter. It has been expanded, and it’s real
purpose is to show certain job management aspects of MMURTL. However, it does work and it’s
useful in its own right. It’s still missing some important pieces (at least important to me), but it’s
a good start.

Other test programs that may be useful to you have been included on the CD-ROM and are
discussed in this chapter. Some of these programs have their source code listed and are discussed
in this chapter. To see what has been included on the CD-ROM, see Appendix A, “What's On the
CD-ROM.”

Command Line Interpreter (CLI)

The MMURTL Command-Line Interpreter (called CLI) is a program that accepts commands and
executes them for you.

The CLI screen is divided into two sections. The top line is the status line. It provides
information such as date, time, CLI version, job number for this CLI, and your current path.

The rest of the screen is an interactive display area that will contain your command prompt. The
command prompt is a greater-than symbol (>) followed by a reverse video line. This line is
where you enter commands to be executed by the CLI.

The CLI contains some good examples using a wide variety of the job-management functions of
the operating system. The source code to the CLI is listed in this chapter at the end of this
section. The source code to the CLI is listed in this chapter and on the CD-ROM.

Internal Commands

The CLI has several built-in commands and can also execute external commands (load and
execute .RUN files).
The internal commands are:

• Cls - Clear Screen
• Copy - Copy a file

MMURTL V1.0 Page 238 of 667

• Dir - Directory listing
• Debug - Enter Debugger
• Del - Delete a file
• Dump - Hex dump of a file
• Exit - Exit and terminate CLI (return to Monitor)
• Help - Display list of internal commands
• Monitor - Return to Monitor (leave this CLI running)
• MD - Make Directory
• Path - Set file access path (New path e.g. D:\DIR\)
• RD - Remove directory
• Rename - Rename a file (Current name New name)
• Run - Execute a run file (replacing this CLI)
• Type - Type the contents of text file to the screen

Each of these commands along with an example of its, use, is described in the following
sections.

Cls (Clear Screen)

The Cls command removes all the text from the CLI screen and places the command prompt at
the top of the screen.

Copy (Copy a file)

This makes a copy of a file with a different name in the same directory, or the same name in a
different directory. If a file exists with the same name, you are prompted to confirm that you
want to overwrite it.

>Copy THISFILE.TXT THATFILE.TXT <Enter>

Wildcards (pattern matching) and default names (leaving one parameter blank) are not supported
in the first version of the CLI. Both names must be specified. The current path will be properly
used if a full file specification is not used.

Dir (Directory listing)

This lists ALL the files for you current path or a path that you specify.

>Dir C:\SOURCE\ <Enter>

The listing fills a page and prompts you to press Enter for the next screen full. Pressing Esc will
stop the listing. The listing is in multiple columns as:

FILENAME SIZE DATE TIME TYPE FIRST-CLUSTER

The first-cluster entry is a hexadecimal number used for troubleshooting the file system. The
TYPE is the attribute value taken directly from the MS-DOS directory structure. The values are
as follows:

MMURTL V1.0 Page 239 of 667

• 00 or 20 is a normal file
• 01 or 21 a read-only file
• 02 or 22 is a hidden file
• 04 or 24 is a system file
• 10 is a sub-directory entry
• 08 is a volume name entry (only found in the root)

File values greater than 20 indicate the archive attribute is set. It means the file has been
modified or newly created since the archive bit was last reset.

Debug (Enter Debugger)

This enters MMURTL’s built-in Debugger. To exit the Debugger press the Esc. For more
information on the Debugger see chapter 12, “The Debugger.”

Del (Delete a File)

This deletes a single file from a disk device. Example:

>Del C:\TEST\FILE.TXT <Enter>

Dump (Hex dump of a file)

This dumps the contents of a file to the screen in hexadecimal and ASCII format as follows (16
bytes per line):

ADDRESS 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 xxxxxxxxxxxxxxx

The address is the offset in the file. A new line is displayed for each 16 bytes. The text from the
line is displayed following the hexadecimal values. If the character is not ASCII text, a period is
displayed instead. Dump pauses after each screen full of text.

Exit (Exit the CLI)

This exits this CLI and terminates this job. The Keyboard and video will be assigned to the
monitor if this was the active job.

Help (List internal commands)

This opens the text file called Help.CLI (if it exists) and displays it on the screen. The file
should located in the MMURTL system directory. This is an ASCII text file and you may edit it
as needed.

Monitor (Return to Monitor)

If this is the active CLI (the one displayed), this will assign the keyboard and video back to the
monitor. This CLI will still be executing.

MMURTL V1.0 Page 240 of 667

MD (Make Directory)

This creates an empty directory in the current path or the path specified on the command line, for
example:

>MD OLDSTUFF <Enter>
>MD C:\SAMPLES\OLDSTUFF <Enter>

The directory tree up to the point of the new directory must already exist. In other words, the tree
will only be extend one level.

Path (Set file access path)

This sets the file-access path for this Job.

Do not confuse the term path for the MS-DOS version of the path command. In MMURTL, a
job’s path is simply a prefix used by the file system to make complete file specifications from a
filename. Unlike a single tasking operating system, no system wide concept of a "current drive"
or "current directory" can be assumed. Each job control block maintains a context for it’s
particular job.

With any file-system operation (opening, renaming, listing, etc.), if you don’t specify a full file
specification (including the drive), the file system appends your specification to the current path
for this job.

The path you set in the CLI will remain the path for any job that is run, or external command that
is executed for this CLI. The path may also be set programmatically (by a program or utility).
Don’t be surprised if you return from a program you have executed to the CLI with a different
path. The current path is displayed on the status line in the CLI. Each CLI (Job) has it’s own path
which is maintained by the operating system in the job control block.

The path must end with the Backslash. Examples:

>Path D:\DIR\ <Enter>
>PATH C:\ <Enter>
>C:\MMSYS\ <Enter>

RD (Remove Directory)

This removes an empty directory in the current path or the path specified on the command line.
>RD OLDSTUFF <Enter>
>RD C:\MMURTL\OLDSTUFF <Enter>

The directory must be empty. The only entries allowed are the two default entries (. and ..)

MMURTL V1.0 Page 241 of 667

Rename (Rename a file)

This changes the name of a file. If the new filename exists you are prompted to either overwrite
existing file or cancel the command. The file must not be open by any other job. The command
format is as follows:

>Rename OLDNAME.TXT NEWNAME.TXT <Enter>

Run (Execute a .RUN file)

This executes the named RUN file in place of this CLI (same job number). The Path remains the
same as was set in the CLI. Examples:

>Run C:\NewEdit\NewEdit.run New.Txt <Enter>
>Run D:\MMDEV\Test.run <Enter>

Any parameters specified after the RUN-file name are passed to the RUN file.

Type (View a text file on the screen)

This displays the contents of a text file to the screen one page at a time, pausing after each page.
Here’s an example:

>Type C:\MMSYS\Commands.CLI <Enter>

External Commands

External commands are those not built into the CLI. These are RUN files (MMURTL executable
files with the file suffix .RUN).

MMURTL looks for external commands in three places (in this order):

1. Your current path (shown on the status line)
2. The MMSYS directory on the system disk.
3. The File COMMANDS.CLI

Commands.CLI File

The file COMMANDS.CLI must be located in the \MMSYS directory on your system disk. The
format of this ASCII text file is discussed below.

The contents of the file COMMANDS.CLI tells the CLI what RUN file to execute for a
command name. It is a simple text file with one command per line. The first item on the line is
the command name. No spaces or tabs are allowed before the command name, which is followed

MMURTL V1.0 Page 242 of 667

with the full file specification for the RUN file to execute. An example of COMMANDS.CLI
follows:

;Any line beginning with SEMI-COLON is a comment.
EDIT C:\MSAMPLES\EDITOR\Edit.run
Print C:\MSamples\Print\Print.run
CM32 C:\CM32M\CM32.run
DASM D:\DASMM\DASM.run
;End of Command.cli

At least one space or tab must be between the command name and the RUN file. There must also
be at least one space or tab between the RUN-file name and the arguments (if they exist).
Additional spaces and tabs are ignored.

Any parameters you specify on the command line in the CLI are passed to the run file that is
executed. You may also add parameters to the line in COMMANDS.CLI. In this case, the
parameters you specified on the command line are appended to those you have in the
COMMANDS.CLI file.

Global "Hot Keys"

The system recognizes certain keys that are not passed to applications to perform system-wide
functions. Global hot keys are those that are pressed while the CTRL and ALT keys are held
down. The CLI doesn’t recognize any Hot Keys, but other application might.

CTRL-ALT-PAGE DOWN - Switches video and keyboard to next job or the monitor. This
key sequence is received and acted upon by the Monitor program.

CTRL-ALT-DELETE - Terminates the currently displayed job. The monitor and the Debugger
will not terminate using this command. This key sequence is received and acted upon by the
Monitor program.

CLI Source Listing

The following is the source code for version 1.0 of the Command Line Interpreter. The Include
files from the OS Source directory contain all the ANSI C prototype for the operating system
functions.

Listing 16.1.CLI Source Code Listing Ver. 1.0.

#define U32 unsigned long
#define S32 long

#define U16 unsigned int

MMURTL V1.0 Page 243 of 667

#define S16 int
#define U8 unsigned char
#define S8 char
#define TRUE 1
#define FALSE 0

#include <stdio.h>
#include <string.h>
#include <ctype.h>

/* Includes for OS public calls and structures */

#include "\OSSOURCE\MKernel.h"
#include "\OSSOURCE\MMemory.h"
#include "\OSSOURCE\MData.h"
#include "\OSSOURCE\MTimer.h"
#include "\OSSOURCE\MVid.h"
#include "\OSSOURCE\MKbd.h"
#include "\OSSOURCE\MJob.h"
#include "\OSSOURCE\MFiles.h"
#include "\OSSOURCE\Status.h"

/******************** BEGIN DATA ********************/

/* Define the Foreground and Background colors */

#define EDVID BLACK|BGWHITE
#define NORMVID WHITE|BGBLACK
#define STATVID BLACK|BGCYAN

long iCol, iLine;

/* aStatLine is exactly 80 characters in length */

char aStatLine[] =
"mm/dd/yy 00:00:00 CLI V1.0 Job Path:
 ";

char aPath[70];
long cbPath;
char fUpdatePath;

char sdisk, syspath[50]; /* holds system disk and system path */
char hlppath[60]; /* Path to help file */
char clipath[60]; /* Path to CLI */
char cmdpath[60]; /* Path to command file */

char aCmd[80]; /* Command line */
long cbCmd = 0;

unsigned char Buffer[512];
unsigned char bigBuf[4096];
char text[70];

char ExitChar;

MMURTL V1.0 Page 244 of 667

unsigned long GPExch; /* Messaging for Main */
unsigned long GPMsg[2];
unsigned long GPHndl;

unsigned long StatExch; /* Messaging for status task */
long StatStack[256]; /* 1024 byte stack for stat task */

long time, date;

long JobNum;

/* array of internal commands for parsing */

#define NCMDS 16

char paCmds[NCMDS+1][10] = {
 "", /* 0 external */
 "xxxxx", /* 1 - not used */
 "Cls", /* 2 */
 "Copy", /* 3 */
 "Del", /* 4 */
 "Dir", /* 5 */
 "Debug", /* 6 */
 "Dump", /* 7 */
 "Exit", /* 8 */
 "Help", /* 9 */
 "MD", /* 10 */
 "Monitor", /* 11 */
 "Path", /* 12 */
 "RD", /* 13 */
 "Ren", /* 14 */
 "Run", /* 15 */
 "Type", /* 16 */
 };

#define EXTCMD 0 /* External Command */
#define RESVDCMD 1
#define CLSCMD 2
#define COPYCMD 3
#define DELCMD 4
#define DIRCMD 5
#define DBGCMD 6
#define DUMPCMD 7
#define EXITCMD 8
#define HELPCMD 9
#define MAKEDIR 10
#define MONCMD 11
#define PATHCMD 12
#define REMDIR 13
#define RENCMD 14
#define RUNCMD 15
#define TYPECMD 16

long CmdNum = 0;

char *apParam[13]; /* Param 0 is cmd name */

MMURTL V1.0 Page 245 of 667

long acbParam[13];
#define nParamsMax 13

#define ErcBadParams 80

/* Directory Entry Records, 16 records 32 bytes each */

struct dirstruct {
 U8 Name[8];
 U8 Ext[3];
 U8 Attr;
 U8 Rsvd[10];
 U16 Time;
 U16 Date;
 U16 StartClstr;
 U32 FileSize;
 } dirent[16];

/************************* BEGIN CODE ********************/

/***
 This is the status task for the CLI. It updates
 the status line which has the time and path.
 It runs as a separate task and is started each
 time the CLI is executed.
***/

void StatTask(void)
{
 for(;;)
 {
 if (fUpdatePath)
 {
 if (cbPath > 30)
 cbPath = 30;
 FillData(&aStatLine[47], 30, ’ ’);
 CopyData(aPath, &aStatLine[47], cbPath);
 fUpdatePath = 0;
 }

 GetCMOSDate(&date);
 aStatLine[0] = ’0’ + ((date >> 20) & 0x0f); /* month */
 aStatLine[1] = ’0’ + ((date >> 16) & 0x0f);
 aStatLine[3] = ’0’ + ((date >> 12) & 0x0f); /* Day */
 aStatLine[4] = ’0’ + ((date >> 8) & 0x0f);
 aStatLine[6] = ’0’ + ((date >> 28) & 0x0f); /* year */
 aStatLine[7] = ’0’ + ((date >> 24) & 0x0f);

 GetCMOSTime(&time);
 aStatLine[10] = ’0’ + ((time >> 20) & 0x0f);
 aStatLine[11] = ’0’ + ((time >> 16) & 0x0f);
 aStatLine[13] = ’0’ + ((time >> 12) & 0x0f);
 aStatLine[14] = ’0’ + ((time >> 8) & 0x0f);
 aStatLine[16] = ’0’ + ((time >> 4) & 0x0f);
 aStatLine[17] = ’0’ + (time & 0x0f);

MMURTL V1.0 Page 246 of 667

 PutVidChars(0,0, aStatLine, 80, STATVID);

 Sleep(100); /* sleep 1 second */
 } /* forEVER */
}

/***
 This displays error code text string if listed and
 NON zero.
***/

void CheckErc (unsigned long erc)
{
char *pSt;
char st[40];

FillData(st, 40, 0);
switch (erc)
{
 case 0: return;
 case 1: pSt = "End of file"; break;
 case 4: pSt = "User cancelled"; break;
 case 80: pSt = "Invalid parameters"; break;
 case 101: pSt = "Out of memory (need more for this)"; break;
 case 200: pSt = "Invalid filename (not correct format)"; break;
 case 201: pSt = "No such drive"; break;
 case 202: pSt = "The name is not a file (it’s a directory)"; break;
 case 203: pSt = "File doesn’t exist"; break;
 case 204: pSt = "Directory doesn’t exist"; break;
 case 205: pSt = "File is ReadOnly"; break;
 case 208: pSt = "File in use"; break;
 case 222: pSt = "Can’t rename across drives"; break;
 case 223: pSt = "Can’t rename across directories"; break;
 case 226: pSt = "File Already Exists (duplicate name)"; break;
 case 228: pSt = "Root directory is full"; break;
 case 230: pSt = "Disk is full (bummer)"; break;
 case 231: pSt = "Directory is full"; break;

 default:
 sprintf(st, "Error %05d on last command", erc);
 pSt = st;
 break;
}
 printf("%s\r\n", pSt);
}

/***
 This simply does a software interrupt 03 (Debugger).
***/

void GoDebug(void)
{
;
#asm
 INT 03
#endasm
return;

MMURTL V1.0 Page 247 of 667

}

/***
 This is called to initialize the screen.
 If we are returning from and external command
 we do not reset the cursor position. fNew is
 used to determine is we do or not.
***/

void InitScreen(int fNew)
{
 SetNormVid(NORMVID);
 GetXY(&iCol, &iLine);
 if (fNew)
 {
 iCol = 0;
 iLine = 2;
 ClrScr();
 }
 SetXY(iCol, iLine);
 PutVidChars(0,0, aStatLine, 80, STATVID);
 return;
}

/***
 This does a hex dump to the screen of a
 memory area passed in by "pb"
**/

U32 Dump(unsigned char *pb, long cb, unsigned long addr)
{
U32 erc, i, j, KeyCode;
unsigned char buff[17];

 erc = 0;
 GetXY(&iCol, &iLine);

 while (cb)
 {
 printf("%08x ", addr);
 if (cb > 15) j=16;
 else j = cb;
 for (i=0; i<j; i++)
 {
 printf("%02x ",*pb);
 buff[i] = *pb++;
 if (buff[i] < 0x20)
 buff[i] = 0x2E;
 if (buff[i] > 0x7F)
 buff[i] = 0x2E;
 }
 buff[i+1] = 0;
 printf("%s\r\n", &buff[0]);
 ++iLine;
 if (iLine >= 22)
 {
 SetXY(0,23);

MMURTL V1.0 Page 248 of 667

 printf("ESC to cancel, any other key to continue...");
 ReadKbd(&KeyCode, 1); /* ReadKbd, wait */
 if ((KeyCode & 0xff) == 0x1b)
 {
 return 4;
 }
 InitScreen(TRUE);
 SetXY(0,1);
 iLine =1;
 }
 if (cb > 15) cb-=16;
 else cb=0;
 addr+=j;
 }
 return erc;
}

/***
 This sets up to call the dump routine for each page.
 This expects to find the filename in param[1].
***/

long DoDump(void)
{
unsigned long j, k, l, erc, dret, fh;

erc = 0;
if ((apParam[1]) && (acbParam[1]))
{
 if (iLine >= 23)
 {
 ScrollVid(0,1,80,23,1);
 SetXY(0,23);
 }
 erc = OpenFile(apParam[1], acbParam[1], ModeRead, 1, &fh);
 if (!erc)
 {
 j=0; /* file lfa */
 GetFileSize(fh, &k);
 while ((j<k) && (!erc))
 {
 FillData(Buffer, 512, 0);
 erc = ReadBytes (fh, Buffer, 512, &dret);
 if (k-j > 512)
 l = 512;
 else l=k-j;
 if (erc < 2)
 erc = Dump(Buffer, dret, j);
 j+=512;
 }
 CloseFile (fh);
 }
}
else
 printf("Filename not given\r\n");

return erc;

MMURTL V1.0 Page 249 of 667

}

/***
 This types a text file to the screen.
***/

long DoType(char *pName, long cbName)
{
long i, j, lfa, erc, dret, fh, KeyCode;

erc = 0;
if ((pName) && (cbName))
{

 if (iLine >= 23)
 {
 ScrollVid(0,1,80,23,1);
 SetXY(0,23);
 }
 erc = OpenFile(pName, cbName, 0, 1, &fh);
 if (!erc)
 {
 FillData(Buffer, 512, 0);
 dret = 1;
 while ((erc<2) && (dret))
 {
 GetFileLFA(fh, &lfa);
 erc = ReadBytes (fh, Buffer, 78, &dret);
 i = 1;
 while ((Buffer[i-1] != 0x0A) && (i < dret))
 {
 i++;
 }
 for (j=0; j<=i; j++)
 {
 if ((Buffer[j] == 0x09) || (Buffer[j] == 0x0d) ||
 (Buffer[j] == 0x0a))
 Buffer[j] = 0x20;
 }
 if (dret)
 {
 PutVidChars(0, iLine, Buffer, i, NORMVID);
 iLine++;
 }
 SetXY(0,iLine);
 SetFileLFA(fh, lfa+i);
 if (iLine >= 22)
 {
 SetXY(0,23);
 printf("ESC to cancel, any other key to continue...");
 ReadKbd(&KeyCode, 1); /* ReadKbd, wait */
 if ((KeyCode & 0xff) == 0x1b)
 return(4);
 InitScreen(TRUE);
 SetXY(0,1);
 iLine =1;
 }

MMURTL V1.0 Page 250 of 667

 }
 printf("\r\nError: %d\r\n", erc);
 CloseFile (fh);
 }
}
else
 printf("Filename not given\r\n");

return erc;
}

/***
 This converts DOS FAT date & time and converts it into
 strings with the format MM/DD/YY HH/MM/SS.
 This is used by the directory listing.
**/
void CnvrtFATTime(U16 time,
 U16 date,
 char *pTimeRet,
 char *pDateRet)
{
U32 yr,mo,da,hr,mi,se;
char st[15];

 yr = ((date & 0xFE00) >> 9) + 1980 - 1900;
 if (yr > 99) yr -=100;
 mo = (date & 0x01E0) >> 5;
 da = date & 0x001F;
 hr = (time & 0xF800) >> 11;
 mi = (time & 0x07E0) >> 5;
 se = (time & 0x001F) * 2;
 sprintf(st, "%02d:%02d:%02d",hr,mi,se);
 CopyData(st, pTimeRet, 8);
 sprintf(st, "%02d-%02d-%02d",mo,da,yr);
 CopyData(st, pDateRet, 8);

}

/***
 Copy a single file with overwrite checking.
 Use block mode for speed. This uses a conservative
 4K buffer. THis could be made a good deal faster by
 allocating a large chunk of memory and using it
 instead of the 4K static buffer.
**/

U32 CopyFile(char *pFrom, U32 cbFrom, char *pTo, U32 cbTo)
{
U32 fhTo, fhFrom, bytesWant, bytesGot, bytesLeft, erc,
 bytesOut, size, dLFA, KeyCode;

 erc = OpenFile(pFrom, cbFrom, ModeRead, 0, &fhFrom);
 if (!erc)
 {
 /* Check to see if it exists already */

 erc = CreateFile(pTo, cbTo, 0);

MMURTL V1.0 Page 251 of 667

 if ((!erc) || (erc==ErcDupName))
 {
 if (erc == ErcDupName)
 {
 printf("File already exists. Overwrite? (Y/N)\r\n");
 ReadKbd(&KeyCode, 1); /* ReadKbd, wait */
 if (((KeyCode & 0xff)==’Y’) || ((KeyCode & 0xff)==’y’))
 {
 erc = 0;
 }
 }

 if (!erc)
 {
 erc = OpenFile(pTo, cbTo, ModeModify, 0, &fhTo);
 if (!erc)
 {
 /* both files are open in block mode */
 erc = GetFileSize(fhFrom, &size);
 if (!erc)
 erc = SetFileSize(fhTo, size);
 dLFA = 0;
 bytesLeft = size;
 while ((!erc) && (bytesLeft))
 { if (bytesLeft >= 4096)
 bytesWant = 4096;
 else
 bytesWant = bytesLeft;
 if (bytesWant & 511) /* handle last sector */
 bytesWant += 512;
 bytesWant = (bytesWant/512) * 512;
 erc = ReadBlock(fhFrom, bigBuf, bytesWant,
 dLFA, &bytesGot);
 if (bytesGot)
 {
 erc = WriteBlock(fhTo, bigBuf, bytesGot,
 dLFA, &bytesOut);
 if (bytesLeft < bytesOut)
 bytesLeft = 0;
 else
 bytesLeft-=bytesOut;
 }
 dLFA += bytesGot;
 }
 CloseFile(fhTo);
 }
 }
 }
 CloseFile(fhFrom);
 }
 return(erc);
}

/***
 Does a directory listing for param 1 or current path.
***/

MMURTL V1.0 Page 252 of 667

U32 DoDir(void)
{
U8 fDone;
U32 SectNum, erc, KeyCode, i;
char st[78];

if (iLine >= 23)
{
 ScrollVid(0,1,80,23,1);
 SetXY(0,23);
}
fDone = 0;
SectNum = 0;
while (!fDone)
{
 erc = GetDirSector(apParam[1], acbParam[1], &dirent[0],
 512, SectNum);
 if (!erc)
 {
 for (i=0; i<16; i++)
 {
 if (!dirent[i].Name[0])
 {
 erc = 1;
 fDone = 1;
 }
 if ((dirent[i].Name[0]) && (dirent[i].Name[0] != 0xE5))
 {
 sprintf(st,
 "%8s %3s %8d xx/xx/xx xx/xx/xx %2x %04x\r\n",
 dirent[i].Name,
 dirent[i].Ext,
 dirent[i].FileSize,
 dirent[i].Attr,
 dirent[i].StartClstr);
 CnvrtFATTime(dirent[i].Time, dirent[i].Date,
 &st[33], &st[24]);
 printf("%s", st);
 iLine++;
 if (iLine >= 22)
 {
 SetXY(0,23);
 printf("ESC to cancel, any other key to continue...");
 ReadKbd(&KeyCode, 1); /* ReadKbd, wait */
 if ((KeyCode & 0xff) == 0x1b)
 {
 erc = 4;
 fDone = TRUE;
 }
 InitScreen(TRUE);
 SetXY(0,1);
 iLine =1;
 }
 }
 }
 }
 else

MMURTL V1.0 Page 253 of 667

 fDone = TRUE;
 SectNum++;
}

return(erc);
}

/***
 This Fills in the ptrs to and sizes of each parameter
 found on the command line in the arrays apParams and
 acbParams.
***/

void ParseCmdLine(void)
{
long iCmd, iPrm, i; /* iCmd is index to aCmd */
 iCmd = 0;
 for (iPrm=0; iPrm<nParamsMax; iPrm++)
 {
 acbParam[iPrm] = 0; /* default the param to empty */
 apParam[iPrm] = 0; /* Null the ptr */
 if (iCmd < cbCmd)
 {
 if (!isspace(aCmd[iCmd]))
 {
 apParam[iPrm] = &aCmd[iCmd++]; /* ptr to param */
 i = 1;
 while ((iCmd < cbCmd) && (!isspace(aCmd[iCmd])))
 {
 i++;
 iCmd++;
 }
 acbParam[iPrm] = i; /* size of param */
 }
 while ((iCmd < cbCmd) && (isspace(aCmd[iCmd])))
 iCmd++;
 }
 }
}

/***
 This opens and parses Commands.CLI in the system
 directory and looks for the command name in
 apParam[0]. If it finds it, it places the full
 filespec for the run file in "runfile" for the
 caller, then fixes up the aCmd command line
 just as if it had come from the user.
 The format for a line entry in Commands.CLI is:
 name fullspec param param param...
**/

long GetCLICommand(char *runfile)
{
long i, j, k;
FILE *f;
char rawline[90]; /* used we build a pseudo command line */
char cmdline[90]; /* used we build a pseudo command line */

MMURTL V1.0 Page 254 of 667

char fdone;

 cmdline[0] = 0;

 f = fopen(cmdpath, "r");
 if (f)
 {
 fdone = 0;
 while (!fdone)
 {
 if (fgets(rawline, 89, f))
 {
 if (rawline[0] == ’;’) /* a comment line */
 continue;
 j = CompareNCS(apParam[0], rawline, acbParam[0]);
 if (j == -1)
 { /* we found a match for the command */
 /* Move the command name into the command line */
 i = 0; /* Index into rawline */
 j = 0; /* Index into cmdline we are building */
 k = 0; /*Index into runfile name we rtn to caller*/
 while (!(isspace(rawline[i])))
 cmdline[j++] = rawline[i++];
 /* follwed by a space */
 cmdline[j++] = ’ ’;

 /* skip whitespace in rawline */
 while (isspace(rawline[i]))
 i++;

 /* now move runfile name */
 while (!(isspace(rawline[i])))
 runfile[k++] = rawline[i++];
 runfile[k] = 0; /* null terminte */

 /* skip whitespace in rawline */
 while (isspace(rawline[i]))
 i++;
 /* now move arguments if any, and LF */
 while (rawline[i])
 cmdline[j++] = rawline[i++];
 cmdline[j] = 0;

 /* Move cmd line we built to real cmd line */
 strcpy(aCmd, cmdline);
 cbCmd = strlen(aCmd);
 return(1); /* tell em we got it! */
 }
 }
 else
 fdone = 1;
 }
 }
 else
 printf("Commands.CLI not found.\r\n");

 return(0);

MMURTL V1.0 Page 255 of 667

}

/**
 When a command is specified to the CLI and it
 is not an internal command, we first look for
 a .RUN file in the current path. If we don’t
 find one, we go to the system directory, if
 it’s not there, we then go to COMMANDS.CLI
 and search it line by line to see if a run
 file is specified there. If so, we set the
 command line with everything after the runfile
 specified and try to execute it.
***/

void FindRunFile(void)
{
char runfile[80];
long i, erc, fh;

 /* Try to find in current path */

 CopyData(apParam[0], runfile, acbParam[0]);
 runfile[acbParam[0]] = 0;
 strcat(runfile, ".RUN");

 erc = OpenFile(runfile, strlen(runfile), ModeRead, 1, &fh);
 if (!erc)
 { /* found a run file */
 CloseFile(fh);
 SetCmdLine(aCmd, cbCmd);
 SetExitJob(clipath, strlen(clipath));
 erc = Chain(runfile, strlen(runfile), 0);
 }
 else /* Try to find in System directory */
 {
 strcpy(runfile, syspath);
 i = strlen(runfile);
 CopyData(apParam[0], &runfile[i], acbParam[0]);
 runfile[acbParam[0]+i] = 0; /* null terminate */
 strcat(runfile, ".RUN");
 erc = OpenFile(runfile, strlen(runfile), ModeRead, 1, &fh);
 if (!erc)
 { /* found a run file */
 CloseFile(fh);
 SetCmdLine(aCmd, cbCmd);
 SetExitJob(clipath, strlen(clipath));
 erc = Chain(runfile, strlen(runfile), 0);
 }
 /* now we call GetCLICommand as a last resort */
 else if (GetCLICommand(runfile))
 {
 erc = OpenFile(runfile, strlen(runfile), ModeRead, 1, &fh);
 if (!erc)
 { /* found a run file */
 CloseFile(fh);
 SetCmdLine(aCmd, cbCmd);

MMURTL V1.0 Page 256 of 667

 SetExitJob(clipath, strlen(clipath));
 erc = Chain(runfile, strlen(runfile), 0);
 }
 }
 }
 printf("Command not found\r\n");
}

/**
 Main function entry point.
 Note: No params to CLI.
***/

void main(void)
{
unsigned long erc, i, j, fh;

 erc = AllocExch(&StatExch);
 erc = AllocExch(&GPExch);

 SpawnTask(&StatTask, 24, 0, &StatStack[255], 0);

 GetJobNum(&JobNum);
 sprintf(&aStatLine[37], "%02d", JobNum);

 SetJobName("CLI V1.0", 8);

 /* Get system disk and set up path names for
 cli, command file, and help file.
 */

 GetSystemDisk(&sdisk);
 sdisk &= 0x7F;
 sdisk += 0x41; /* 0=A, 1=B, 2=C etc. */
 syspath[0] = sdisk;
 syspath[1] = ’:’;
 syspath[2] = 0;
 strcat(syspath, "\\MMSYS\\");

 strcpy(clipath, syspath);
 strcat(clipath,"CLI.RUN");

 strcpy(cmdpath, syspath);
 strcat(cmdpath,"COMMANDS.CLI");

 strcpy(hlppath, syspath);
 strcat(hlppath,"HELP.CLI");

 /* If a path was already set we assume that we are re-loading
 after an external command has been run. We do not
 want to reset the screen completely so the use can
 see anything the external command left on the screen.
 */

 cbPath = 0;
 GetPath(JobNum, aPath, &cbPath);
 if (cbPath)

MMURTL V1.0 Page 257 of 667

 {
 GetXY(&iCol, &iLine);
 if (iLine == 0) /* under status line */
 iLine = 1;
 InitScreen(FALSE);
 SetXY(0, iLine);
 }
 else
 {
 strcpy (aPath, syspath);
 cbPath = strlen(syspath);
 SetPath(syspath, strlen(syspath));
 InitScreen(TRUE);
 }

 fUpdatePath = 1;

 SetExitJob(clipath, strlen(clipath));

 while (1)
 {
 FillData(aCmd, 79, ’ ’);
 aCmd[79] = 0;
 cbCmd = 0;
 SetXY(0, iLine);
 TTYOut (">", 1, NORMVID);
 EditLine(aCmd, cbCmd, 79, &cbCmd, &ExitChar, EDVID);
 TTYOut ("\r\n", 2, NORMVID);
 GetXY(&iCol, &iLine);

 acbParam[0] = 0;
 apParam[0] = 0;
 CmdNum = 0;

 if (ExitChar == 0x0d)
 ParseCmdLine(); /* set up all params */

 if ((acbParam[0]) && (apParam[0]))
 { /* It’s a command! */

 i = 1;
 while (i <= NCMDS)
 {
 j = strlen(paCmds[i]);
 if ((acbParam[0] == j) &&
 (CompareNCS(apParam[0], paCmds[i], j) == -1))
 {
 CmdNum = i;
 break;
 }
 i++;
 }
 erc = 0;
 switch (CmdNum)
 {
 case EXTCMD: /* external command */
 FindRunFile();

MMURTL V1.0 Page 258 of 667

 break;
 case CLSCMD:
 InitScreen(TRUE);
 break;
 case COPYCMD:
 if ((acbParam[1]) && (acbParam[2]))
 erc = CopyFile(apParam[1], acbParam[1],
 apParam[2], acbParam[2]);
 else erc = ErcBadParams;
 break;
 case DELCMD:
 erc = OpenFile(apParam[1], acbParam[1], 1, 0, &fh);
 if (!erc)
 erc = DeleteFile(fh);
 if (!erc)
 printf("Done.\r\n");
 break;
 case DIRCMD:
 erc = DoDir();
 break;
 case DBGCMD:
 GoDebug();
 break;
 case DUMPCMD:
 erc = DoDump();
 break;
 case EXITCMD:
 SetExitJob("", 0);
 ExitJob(0);
 break;
 case HELPCMD:
 erc = DoType(hlppath, strlen(hlppath));
 break;
 case MAKEDIR:
 erc = CreateDir(apParam[1], acbParam[1]);
 break;
 case MONCMD:
 erc = Request("KEYBOARD", 4, GPExch, &GPHndl, 0,
 0, 0, 0, 0, 1, 0, 0);
 erc = WaitMsg(GPExch, GPMsg);
 SetVidOwner(1);
 break;
 case PATHCMD:
 erc = SetPath(apParam[1], acbParam[1]);
 if (!erc)
 erc = GetPath(JobNum, aPath, &cbPath);
 fUpdatePath = 1;
 break;
 case REMDIR:
 erc = DeleteDir(apParam[1], acbParam[1]);
 break;
 case RENCMD:
 if ((acbParam[1]) && (acbParam[2]))
 erc = RenameFile(apParam[1], acbParam[1],
 apParam[2], acbParam[2]);
 else erc = ErcBadParams;
 break;

MMURTL V1.0 Page 259 of 667

 case RUNCMD:
 if (acbParam[1])
 {
 i = 2;
 while (aCmd[i] != ’ ’)
 i++;
 SetCmdLine(&aCmd[i], cbCmd-i);
 SetExitJob(clipath, strlen(clipath));
 erc = Chain(apParam[1], acbParam[1], 0);
 }
 break;
 case TYPECMD:
 erc = DoType(apParam[1], acbParam[1]);
 break;
 default:
 break;
 }
 CheckErc(erc);
 }

 GetXY(&iCol, &iLine);
 if (iLine >= 23)
 {
 ScrollVid(0,1,80,23,1);
 SetXY(0,23);
 }
 }
}

A Simple Editor

The editor included with MMURTL is a very simple in-memory editor. The editor always word-
wraps lines that extend beyond 79 columns. The largest file that can be edited is 128Kb. The
source code is listed below and also included on the accompanying CD-ROM. The editor
contains a good example of extensive use of the keyboard service (translating KeyCodes). See
Appendix A, What’s On the CD-ROM.

Editor Screen

The editor screen is divided into three sections. The top line provides continuous status
information, such as the position of the cursor in the file (column and line), current filename, and
typing mode (Insert or Overtype). The next 23 lines are the text editing area. The last line is used
for data entry, status and error display.

Editor Commands

The following four tables describe all the editor commands.

MMURTL V1.0 Page 260 of 667

Table 16.1 - File Management and General Commands

Keystroke Action
ALT-S Saves changes to current file
ALT-C Closes & prompts to Save current file
ALT-O Open a new file
ALT-Q Quits (Exits) the editor
ALT-X Same as ALT-Q (Exit)
Insert Toggles Insert & Overtype mode
Esc Exits filename entry mode for open-file command
ALT-V Make non-text chars Visible/Invisible (toggle)

Table 16.2 - Cursor and Screen Management Commands

Keystroke Action
Page Down Move one screen down in the text file
Page Up Move one screen up in the text file
Up Cursor up one line (scroll down if needed)
Down Cursor down one line (scroll up if needed)
Left Cursor left one column (no wrap)
Right Cursor right one column (no wrap)
ALT-B Go to Beginning of Text
ALT-E Go to End of Text
ALT-UP Arrow Cursor to top of screen
ALT-Down Arrow Cursor to bottom of screen
ALT-Left Arrow Cursor to beginning of line
ALT Right Arrow Cursor to end of line
Home Cursor to beginning of line
End Cursor to end of line
SHIFT Right Move cursor right 5 spacesı
SHIFT Left Move cursor left 5 spaces

16.3Block Selection and Editing Commands

Keystroke Action
F3 Begin Block (Mark)
F4 End Block (Bound)
F2 Unmark block (no block defined or highlighted)
F9 MOVE marked block to current cursor position
F10 COPY marked block to current cursor position
ALT Delete Delete Marked Block

MMURTL V1.0 Page 261 of 667

Table 16.4 - Miscellaneous Editing Keys

Keystroke Action
Delete Delete character at current cursor position
Backspace Destructive in Insert Mode (INS)
 Non-destructive in Overtype mode (OVR)
Tab Pseudo tab every 4 columns (space filled)

Editor Source Listing
The editor source is a good example of a program that used a lot of functionality form the
keyboard service. File system calls are also used in place of equivalent C library functions,
which provides good examples of checking for file system errors. Listing 16.2 is the editor
source code.

Listing 16.2.Editor Source Code.

/* Edit.c A simple editor using MMURTL file system and keyboard services */
#define U32 unsigned long
#define S32 long
#define U16 unsigned int
#define S16 int
#define U8 unsigned char
#define S8 char

#define TRUE 1
#define FALSE 0

#include <stdio.h>
#include <string.h>
#include <ctype.h>

/* Includes for OS public calls and structures */

#include "\OSSOURCE\MKernel.h"
#include "\OSSOURCE\MMemory.h"
#include "\OSSOURCE\MData.h"
#include "\OSSOURCE\MTimer.h"
#include "\OSSOURCE\MVid.h"
#include "\OSSOURCE\MKbd.h"
#include "\OSSOURCE\MJob.h"
#include "\OSSOURCE\MFiles.h"

#define EDVID BRITEWHITE|BGBLUE
#define NORMVID WHITE|BGBLACK
#define MARKVID WHITE|BGRED
#define STATVID BLACK|BGCYAN

#define EMPTY 99999
#define NLINESMAX 26

struct EditRecType {
 U8 *pBuf;

MMURTL V1.0 Page 262 of 667

 U8 *pBufWork; /* For copy and move */
 U32 Line[NLINESMAX]; /* Offset in buf for 1st char in line */
 U32 iBufMax; /* sBuf - 1 */
 U32 iColMin; /* Screen coords */
 U32 iRowMin;
 U32 iColMax;
 U32 iRowMax;
 U32 sLine;
 U8 bSpace;
 U8 fVisible;
 U32 iAttrMark;
 U32 iAttrNorm;
 U32 iTabNorm;
 U32 oBufLine0 /* oBufLine0 */
 U32 iCol; /* cursor, 0..sLine-1 */
 U32 iLine; /* cursor, 0..cLines-1 */
 U32 oBufInsert; /* offset of next char in */
 U32 oBufLast; /* offset+1 of last char */
 U32 oBufMark;
 U32 oBufBound;
 };

struct EditRecType EdRec;
struct EditRecType *pEdit;
char *pBuf1, *pBuf2;
unsigned char b, b1;
long erc, fh;
char fModified;
char fOvertype;
char aStat[80];
char aStat1[80];
char aCmd[80]; /* Get our command line */
long cbCmd = 0;
char *apParam[13]; /* Param 0 is cmd name */
long acbParam[13];
#define nParamsMax 13
char Filename[60];
long cbFilename;
unsigned char filler[100];

void clearbuf(void); /* prototype for forward usage */

/***
 Displays errors if they occur for certain file opeations.
***/

long CheckErc(long call, long erc)
{
char st[40];
long i;

 if (erc) {
 FillData(st, 40, 0);
 Beep();
 switch (call) {
 case 1:

MMURTL V1.0 Page 263 of 667

 sprintf(st, "Error %05d occured on OpenFile", erc);
 break;
 case 2:
 sprintf(st, "Error %05d occured on ReadBytes", erc);
 break;
 case 3:
 sprintf(st, "Error %05d occured on WriteBytes", erc);
 break;
 case 4:
 sprintf(st, "Error %05d occured on CreateFile", erc);
 break;
 case 5:
 sprintf(st, "Error %05d occured on SetFileSize", erc);
 break;
 case 6:
 sprintf(st, "Error %05d occured on SetFileLFA", erc);
 break;
 case 7:
 sprintf(st, "Error %05d occured on ReadKbd", erc);
 break;
 default:
 sprintf(st, "Error %05d occured on last command", erc);
 break;
 }
 for (i=0; i<40; i++)
 if (!st[i])
 st[i] = ’ ’;

 PutVidChars (40, 24, st, 39, STATVID);
 }
 return (erc);
}

/***
 Clears the status line with 80 blank chars.
***/
void ClearStatus(void)
{
char st[80];
 FillData(st, 80, 0);
 PutVidChars (0, 24, st, 80, NORMVID);
}

/***
 Saves a file you are editing. If fPrompt is true, this
 will prompt you to save. If fClose, the file will be closed
 and the buffer will be closed.
**/

void SaveFile(int fPrompt, int fClose)
{
U32 i, keycode, fYes;
unsigned char *pBuff;

 pBuff = pEdit->pBuf;

MMURTL V1.0 Page 264 of 667

 if ((fh) && (fModified))
 {
 if (pEdit->fVisible)
 { /* fix visible characters */
 for (i=0; i <=pEdit->iBufMax; i++)
 if (pBuff[i] == 0x07)
 pBuff[i] = 0x20;
 pEdit->fVisible = FALSE;
 }
 fYes = 1;
 if (fPrompt)
 {
 ClearStatus();
 SetXY(0, 24);
 TTYOut("This file has been modified. SAVE IT? (Y/N)", 43,
BLACK|BGCYAN);
 ReadKbd(&keycode, 1);
 if (((keycode & 0xff) == ’N’) || ((keycode & 0xff) == ’n’))
 {
 fYes = 0;
 ClearStatus();
 }
 }

 if (fYes)
 {
 erc = CheckErc(6, SetFileLFA(fh, 0));
 if (!erc)
 erc = CheckErc(5, SetFileSize(fh,
 pEdit->oBufLast));
 if (!erc)
 erc = CheckErc(3, WriteBytes (fh, pBuf1,
 pEdit->oBufLast, &i));
 fModified = 0;
 ClearStatus();
 PutVidChars (0, 24, "DONE... ", 10, STATVID);
 Sleep(150);
 ClearStatus();
 }

 }

 if (fh && fClose)
 {
 CloseFile(fh);
 fh = 0;
 cbFilename = 0;
 clearbuf();
 }
}

/***
 This prompts for a filename to open and opens it if it
 exists. If not, it will prompts to create.
**/

void OpenAFile(char *name)

MMURTL V1.0 Page 265 of 667

{
U32 filesize, dret, keycode;

 erc = 0;
 cbFilename = 0;
 if (!name)
 {
 SetXY(0,24);
 PutVidChars (0,24, "Filename: ", 10, BLACK|BGWHITE);
 SetXY(10,24);
 EditLine(Filename, 0, 60, &cbFilename, &b1, BLACK|BGCYAN);
 SetXY(0,0);
 }
 else
 {
 b1=0x0d;
 strncpy(Filename, name, 13);
 cbFilename = strlen(Filename);
 }
 if ((b1==0x0d) && (cbFilename)) {
 erc = OpenFile(Filename, cbFilename, ModeModify, 1, &fh);
 if (!erc) {
 GetFileSize(fh, &filesize);
 if (filesize < 131000) /* Buf is 131071 */
 {
 erc = ReadBytes (fh, pBuf1, filesize, &dret);
 if (erc > 1)
 erc = CheckErc(2, erc);
 else erc = 0;
 pEdit->oBufLast = dret; /* offset+1 of last char */
 pBuf1[pEdit->oBufLast] = 0x0F; /* the SUN */
 }
 else
 {
 CloseFile(fh);
 fh = 0;
 Beep();
 SetXY(50, 24);
 TTYOut("File is too large to edit.", 26, BLACK|BGCYAN);
 ReadKbd(&keycode, 1);
 }
 }
 else if (erc == 203) { /* no such file */
 Beep();
 SetXY(50, 24);
 TTYOut("Doesn’t exist. Create?? (Y/N)", 29, BLACK|BGCYAN);
 ReadKbd(&keycode, 1);
 if (((keycode & 0xff) == ’Y’) || ((keycode & 0xff) == ’y’)) {
 erc = CheckErc(4, CreateFile(Filename, cbFilename, 0));

 if (!erc)
 erc = CheckErc(1, OpenFile(Filename, cbFilename,
 ModeModify, 1, &fh));

 if (erc) {
 fh = 0;
 cbFilename = 0;

MMURTL V1.0 Page 266 of 667

 }

 }
 else {
 cbFilename = 0;
 ClearStatus();
 }
 }
 else
 CheckErc(1, erc);
 }

 if (!erc)
 ClearStatus();
}

/**
 This counts ABSOLUTE LINES from the begining of the buffer
 upto to point of oBufLine0 (which is the first char displayed
 in the window. ABSOLUTE means LFs were found, even though
 we word wrap always.
***/

unsigned long CountEols (void)
{
unsigned long nEols, i;
unsigned char *pBuff;

 pBuff = pEdit->pBuf;
 nEols = 0;
 i = 0;

 while (i < pEdit->oBufLine0) /* count LFs */
 if (pBuff[i++] == 0x0A)
 nEols++;

 return(nEols);
}

/**
 This returns the index to the the last character in a line
 upto a maximum of sLine-1. iBuf points to the beginning
 point in the buffer to find the end of line for.
***/

unsigned long findEol (unsigned long iBuf)
{

unsigned long iEol, iEolMax;
unsigned char *pBuff;

 pBuff = pEdit->pBuf;

 /* Calculate the most it could be */

MMURTL V1.0 Page 267 of 667

 iEolMax = iBuf + pEdit->sLine-1;

 /* Fix it if EOL is past end of data */

 if (iEolMax > pEdit->oBufLast)
 iEolMax = pEdit->oBufLast;

 iEol = iBuf;
 while ((pBuff[iEol] != 0x0A) && (iEol < iEolMax)) /* Find CR */
 iEol++;
 if ((iEol == iEolMax) && (pBuff[iEol] != 0x0A)) { /* if no CR... */
 iEol = iEolMax;
 if (iEolMax < pEdit->oBufLast) {

 /* now work back to last space */
 while ((pBuff[iEol] != pEdit->bSpace) && (iEol > iBuf))
 iEol--;

 /* now find first non-space - allows */
 if ((iEol > iBuf) &&
 (pBuff[iEol] == pEdit->bSpace) && /* wrap-around w/ double space
*/
 (iEol == iEolMax)) {

 if ((pBuff[iEol-1] == pEdit->bSpace) ||
 ((iEol == iEolMax) && (pBuff[iEol+1] == pEdit->bSpace))) {
 while ((pBuff[iEol] == pEdit->bSpace) && (iEol > iBuf))
 iEol--;
 while ((pBuff[iEol] != pEdit->bSpace) && (iEol > iBuf))
 iEol--;
 }
 }
 if ((iEol == iBuf) &&
 (pBuff[iBuf] > 0) &&
 (pBuff[iEolMax] > 0)) /* handles "all-char" of full line */
 iEol = iEolMax;
 }
 }
 return(iEol);
}

/**
 This walks back through the buffer looking for the
 logical end of a line.
***/

unsigned long findPrevLine (unsigned long oBufStart)
{
unsigned long i, j;
char *pBuff;

 pBuff = pEdit->pBuf;

 i = 0;
 if (oBufStart)
 i = oBufStart - 1;

MMURTL V1.0 Page 268 of 667

 while ((i) && (pBuff[i] != 0x0A))
 i--;
 if (i > 0)
 i--;
 while ((i > 0) && (pBuff[i] != 0x0A))
 i--;
 if (i)
 i++; /* Get to known start of line */
 do {
 j = i;
 i = (findEol (j)) + 1;
 }
 while (i < oBufStart);
 return(j);
}

/**
 This executes the BEGIN BLOCK (Mark) command.
***/

void doMark (unsigned long iLn)
{
unsigned long iColStart, iColFinish, iMarkLoc, iBoundLoc;

 if (pEdit->oBufMark < EMPTY) {
 if (pEdit->oBufMark <= pEdit->oBufBound) {
 iMarkLoc = pEdit->oBufMark;
 iBoundLoc = pEdit->oBufBound;
 }
 else {
 iMarkLoc = pEdit->oBufBound;
 iBoundLoc = pEdit->oBufMark;
 }
 if (((iMarkLoc >= pEdit->Line[iLn]) && (iMarkLoc < pEdit->Line[iLn+1]))
 ||
 ((iBoundLoc >= pEdit->Line[iLn]) && (iBoundLoc < pEdit-
>Line[iLn+1])) ||
 ((iMarkLoc < pEdit->Line[iLn]) && (iBoundLoc >= pEdit->Line[iLn+1]))
)
 {
 if (iMarkLoc >= pEdit->Line[iLn])
 iColStart = pEdit->iColMin + iMarkLoc - pEdit->Line[iLn];
 else
 iColStart = pEdit->iColMin;

 if (iBoundLoc < pEdit->Line[iLn+1])
 iColFinish = pEdit->iColMin + iBoundLoc - pEdit->Line[iLn];
 else
 iColFinish = pEdit->iColMin + pEdit->Line[iLn+1] - pEdit->Line[iLn]
- 1;

 if (iColStart > pEdit->iColMin)
 PutVidAttrs (pEdit->iColMin,
 iLn,
 iColStart-pEdit->iColMin,
 pEdit->iAttrNorm);

MMURTL V1.0 Page 269 of 667

 PutVidAttrs (iColStart, iLn, iColFinish - iColStart +1, pEdit-
>iAttrMark);

 if (iColFinish < pEdit->iColMax)
 PutVidAttrs (iColFinish+1,
 iLn,
 pEdit->iColMax - iColFinish,
 pEdit->iAttrNorm);
 }
 else /*buf col*/
 PutVidAttrs (pEdit->iColMin,
 iLn,
 pEdit->sLine,
 pEdit->iAttrNorm);
 }
}

/**
 This inserts data into the main editing buffer.
***/

char putInBuf(unsigned char bPutIn,
 char fOvertype,
 char fSpecInsert)
{
unsigned long cb;
char fOK, *pBuff;

 fModified = 1;
 pBuff = pEdit->pBuf;

 if ((pEdit->oBufInsert < pEdit->iBufMax) &&
 ((pEdit->oBufLast < pEdit->iBufMax) ||
 ((fOvertype) && (!fSpecInsert))))
 {
 fOK = 1;
 if ((fOvertype) && (!fSpecInsert)) {
 pBuff[pEdit->oBufInsert] = bPutIn;
 if (pEdit->oBufLast == pEdit->oBufInsert)
 pEdit->oBufLast++;
 pEdit->oBufInsert++;
 }
 else {
 cb = pEdit->oBufLast - pEdit->oBufInsert + 1;
 CopyData (&pBuff[pEdit->oBufInsert], pEdit->pBufWork, cb);
 pBuff[pEdit->oBufInsert] = bPutIn;
 CopyData (pEdit->pBufWork, &pBuff[pEdit->oBufInsert+1], cb);
 pEdit->oBufLast++;
 pEdit->oBufInsert++;
 if (pEdit->oBufMark < EMPTY) {
 if (pEdit->oBufInsert-1 < pEdit->oBufMark)
 pEdit->oBufMark++;
 if (pEdit->oBufInsert-1 <= pEdit->oBufBound)
 pEdit->oBufBound++;
 }

MMURTL V1.0 Page 270 of 667

 }
 }
 else {
 fOK = 0;
 Beep();
 erc = 40400;
 }
 return (fOK);
}

/**
 This executes the MOVE command which moves a marked
 block to the cursor’s current location in the file.
***/

void moveData (void)
{
unsigned long i, iMk, iBd;
char *pBuff, *pBuffWork;

 pBuff = pEdit->pBuf;
 pBuffWork = pEdit->pBufWork;

if (pEdit->oBufMark < EMPTY) {
 fModified = 1;
 if (pEdit->oBufMark <= pEdit->oBufBound) {
 iMk = pEdit->oBufMark;
 iBd = pEdit->oBufBound;
 }
 else {
 iBd = pEdit->oBufMark;
 iMk = pEdit->oBufBound;
 }
 if ((pEdit->oBufInsert < iMk) || (pEdit->oBufInsert > iBd)) {
 for (i=0; i <= pEdit->oBufLast; i++)
 pBuffWork[i] = pBuff[i];
 if (pEdit->oBufInsert < iMk) {
 for (i=0; i<=iBd-iMk; i++) /* Move mk/bd */
 pBuff[pEdit->oBufInsert+i] = pBuffWork[iMk+i];
 for (i=0; i<=iMk - pEdit->oBufInsert - 1; i++) /* Shift overwritten
ahead */
 pBuff[pEdit->oBufInsert+iBd-iMk+1+i] =
 pBuffWork[pEdit->oBufInsert+i];
 }
 if (pEdit->oBufInsert > iBd) {
 for (i=0; pEdit->oBufInsert - iBd - 1; i++)
 pBuff[iMk+i] = pBuffWork[iBd+1+i];
 pEdit->oBufInsert = pEdit->oBufInsert - iBd + iMk - 1;
 for (i=0; i <=iBd-iMk; i++)
 pBuff[pEdit->oBufInsert+i] = pBuffWork[iMk+i];
 }
 iBd = pEdit->oBufInsert + iBd - iMk;
 iMk = pEdit->oBufInsert;
 if (pEdit->oBufBound > pEdit->oBufMark) {
 pEdit->oBufBound = iBd;
 pEdit->oBufMark = iMk;
 }

MMURTL V1.0 Page 271 of 667

 else {
 pEdit->oBufMark = iBd;
 pEdit->oBufBound = iMk;
 }
 }
}
 else Beep();
}

/**
 This executes the COPY command which copies a marked
 block to the cursor’s current location in the file.
***/

void CopyIt (void)
{
unsigned long iMk, iBd;
char *pBuff, *pBuffWork;

 pBuff = pEdit->pBuf;
 pBuffWork = pEdit->pBufWork;

if (pEdit->oBufMark < EMPTY) {
 fModified = 1;

 if (pEdit->oBufMark <= pEdit->oBufBound) {
 iMk = pEdit->oBufMark;
 iBd = pEdit->oBufBound;
 } else {
 iBd = pEdit->oBufMark;
 iMk = pEdit->oBufBound;
 }
 if (pEdit->oBufLast+iBd-iMk+1 < pEdit->iBufMax) {
 CopyData(pBuff, pBuffWork, pEdit->oBufLast+1);
 CopyData(&pBuffWork[iMk], &pBuff[pEdit->oBufInsert], iBd-iMk+1);
 if (pEdit->oBufLast >= pEdit->oBufInsert)
 CopyData(&pBuffWork[pEdit->oBufInsert],
 &pBuff[pEdit->oBufInsert+iBd-iMk+1],
 pEdit->oBufLast - pEdit->oBufInsert+1);
 iBd = pEdit->oBufInsert + iBd - iMk;
 iMk = pEdit->oBufInsert;
 pEdit->oBufInsert = pEdit->oBufInsert + iBd - iMk + 1;
 pEdit->oBufLast = pEdit->oBufLast + iBd - iMk + 1;
 if (pEdit->oBufBound > pEdit->oBufMark) {
 pEdit->oBufBound = iBd;
 pEdit->oBufMark = iMk;
 }
 else {
 pEdit->oBufMark = iBd;
 pEdit->oBufBound = iMk;
 }
 }
}
else Beep();
}

/**

MMURTL V1.0 Page 272 of 667

 This executes the COPY command which copies a marked
 block to the cursor’s current location in the file.
***/

void normAttr (void)
{
unsigned long i;

 for (i = pEdit->iRowMin; i <= pEdit->iRowMax; i++)
 PutVidAttrs (pEdit->iColMin, i, pEdit->sLine, pEdit->iAttrNorm);
}

/**
 This unmarks a selected block. (hides it).
***/

void nullMarkBound (void)
{
 pEdit->oBufMark = EMPTY;
 pEdit->oBufBound = EMPTY;
 normAttr ();
}

/**
 This DELETES a selected block.
***/

void deleteData (void)
{
unsigned long i, iMk, iBd;
char fProb;
char *pBuff, *pBuffWork;

 pBuff = pEdit->pBuf;
 pBuffWork = pEdit->pBufWork;

if (pEdit->oBufMark < EMPTY) {
 fModified = 1;
 if (pEdit->oBufMark <= pEdit->oBufBound) {
 iMk = pEdit->oBufMark;
 iBd = pEdit->oBufBound;
 } else {
 iBd = pEdit->oBufMark;
 iMk = pEdit->oBufBound;
 }
 if ((pEdit->oBufLine0 >= iMk) && (pEdit->oBufLine0 <= iBd))
 fProb = TRUE;
 else fProb = FALSE;
 CopyData(&pBuff[iBd+1], &pBuff[iMk], pEdit->oBufLast-iBd);
 pEdit->oBufLast = pEdit->oBufLast - iBd + iMk - 1;
 if (pEdit->oBufInsert > iBd)
 pEdit->oBufInsert = pEdit->oBufInsert - iBd + iMk;
 else if ((pEdit->oBufInsert > iMk) && (pEdit->oBufInsert <= iBd))
 pEdit->oBufInsert = iMk;
 if (pEdit->oBufInsert > pEdit->oBufLast)
 pEdit->oBufInsert = pEdit->oBufLast;
 if (fProb) {

MMURTL V1.0 Page 273 of 667

 i = findPrevLine (pEdit->oBufInsert);
 pEdit->oBufLine0 = i;
 }
 nullMarkBound ();
}
}

/**
 After screen movement (such as scrolling), this
 finds the proper location of the cursor in relationship
 to the portion of the file currently displayed.
***/

void findCursor (void)
{
 /* locates cursor based on oBufInsert
 - might be off screen - if it is, this
 will adjust screen */

unsigned long i, j;

 i = pEdit->iRowMin;
 while ((i <= pEdit->iRowMax) && (pEdit->oBufInsert >= pEdit->Line[i]))
 i++;
 pEdit->iLine = i - 1;
 if (pEdit->iLine < pEdit->iRowMin)
 pEdit->iLine = pEdit->iRowMin;

 j = pEdit->iLine;
 if ((pEdit->Line[j+1] < EMPTY) &&
 (pEdit->oBufInsert >= pEdit->Line[j+1]))
 pEdit->iLine = pEdit->iLine + 1;
 j = pEdit->iLine;
 pEdit->iCol = pEdit->oBufInsert - pEdit->Line[j] + pEdit->iColMin;
 if (pEdit->iLine > pEdit->iRowMax + 1)
 pEdit->iLine = pEdit->iRowMax;
}

/**
 This readjusts iCol & iLine to get them back in sync with
 oBufInsert if oBufInsert is on screen. If oBufInsert is
 not onscreen, this makes it so it is!
***/

void coordCursor_oBuf (void)
{
unsigned long oBuf, i;

 i = pEdit->iRowMax+1;
 if ((pEdit->oBufInsert >= pEdit->oBufLine0) &&
 (pEdit->oBufInsert < pEdit->Line[i])) {

 /* if bogus line, guarantee end of good */

 i = pEdit->iLine;
 if (pEdit->Line[i] == EMPTY)
 pEdit->iCol = pEdit->iColMax;

MMURTL V1.0 Page 274 of 667

 /* if bogus line, find last good line */

 while ((pEdit->Line[i] == EMPTY) &&
 (i > pEdit->iRowMin)) {
 pEdit->iLine--;
 i = pEdit->iLine;
 }

 i = pEdit->iLine;
 pEdit->oBufInsert =
 pEdit->Line[i] + pEdit->iCol - pEdit->iColMin;
 if (pEdit->oBufInsert > pEdit->oBufLast)
 pEdit->oBufInsert = pEdit->oBufLast;
 oBuf = pEdit->Line[i+1];
 if (pEdit->oBufInsert > oBuf)
 pEdit->oBufInsert = oBuf; /* get to potential insert - is, if
 prev char <> CR, is not if prev =
CR */
 if (pEdit->oBufInsert == oBuf) /* if at EOL */
 if (pEdit->pBuf[oBuf-1] == 0x0A)
 pEdit->oBufInsert--;
 pEdit->iCol = pEdit->oBufInsert + pEdit->iColMin -
 pEdit->Line[i];
 }
}

/**
 Adjusts oBufLine0 to make sure that oBufInsert is on the screen.
 This also sets all of the Line array values (Line[n])
***/

void makeOnScreen (void)
{
unsigned long i, j, k;

 /* If oBufInsert is not on screen (above current display)
 then find the previous line beginning and make that
 the new first line 1 until it is!
 */

 while (pEdit->oBufInsert < pEdit->oBufLine0)
 pEdit->oBufLine0 = findPrevLine (pEdit->oBufLine0);

 /* Set Line[iRowMin] to match oBufLine0 */

 k = pEdit->iRowMin;
 pEdit->Line[k] = pEdit->oBufLine0;

 /* Set all subsequent Line[s] by calling findEol for each. */

 for (i = k; i <= pEdit->iRowMax; i++) {
 if (pEdit->Line[i] < EMPTY) {
 j = findEol (pEdit->Line[i]);
 if (j < pEdit->oBufLast) /* j = offset of last char of line */
 pEdit->Line[i+1] = j + 1;

MMURTL V1.0 Page 275 of 667

 else
 for (j=i+1; j<NLINESMAX; j++)
 pEdit->Line[j] = EMPTY;
 }
 }

 /* If the InsertPoint (your cursor position) is past
 the last line then do this junk to fix it */

 j = pEdit->iRowMin;
 k = pEdit->iRowMax;
 while (pEdit->oBufInsert >= pEdit->Line[k+1]) {
 for (i=j; i<=k; i++)
 pEdit->Line[i] = pEdit->Line[i+1];
 pEdit->oBufLine0 = pEdit->Line[j];

 i = findEol (pEdit->Line[k]); /* EOL of iRowMax */
 if (i < pEdit->oBufLast) /* i = offset of last char of line
*/
 pEdit->Line[k+1] = i + 1;
 else pEdit->Line[k+1] = EMPTY;
 }
}

/**
 Redisplay all data on the screen.
***/

void showScreen (char *pFiller)
{
unsigned long i, iLn, cb, oBuf;
char *pBuff;

 pBuff = pEdit->pBuf;

 makeOnScreen (); /* oBufInsert on screen - Line correct */

 for (iLn = pEdit->iRowMin; iLn <= pEdit->iRowMax; iLn++) {

 /* i = offset in buf of last char on line */
 /* cb = nchars in line */

 cb = 0;
 oBuf = pEdit->Line[iLn];
 if (oBuf < EMPTY) {
 if (pEdit->Line[iLn+1] < EMPTY)
 i = pEdit->Line[iLn+1] - 1;
 else
 i = pEdit->oBufLast;
 cb = i - oBuf + 1; /* Make size, not offset */

 if ((!pEdit->fVisible) &&
 (pBuff[i] == 0x0A) &&
 (cb))
 cb--;
 }

MMURTL V1.0 Page 276 of 667

 if ((cb) && (oBuf < EMPTY))
 PutVidChars (pEdit->iColMin, iLn, pBuff+oBuf, cb,
 pEdit->iAttrNorm);

 if (cb < pEdit->sLine)
 PutVidChars (pEdit->iColMin+cb, iLn, pFiller, pEdit->sLine-cb,
 pEdit->iAttrNorm);

 doMark (iLn);
 }
}

/**
 Resets all variables for the editor and clears the
 buffers. Called before use and after closure.
***/

void clearbuf (void)
{
unsigned long i;
char *pBuff;

 pBuff = pEdit->pBuf;
 FillData(filler, 80, 0x20);
 for (i=0; i<NLINESMAX; i++)
 pEdit->Line[i] = EMPTY;
 i = pEdit->iRowMin;
 pEdit->Line[i] = 0;

 pEdit->iCol = pEdit->iColMin;
 pEdit->iLine = pEdit->iRowMin;
 pEdit->bSpace = 0x20;
 pEdit->fVisible = FALSE;
 fModified = 0;
 fOvertype = FALSE;
 pEdit->oBufLast = 0;
 pEdit->oBufInsert = 0;
 pEdit->oBufLine0 = 0;
 pBuff[pEdit->oBufLast] = 0x0F; /* the SUN */
 nullMarkBound();
 normAttr ();
}

/**
 This is the main editing function. It is a HUGE while
 loop which reads keystrokes and processes them.
***/

void Editor(char *pbExitRet)
{
unsigned long i, j, k, key;
char fSpecInsert; /* TRUE = insert no matter what fOvertype is */
char fScreen; /* TRUE = display entire screen */
char fDone;
unsigned char b;
char *pBuff, *pBuffWork;

MMURTL V1.0 Page 277 of 667

long exch;

 pBuff = pEdit->pBuf;
 pBuffWork = pEdit->pBufWork;
 fDone = FALSE;

 if (pEdit->fVisible)
 {
 pEdit->bSpace = 0x07;
 for (i=0; i <=pEdit->oBufLast; i++)
 if (pBuff[i] == 0x20)
 pBuff[i] = pEdit->bSpace;
 } else
 pEdit->bSpace = 0x20;

 normAttr ();
 fScreen = TRUE;

 pBuff[pEdit->oBufLast] = 0x0F; /* the SUN */

 erc = AllocExch(&exch);

 while (!fDone)
 {
 if (fScreen)
 {
 showScreen (filler); /* we know oBufInsert on screen */
 findCursor ();
 fScreen = FALSE;
 }
 SetXY (pEdit->iCol, pEdit->iLine);
 FillData(aStat, 80, 0x20);
 i= CountEols() + pEdit->iLine;
 sprintf(aStat,"C: %02d L: %05d nChars: %05d",
 pEdit->iCol, i, pEdit->oBufLast);
 if (cbFilename)
 CopyData(Filename, &aStat[40], cbFilename);
 if (fOvertype)
 CopyData("OVR", &aStat[77], 3);
 else
 CopyData("INS", &aStat[77], 3);
 PutVidChars (0, 0, aStat, 80, STATVID);

 fSpecInsert = FALSE; /* True if char should be inserted even if fOver */

 CheckErc(7, ReadKbd (&key, 1)); /* Wait for char */

 b = key & 0xff;

 if (key & 0x3000) { /* ALT key is down */

 switch (b) {

 case 0x42: /* ALT-B -- Beginning of Text */
 case 0x62: /* ALT-b */
 pEdit->oBufLine0 = 0;

MMURTL V1.0 Page 278 of 667

 pEdit->oBufInsert = 0;
 pEdit->iCol = pEdit->iColMin;
 pEdit->iLine = pEdit->iRowMin;
 fScreen = TRUE;
 break;

 case 0x43: /* ALT-C -- CloseFile */
 case 0x63: /* ALT-c */
 SaveFile(TRUE, TRUE);
 fScreen = TRUE;
 break;
 case 0x45: /* ALT-E -- End of Text */
 case 0x65: /* ALT-e */
 pEdit->oBufInsert = pEdit->oBufLast;
 coordCursor_oBuf ();
 fScreen = TRUE;
 break;
 case 0x01: /* ALT-UP Arrow - Cursor to top of screen */
 pEdit->iLine = pEdit->iRowMin;
 pEdit->iCol = pEdit->iColMin;
 break;
 case 0x02: /* ALT Down Arrow - Cursor to bottom of screen */
 pEdit->iLine = pEdit->iRowMin;
 i = pEdit->iLine;
 while ((pEdit->Line[i+1] < EMPTY) &&
 (i < pEdit->iRowMax)) {
 pEdit->iLine++;
 i = pEdit->iLine;
 }
 pEdit->iCol = pEdit->iColMax;
 coordCursor_oBuf ();
 break;
 case 0x03: /* ALT-Left Arrow - Cursor to BOL */
 pEdit->iCol = pEdit->iColMin;
 break;
 case 0x04: /* ALT-Right Arrow - Cursor to EOL */
 i = pEdit->iLine;
 if (pEdit->Line[i+1] < EMPTY) {
 pEdit->iCol =
 pEdit->iColMin +
 pEdit->Line[i+1] -
 pEdit->Line[i];
 i = pEdit->iLine+1;
 if ((pBuff[pEdit->Line[i]-1] == 0x0A)
 && (pEdit->iCol > pEdit->iColMin))
 pEdit->iCol--;
 }
 else pEdit->iCol = pEdit->iColMin +
 pEdit->oBufLast - pEdit->Line[i];
 break;

 case 0x56: /* ALT-V Make nontext chars Visible/Invisible
*/
 case 0x76: /* ALT-v */
 if (pEdit->fVisible) {
 for (i=0; i <= pEdit->oBufLast; i++)
 if (pBuff[i] == 0x07)

MMURTL V1.0 Page 279 of 667

 pBuff[i] = 0x20;
 pEdit->fVisible = FALSE;
 pEdit->bSpace = 0x20;
 } else {
 for (i=0; i<=pEdit->oBufLast; i++)
 if (pBuff[i] == 0x20)
 pBuff[i] = 0x07;
 pEdit->fVisible = TRUE;
 pEdit->bSpace = 0x07;
 }
 fScreen = TRUE;
 break;
 case 0x4F: /* ALT-O OpenFile */
 case 0x6F: /* ALT-o */
 if (!fh) {
 clearbuf();
 OpenAFile(0);
 fScreen = TRUE;
 }
 break;
 case 0x51: /* ALT Q - Quit */
 case 0x71:
 SaveFile(TRUE, TRUE);
 fDone = TRUE;
 break;
 case 0x53: /* ALT S - SaveFile */
 case 0x73: /* ALT s */
 SaveFile(FALSE, FALSE);
 fScreen = TRUE;
 break;
 case 0x7F: /* ALT Delete (Delete Marked Block) */
 if (pEdit->oBufMark < EMPTY) {
 deleteData ();
 fScreen = TRUE;
 }
 break;
 default:
 break;
 }
 }

 else if (key & 0x0300) { /* CTRL key is down */

 }

 /* Standard editing keys including LF */

 else if (((b >= 0x20) && (b <= 0x7E)) || (b == 0x0D)) {
 coordCursor_oBuf ();
 if (b == 0x20)
 b = pEdit->bSpace;
 if (b == 0x0D)
 b = 0x0A;
 /* Don’t overwrite CR */
 if (pBuff[pEdit->oBufInsert] == 0x0A)
 fSpecInsert = TRUE;

MMURTL V1.0 Page 280 of 667

 if (!(putInBuf (b, fOvertype, fSpecInsert)))
 Beep();
 findCursor ();
 fScreen = TRUE;

 }

 else if (key & 0x0C00) { /* SHIFT key is down & NOT letter keys */
 switch (b) {
 case 0x04: /* SHIFT Right */
 if (pEdit->iCol < pEdit->iColMax - 5)
 pEdit->iCol += 5;
 else
 if (pEdit->iCol < pEdit->iColMax)
 pEdit->iCol++;
 break;
 case 0x03: /* SHIFT Left */
 if (pEdit->iCol > pEdit->iColMin + 5)
 pEdit->iCol -= 5;
 else
 if (pEdit->iCol > pEdit->iColMin)
 pEdit->iCol--;
 break;
 default:
 break;
 }
 }

 else { /* Unshifted editing keys */
 switch (b) {
 case 0x08: /* Backspace */
 if (pEdit->oBufLast) {
 coordCursor_oBuf ();
 if (pEdit->oBufInsert) {
 pEdit->oBufInsert = pEdit->oBufInsert - 1;
 if (!fOvertype) {
 CopyData(pBuff,
 pBuffWork,
 pEdit->oBufLast+1);
 CopyData(&pBuffWork[pEdit->oBufInsert+1],
 &pBuff[pEdit->oBufInsert],
 pEdit->oBufLast-pEdit->oBufInsert);
 pBuff[pEdit->oBufLast] = 0;
 pEdit->oBufLast = pEdit->oBufLast - 1;
 if ((pEdit->oBufMark == pEdit->oBufBound) &&
 (pEdit->oBufMark == pEdit->oBufInsert))
 nullMarkBound ();
 if (pEdit->oBufMark < EMPTY) {
 if (pEdit->oBufInsert <= pEdit->oBufMark)
 pEdit->oBufMark--;
 if (pEdit->oBufInsert <= pEdit->oBufBound)
 pEdit->oBufBound--;
 }
 }
 }
 if (pEdit->oBufInsert < pEdit->oBufLine0)
 pEdit->oBufLine0 = findPrevLine (pEdit->oBufLine0);

MMURTL V1.0 Page 281 of 667

 fScreen = TRUE;
 fModified = TRUE;
 }
 break;
 case 0x06: /* Home - Cursor to BOL */
 pEdit->iCol = pEdit->iColMin;
 break;
 case 0x09: /* Tab */
 if (pEdit->oBufLast + pEdit->iTabNorm < pEdit->iBufMax) {
 coordCursor_oBuf ();
 j = pEdit->iTabNorm - (pEdit->iCol % pEdit->iTabNorm);
 for (i=1; i <=j; i++)
 putInBuf (pEdit->bSpace, FALSE, FALSE);
 fScreen = TRUE;
 }
 break;
 case 0x10: /* F2 -- UNMARK BLOCK */
 nullMarkBound ();
 break;
 case 0x11: /* F3 -- Begin Block */
 if (pEdit->oBufLast > 0) {
 coordCursor_oBuf ();
 pEdit->oBufMark = pEdit->oBufInsert;
 i = pEdit->iLine;
 if (pEdit->oBufMark >= pEdit->Line[i+1])
 pEdit->oBufMark = pEdit->oBufMark - 1;
 if (pEdit->oBufMark == pEdit->oBufLast)
 pEdit->oBufMark = pEdit->oBufLast - 1;
 pEdit->oBufBound = pEdit->oBufMark;
 fScreen = TRUE;
 }
 break;
 case 0x12: /* F4 -- End Block */
 if (pEdit->oBufMark < EMPTY) {
 coordCursor_oBuf ();
 pEdit->oBufBound = pEdit->oBufInsert;
 i = pEdit->iLine;
 if (pEdit->oBufBound >= pEdit->Line[i+1])
 pEdit->oBufBound--;
 if (pEdit->oBufBound == pEdit->oBufLast)
 pEdit->oBufBound = pEdit->oBufLast - 1;
 fScreen = TRUE;
 }
 break;
 case 0x17: /* F9 - MOVE */
 coordCursor_oBuf ();
 moveData ();
 if (pEdit->oBufInsert < pEdit->oBufLine0)
 pEdit->oBufLine0 = pEdit->oBufInsert;
 fScreen = TRUE;
 break;
 case 0x18: /* F10 - COPY */
 coordCursor_oBuf ();
 CopyIt ();
 coordCursor_oBuf ();
 fScreen = TRUE;
 break;

MMURTL V1.0 Page 282 of 667

 case 0x0C: /* Page Down */
 coordCursor_oBuf ();
 i = pEdit->iRowMax;
 while ((pEdit->Line[i] == EMPTY) && (i > pEdit->iRowMin))
 i--;
 pEdit->oBufLine0 = pEdit->Line[i];
 /*always keep onScreen*/
 if (pEdit->oBufInsert < pEdit->oBufLine0)
 pEdit->oBufInsert = pEdit->oBufLine0;
 pEdit->iLine = pEdit->iRowMin;
 pEdit->iCol = pEdit->iColMin;
 fScreen = TRUE;
 break;
 case 0x05: /* Page Up */
 if (pEdit->oBufLine0) {
 coordCursor_oBuf ();
 j = pEdit->iRowMax - pEdit->iRowMin;
 i = pEdit->oBufLine0;
 k = pEdit->iLine; /*fix for scrolling when iLine=iRowMax
*/
 do {
 i = findPrevLine (i);
 j--;
 k--;
 }
 while ((j > 0) && (i > 0));
 pEdit->oBufLine0 = i;
 /*fix for scroll when iLine=iRowMax*/
 if (pEdit->iLine == pEdit->iRowMax)
 pEdit->oBufInsert = pEdit->Line[k];
 /*keep on screen*/
 i = pEdit->iRowMax;
 if (pEdit->oBufInsert >= pEdit->Line[i+1])
 pEdit->oBufInsert = pEdit->Line[i];
 fScreen = TRUE;
 }
 break;
 case 0x01: /* Up */
 if (pEdit->iLine > pEdit->iRowMin) {
 pEdit->iLine--;
 } else { /* scroll screen down if we can */
 i = pEdit->oBufLine0;
 if (i > 0) {
 i = findPrevLine (i);
 pEdit->oBufLine0 = i;
 pEdit->oBufInsert = i;
 fScreen = TRUE;
 }
 }
 break;
 case 0x02: /* Down */
 i = pEdit->iLine;
 if ((pEdit->Line[i+1] < EMPTY) && /*Down Arrow*/
 (i < pEdit->iRowMax)) {
 pEdit->iLine++;
 }
 else { /* ELSE scroll screen UP if we can */

MMURTL V1.0 Page 283 of 667

 i = pEdit->iRowMax;
 if (pEdit->Line[i+1] < EMPTY) {
 pEdit->oBufInsert = pEdit->Line[i+1];
 i = pEdit->iCol;
 j = pEdit->iLine;
 coordCursor_oBuf ();
 pEdit->iCol = i;
 pEdit->iLine = j;
 fScreen = TRUE;
 }
 }
 break;
 case 0x03: /* Left */
 if (pEdit->iCol > pEdit->iColMin) { /*Left Arrow*/
 pEdit->iCol--;
 }
 break;
 case 0x04: /* Right */
 if (pEdit->iCol < pEdit->iColMax) {
 pEdit->iCol++;
 }
 break;
 case 0x0E: /* Insert */
 if (fOvertype)
 fOvertype = FALSE;
 else fOvertype = TRUE;
 break;
 case 0x7F: /* Delete */
 coordCursor_oBuf ();
 if ((pEdit->oBufLast) &&
 (pEdit->oBufLast > pEdit->oBufInsert)) {
 CopyData(pBuff,
 pBuffWork,
 pEdit->oBufLast+1);
 CopyData(&pBuffWork[pEdit->oBufInsert+1],
 &pBuff[pEdit->oBufInsert],
 pEdit->oBufLast-pEdit->oBufInsert);
 pBuff[pEdit->oBufLast] = 0;
 pEdit->oBufLast--;
 if ((pEdit->oBufInsert == pEdit->oBufMark) &&
 (pEdit->oBufMark == pEdit->oBufBound))
 nullMarkBound ();
 if (pEdit->oBufMark < EMPTY) {
 if (pEdit->oBufInsert < pEdit->oBufMark)
 pEdit->oBufMark--;
 if (pEdit->oBufInsert < pEdit->oBufBound)
 pEdit->oBufBound--;
 if (pEdit->oBufMark == pEdit->oBufLast)
 pEdit->oBufMark--;
 if (pEdit->oBufBound == pEdit->oBufLast)
 pEdit->oBufBound--;
 }
 fScreen = TRUE;
 fModified = TRUE;
 }
 break;
 default:

MMURTL V1.0 Page 284 of 667

 break;
 }
 }
 } /* Not fDone */

 for (i=pEdit->iRowMin; i <=pEdit->iRowMax; i++)
 PutVidAttrs (pEdit->iColMin, i, pEdit->sLine+1, 0); /* REM buffer column
*/

 if (fh) {
 if (pEdit->fVisible) /* fix visible characters */
 for (i=0; i <=pEdit->iBufMax; i++)
 if (pBuff[i] == 0x07)
 pBuff[i] = 0x20;
 pBuff[pEdit->oBufLast] = 0;
 if (fModified) {
 erc = CheckErc(6, SetFileLFA(fh, 0));
 if (!erc)
 erc = CheckErc(5, SetFileSize(fh,pEdit->oBufLast));
 if (!erc)
 erc = CheckErc(3, WriteBytes (fh, pBuf1, pEdit->oBufLast,
&i));
 fModified = 0;
 }
 CloseFile(fh);
 cbFilename = 0;
 }

 *pbExitRet = b;
 return;
}

/**
 This is the main entry point for the editor. It allocates
 two buffers of equal size (a main and a working buffer),
 and then checks for a single parameter which should be the
 name of the file to edit.
***/

void main(U32 argc, U8 *argv[])
{
long i;

 ClrScr();
 SetJobName("Editor", 6);
 fh = 0;

 pEdit = &EdRec;
 erc = AllocPage(32, &pBuf1); /* 32 pages = 128K */
 erc = AllocPage(32, &pBuf2);

 pEdit->pBuf = pBuf1;
 pEdit->pBufWork = pBuf2;
 pEdit->iBufMax = 131071; /*sBuf - 1 */
 pEdit->iColMin = 0; /*Screen coordinates*/
 pEdit->iColMax = 79;

MMURTL V1.0 Page 285 of 667

 pEdit->iRowMin = 1;
 pEdit->iRowMax = 23;
 pEdit->sLine = 80; /* iColMax-iColMin+1 */
 pEdit->bSpace = 0x20;
 pEdit->fVisible = FALSE;
 pEdit->iAttrMark = MARKVID; /* Rev Vid*/
 pEdit->iAttrNorm = EDVID; /* Rev Vid Half Bright */
 pEdit->iTabNorm = 4; /* Tabs every 4th column */
 pEdit->oBufLine0 = 0; /* oBufLine0 */
 pEdit->iCol = 0; /* cursor, 0..sLine-1 */
 pEdit->iLine = 0; /* cursor, 0..cLines-1 */
 pEdit->oBufInsert = 0; /* offset of next char in */
 pEdit->oBufLast = 0; /* offset+1 of last char */
 pEdit->oBufMark = EMPTY;
 pEdit->oBufBound = EMPTY;

 SetNormVid(NORMVID);

 FillData(filler, 80, 0x20);
 for (i=0; i<NLINESMAX; i++)
 pEdit->Line[i] = EMPTY;
 i = pEdit->iRowMin;
 pEdit->Line[i] = 0;

 fModified = 0;
 fOvertype = FALSE; /* Set Overtype OFF */

 if (argc > 1)
 {
 OpenAFile(argv[1]);
 }

 Editor(&b);
 ExitJob(0);
}

DumbTerm

DumbTerm is possibly the "dumbest" communications terminal program in existence. It’s
included here to demonstrate the interface to the RS-232 communications device driver.

Listing 16.3 - DumbTerm source code.

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include "\OSSOURCE\MDevDrv.h"
#include "\OSSOURCE\MJob.h"
#include "\OSSOURCE\MKbd.h"

MMURTL V1.0 Page 286 of 667

#include "\OSSOURCE\MTimer.h"
#include "\OSSOURCE\MVid.h"
#include "\OSSOURCE\RS232.h"
#define NORMVID BRITEWHITE|BGBLUE
#define CLIVID WHITE|BGBLACK
unsigned long key;
struct statRecC com;
/***/
void main(void)
{
int erc, i;
unsigned char b, lastb;
char fOK;

SetNormVid(NORMVID);
ClrScr();

printf(" Terminally DUMB, Dumb Terminal Program\r\n");
printf(" (MMURTL Comms Device Driver demo) \r\n");

/* Get the 64 byte device status block which is specific to the
RS-232 device driver. The structure is defined in commdrv.h
*/

 erc = DeviceStat(6, &com, 64, &i);

 if (erc)
 {
 SetNormVid(CLIVID);
 ClrScr();
 printf("Error on Device Stat: %d\r\n", erc);
 ExitJob(erc);
 }

 /* set the params in the block */

 com.Baudrate = 9600;
 com.parity = NO_PAR;
 com.databits = 8;
 com.stopbits = 1;

/* View other params which we could set, but should already be
 defaulted with standard values when driver was initialized.
*/

 printf("IRQNum: %d\r\n", com.IRQNum);
 printf("IOBase: %d\r\n", com.IOBase);
 printf("sXBuf: %d\r\n", com.XBufSize);
 printf("sRBuf: %d\r\n", com.RBufSize);
 printf("RTimeO: %d\r\n", com.RTimeOut);
 printf("XTimeO: %d\r\n", com.XTimeOut);

/* Set the params we changed with a DeviceInit */

 erc = DeviceInit(6, &com, 64);
 if (erc)
 {

MMURTL V1.0 Page 287 of 667

 SetNormVid(CLIVID);
 ClrScr();
 printf("Error on Device Init: %d\r\n", erc);
 ExitJob(erc);
 }

 /* If device init went OK, we open the comms port */

 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(6, CmdOpenC, 0, 0, &i);

 if (erc)
 {
 SetNormVid(CLIVID);
 ClrScr();
 printf("OpenCommC ERROR: %d \r\n", erc);
 ExitJob(erc);
 }

 printf("Communications Port Initialized.\r\n");

 fOK = 1;

 /* This is it... */

 while (fOK)
 {

 if (!ReadKbd(&key, 0)) /* no wait */
 {
 b = key & 0x7f;

 if (key & 0x3000)
 { /* ALT key is down */
 switch (toupper(b))
 {
 case ’Q’ :
 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(6, CmdCloseC, 0, 0, &i);
 SetNormVid(CLIVID);
 ClrScr();
 ExitJob(erc);
 break;
 default: break;
 }
 }
 else
 {
 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(6, CmdWriteB, 0, 0, &b);
 if (erc)
 printf("WriteByteCError: %d \r\n", erc);
 else
 {
 if (b == 0x0D)
 {

MMURTL V1.0 Page 288 of 667

 b = 0x0A;
 erc = DeviceOp(6, CmdWriteB, 0, 0, &b);
 }
 }
 }
 }
 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(6, CmdReadB, 0, 0, &b);
 if (!erc)
 {
 TTYOut (&b, 1, NORMVID);
 /* add a LF if it’s not there after a CR... */
 if ((lastb == 0x0D) && (b != 0x0A))
 TTYOut ("\n", 1, NORMVID);
 lastb = b;
 }
 }

}

Print

The print program is an example of using the device-driver interface for the parallel LPT device
driver. The Print program formats a text file and sends it to the LPT device. It recognizes the
follow command-line switches:

\n - Expand tabs to n space columns (n = 1,2,4 or 8)
\D - Display the file while printing
\F - Suppress the Form Feed sent by the Print command
\B - Binary print. Send with no translations.

Print also converts single-line feeds to CR/LF.

In listing 16.4, notice the device-driver interface is almost identical for each device. (Compare
DumbTerm and this program). That’s the intention of the design. The differences handling
different devices will be the values in the status record and also and commands that are specific
to a driver.

Listing 16.4.Print source code.

/* A simple program that prints a single file directly using
 the Parallel Device Driver in MMURTL (Device No. 3 "LPT")
*/

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdio.h>

MMURTL V1.0 Page 289 of 667

#include <stdlib.h>

#include "\OSSource\MDevDrv.h"
#include "\OSSource\MJob.h"
#include "\OSSource\MKbd.h"
#include "\OSSource\MTimer.h"
#include "\OSSource\MVid.h"
#include "\OSSource\Parallel.h"

#define FF 0x0C
#define LF 0x0A
#define CR 0x0D
#define TAB 0x09

unsigned long key;

long tabstops = 4;
long NoFF = 0;
long fDisplay = 0;
long fBinary = 0;
long col = 0;

char name[80];
FILE *f;

struct statRecL lpt;

/***/

void main(long argc, unsigned char *argv[])
{
long erc, erck, i, cl;
unsigned char b, lastb;
char fdone, *ptr;

 SetJobName("Printing", 8);

 name[0] = 0;

 for(i=1; i < argc; ++i) /* start at arg 1 */
 {
 ptr = argv[i];
 if (*ptr == ’/’)
 {
 ptr++;
 switch(*ptr)
 {
 case ’1’ : /* Tab Translation Width */
 case ’2’ :
 case ’4’ :
 case ’8’ :
 tabstops = *ptr - 0x30;
 break;
 case ’F’ : /* No FF at end of file */
 case ’f’ :
 NoFF = 1;
 break;

MMURTL V1.0 Page 290 of 667

 case ’D’ : /* Display while printing */
 case ’d’ :
 fDisplay = 1;
 break;
 case ’B’ : /* BINARY - No translation at all! */
 case ’b’ :
 fBinary = 1;
 break;
 default:
 printf("Invalid switch");
 exit(1);
 break;
 }
 }
 else if(!name[0])
 strncpy (name, argv[i], 79);
 }

 if (!name[0])
 {
 /* Input file not explicitly named errors out */

 printf("Print File, Version 1,0\r\n");
 printf("Usage: Filename /1 /2 /4 /8 /F /D /B\r\n");
 printf("/1 /2 /4 /8 - Tab stop translation value\r\n");
 printf("/F no FormFeed at end of file\r\n");
 printf("/D Display file while printing\r\n");
 printf("/B Binary print. NO translation, no FF\r\n\n");
 printf("Error: Source filename required\r\n");
 exit(1);
 }

 /* Get the 64 byte device status block which is specific to the
 parallel device driver. The structure is defined in parallel.h
 We do this just to see if it’s a valid device.
 */

 erc = DeviceStat(3, &lpt, 64, &i);

 if (erc)
 {
 printf("Error getting LPT Device Status: %d\r\n", erc);
 ExitJob(erc);
 }

 /* If device status went OK, we open the printer port */

 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(3, CmdOpenL, 0, 0, &i);

 if (erc)
 {
 printf("OpenLPT ERROR: %d \r\n", erc);
 ExitJob(erc);
 }

 printf("Printing %s ...\r\n", name);

MMURTL V1.0 Page 291 of 667

 /* This is it... */

 f = fopen(name, "r");

 if (!f)
 {
 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(3, CmdCloseLU, 0, 0, &i);
 printf("Can’t open: %s\r\n", name);
 ExitJob(erc);
 }

 col = 0;
 i = 0;
 b = 0;
 fdone = 0;

 while ((!fdone) && (!erc))
 {
 i++;
 cl = fgetc(f);
 lastb = b;
 b = (cl & 0xff);

 if (cl == EOF)
 {
 fdone = 1;
 }
 else if (fBinary)
 {
 erc = DeviceOp(3, CmdWriteB, 0, 1, &lastb);
 }
 else
 {
 switch (b)
 { /* print/translate the char */
 case CR:
 erc = DeviceOp(3, CmdWriteB, 0, 1, &b);
 break;
 case LF:
 if (lastb != CR)
 {
 lastb = CR;
 erc = DeviceOp(3, CmdWriteB, 0, 1, &lastb);
 }
 erc = DeviceOp(3, CmdWriteB, 0, 1, &b);
 if (fDisplay)
 printf("\r\n", lastb);
 col = 0; /* reset */
 break;
 case TAB:
 do
 {
 erc = DeviceOp(3, CmdWriteB, 0, 1, " ");
 col++;
 if (fDisplay)

MMURTL V1.0 Page 292 of 667

 printf(" ");
 } while (col % tabstops);
 break;
 default:
 if (fDisplay)
 printf("%c", b);
 col++;
 erc = DeviceOp(3, CmdWriteB, 0, 1, &b);
 if (erc)
 printf("Error Writing Byte: %d\r\n", erc);
 break;
 }
 }

 if (i%100==0) /* every 100 chars see if they want to abort */
 {
 erck = ReadKbd(&key, 0);
 /* no wait */
 if (!erck)
 {
 if (key & 0xff == 0x1b)
 {
 fdone = 1;
 erc = 4;
 }
 }
 }
 }

 if ((!fBinary) && (!NoFF))
 {
 erc = DeviceOp(3, CmdWriteB, 0, 1, "\f");
 }

 fclose(f);
 /* device, dOpNum, dLBA, dnBlocks, pData */
 erc = DeviceOp(3, CmdCloseL, 0, 0, &i);
 if (erc)
 printf("Can’t close LPT. Error: %d\r\n", erc);
 printf("Done\r\n");
 ExitJob(erc);

}

System Service Example

Installable system services are the easiest way to coordinate resource usage and provide
additional functionality in MMURTL.

The following two listings show a simple system service and a client of that service. The
program is similar to the example shown in chapter 10, “Systems Programming.” It has been
expanded some, and also allows deinstallation with proper termination and recovery of
operating-system resources.

MMURTL V1.0 Page 293 of 667

Service.C Listing

Execute this from a command-line interpreter. It becomes a system service while keeping it’s
virtual video screen. Pressing any key will terminate the program properly. While this program is
running, run the TestSvc.RUN program to exercise the service.

Listing 16.5 - Simple Service Source Code.

/* Super Simple System Service.
 This is expanded from the sample in the System Programmer
 chapter to show how to properly deinstall a system service.
 The steps to deinstall are:
 1) UnRegister the Service
 2) Serve all remaining requests at service exchange
 3) Deallocate all resources
 4) Exit
*/

#include <stdio.h>
#include "\OSSource\MKernel.h"
#include "\OSSource\MJob.h"
#include "\OSSource\MVid.h"

#define ErcOK 0
#define ErcOpCancel 4
#define ErcNoSuchSvc 30
#define ErcBadSvcCode 32

struct RqBlkType *pRqBlk; /* A pointer to a Reqeust Block */
unsigned long NextNumber = 0; /* The number to return */
unsigned long MainExch; /* Where we wait for Requests */
unsigned long Message[2]; /* The Message with the Request */
long rqHndl; /* Used for keyboard request */

void main(void)
{
unsigned long OSError, ErrorToUser, keycode;
long *pDataRet;

 OSError = AllocExch(&MainExch); /* get an exchange */

 if (OSError) /* look for a kernel error */
 ExitJob(OSError);

 OSError = RegisterSvc("NUMBERS ", MainExch);

 if (OSError) /* look for a system error */
 ExitJob(OSError);

 SetNormVid(WHITE|BGBLACK);
 ClrScr();

MMURTL V1.0 Page 294 of 667

 printf("NUMBERS Service Installed.\r\n");
 printf("ANY valid keystroke will terminate the service.\r\n");

 OSError = Request("KEYBOARD", 1, MainExch, &rqHndl, 0, &keycode,
 4, 0, 0, 1, 0, 0); /* 1 in dData0 = WAIT for key */
 if (OSError)
 printf("Error on Keyboard Request:\r\n", OSError);

 while (1) /* WHILE forever (almost...) */
 {

 /* Now we wait for a client or for a keystroke to come back */

 OSError = WaitMsg(MainExch, Message); /* Exch & pointer */

 if (!OSError)
 {

 if (Message[0] == rqHndl) /* it was a keystroke and NOT a client */
 {
 UnRegisterSvc("NUMBERS ");
 while (!CheckMsg(MainExch, Message))
 {
 pRqBlk = Message[0];
 Respond(pRqBlk, ErcNoSuchSvc);
 }
 DeAllocExch(MainExch);
 ExitJob(ErcOpCancel);
 }

 pRqBlk = Message[0]; /* First DWORD contains ptr to RqBlk */

 if (pRqBlk->ServiceCode == 0) /* Abort request from OS */
 ErrorToUser = ErcOK;

 else if (pRqBlk->ServiceCode == 1) /* User Asking for Number */
 {
 pDataRet = pRqBlk->pData1;
 pDataRet = NextNumber++; / Give them a number */
 ErrorToUser = ErcOK; /* Respond with No error */

 printf("NUMBERS Service gave out number: %d.\r\n", NextNumber-1);

 }
 else ErrorToUser = ErcBadSvcCode; /* Unknown Service code! */

 OSError = Respond(pRqBlk, ErrorToUser); /* Respond to Request */

 }
 } /* Loop while(1) */
}

MMURTL V1.0 Page 295 of 667

TestSvc.C Listing

The program in listing 16.6 exercises the sample system service listed previously. Execute this
from a CLI while the service is running. Also try it when the service is not running. You should
receive a proper error code indicating that the service is not available.

Listing 16.6 - TestSvc.C.

/* Test client for the NUMBERS System Service.
 Run him from another a CLI when Service is running
*/
#include <stdio.h>
#include "\OSSOurce\MKernel.h"

unsigned long Number; /* The number to return */
unsigned long Exch; /* Where hte service will respond */
unsigned long Message[2]; /* The Message from the service */

void main(void)
{
unsigned long Error, rqhndl;

 Error = AllocExch(&Exch); /* get an exchange */

 if (Error)
 printf("Error %d allocating Exchange.\r\n", Error);

 Error = Request("NUMBERS ", 1, Exch, &rqhndl,
 0, /* No Send ptrs */
 &Number, 4, 0, 0,
 0,0,0);
 if (Error)
 printf("Error %d from Request.\r\n", Error);

 if (!Error)
 {
 Error = WaitMsg(Exch, Message);

 if (Error)
 printf("Error %d from WaitMsg.\r\n", Error);
 else
 {
 if (Message[1])
 printf("Error %d from NUMBERS Service.\r\n", Message[1]);
 else
 printf("NUMBERS Service gave out number: %d.\r\n", Number);
 }
 }
 DeAllocExch(Exch); /* it’s nice to do this for the OS */
}

MMURTL V1.0 Page 296 of 667

Chapter 17, Introduction to the Source Code

This chapter discusses each of the important source files, some of the things that tie all of the
source files together, and how to build the operating system using the tools included on the CD-
ROM.

One of my goals was to keep the source code organized in an easy-to-understand fashion. I hope
I’ve met this goal. You may find some of the source files rather large, but most of the dependent
functions will be contained in the file you are viewing or reading. You won’t have to go
searching through hundreds of files to find a three-line function.

Comments In the Code

You'll find out that I make a lot of comments in my source code. By including the comments, I
can go back a year or two later and figure out what I did. It's not that I couldn't actually figure it
out without them, I just expend the time up front instead of later. In fact, sometimes I write the
comments describing a small block of code before I actually code it. It helps me think.

Calling Conventions

I bring this topic up here because, as you look through the code, you will see that much of the
assembler looks almost like it was generated by a compiler. When a human writes this much
assembler (and it's to be interfaced with assembler generated by a compiler), the human becomes
a compiler of sorts.
Many of the lower-lever procedures use registers to pass data back and forth. Quite a few of
them, however, use the stack just as a compiler would. Two conventions are used throughout the
operating system. The most prominent and the preferred method is pushing parameters left to
right, with the called procedure cleaning the stack. The other is a mangled version of what you'd
find in most C compilers for functions with an ellipse (...). I call it mangled because the
arguments are still pushed left to right, but the number of variable arguments is passed in the EDI
register. The caller cleans the stack in this convention.

Organization

The MMURTL source code is organized in a modular fashion. Each logical section is contained
in one or more files that are either C or assembler source code. There are also header files for the
C source, and INCLUDE files for the assembler that tie publics, common variables, and
structures together.

All source files are located in one directory. There are 29 main source files (excluding header
and include files). A brief description of each of the main source files follows.

MMURTL V1.0 Page 297 of 667

MOSIDT.ASM - This defines the basic Interrupt Descriptor Table (IDT). The IDT is a required
table for the Intel processors. This is really just a data position holder in the data segment,
because the entries in the IDT are done dynamically. The position of this file in relationship to
the others is critical because the offset to the IDT must be identified to the processor. This is the
first file in the source, which means it’s data will be at the lowest address. In fact, it ends up at
physical and linear address 0.

MOSGDT.ASM - This defines the Global Descriptor Table (GDT). This is also a required table
for the Intel processors when they run in protected mode. The GDT is 6K in size. Several
selector entries are predefined so you can go directly into protected mode. This ends up at
address 800h physical and linear. The position of this file is also critical because it is identified
to, and used by the processor. This must be the second source file in the assembler template file.

MOSPDR.ASM - This is also a data definition file that sets up the operating system’s Page
Directory and first page table. This file should also remain in it’s current order because we have
hard-coded it’s address in some source modules.

MPublics.ASM - This is also a table, but it is not used by the processor. This defines the selector
entries for all MMURTL public calls.

MAIN.ASM - This is the first assembler file that contains code. The operating system entry
point is located here (the first OS instruction executed). Also some data is defined here. This file
should be left in the order I have it in. The ordering for the remainder of the modules is not as
important. On the other hand, I haven’t tried playing "musical source files" either. Leaving them
in their current order would probably be a good idea.

Keyboard.ASM - The keyboard source goes against my own rule of not combining a device
driver with a system service. Keyboard.ASM was one of the first files written, and it works
rather well, so I am reluctant to begin rewriting it (Although I will, undoubtedly, someday).
System services in assembly language are not fun to write or maintain. Chapter 25 explains all
the mysteries behind this table-driven piece of work.

Video.ASM - Video code and data was also one of the first pieces I wrote. You have to see what
you’re doing, even in the earliest stages of a project. Chapter 26 goes into detail on this files
contents.

Debugger.ASM - This file contains the bulk of the debugger logic. Debugging is never fun
when you have to do it at the assembler level. Debugging a debugger is even less fun.

UASM.C - This file is the debugger disassembler. It is a table-driven disassembler used to
display instructions in the debugger. It’s not very pretty, but it’s effective and accurate.

DevDrvr.ASM - The device-driver interface code and data are contained in this file. This
provides the re-entrancy protection and also the proper vectoring (indirect calling) of device-
driver functions.

MMURTL V1.0 Page 298 of 667

Floppy.C - Floppy disk device drivers are much harder to write than IDE hard disk drivers. This
is one complicated driver. It seems to me that hardware manufacturers could be a little more
compassionate towards software people. The reasoning behind controlling the drive motors
separately from the rest of the floppy electronics still has me baffled.

HardIDE.C - The IDE hard disk device driver was pretty easy to write. I was surprised. You
will still see remnants of MFM drive commands in here because that’s what I started with. It
think it still works with MFM drives, but I don’t have any more to test it. If you have MFM
drives, you’re on your own.

RS232.C - This file contains the RS-232 UART driver. It drives two channels, but can be
modified for four, if needed. It supports the 16550, but only to enable the input buffer (which
helps).

Parallel.C - The simple parallel port driver is contained here.

FSys.C - This is an MS-DOS FAT-compatible file system. It has only the necessary calls to get
the job done. It provides stream access as well as block access to files.

JobC.C - The program loader and most of the job-related functions are handled in this file.

JobCode.ASM – Lower-level job functions and supporting code for functions in JobC.C are
contained in this file.

TmrCode.ASM - The interrupt service routine for the primary system timer - along with all of
the timer functions such as Sleep() - are in this file.

IntCode.ASM - Interrupt Service Routine (ISR) handling code can be found here.

RQBCode.ASM - Request block management code is in this file.

DMACode.ASM - In many systems, when a device driver writers need DMA, they must handle
it themselves. This file has routines that handle DMA for you. You only need to know the
channel, how much to move, and the mode. Device driver writers will appreciate this.

NumCnvrt.ASM - This is some code used internally that converts numbers to text and vice-
versa.

MemCode.ASM - The code memory allocation, address aliasing and management of physical
memory can be found in this file.

SVCCode.ASM - System service management code such as RegisterSvc() is in this file.

MiscCode.ASM - This is the file that collected all the little things that you need, but you never
know where to put. High-speed string manipulation and comparison, as well as port I/O support,
is in this file.

MMURTL V1.0 Page 299 of 667

Kernel.ASM - All of the kernel calls and most of the kernel support code is in this file. Chapter
18 discusses the kernel and presents the most important pieces of its code along with discussions
of the code.

Except.ASM - Exception handlers such as those required for processor faults are in this file.
Most of them cause you to go directly into the Debugger.

InitCode.ASM - This file has all the helper routines that initialize most of the of the dynamic
operating-system functions.

Monitor.C - The monitor program is contained in this file. It provides a lot of the OS
functionality, but it really isn’t part of the operating system. You could replace quite easily.

Building MMURTL

MMURTL requires the CM32 compiler (included on the CD-ROM) for the C source files, and
the DASM assembler (also included). One MS-DOS batch file (MakeALL.BAT) will build the
entire operating system. This takes about 1.5 minutes on a 486/33.

Each of the C source files is turned into an assembler file (which is what the CM32 compiler
produces). All of the assembly language source files are then assembled with DASM.

DASM produces the operating system RUN file. The RUN file is in the standard MMURTL Run
file format which is described completely in the Chapter 28, “DASM:A 32-Bit Intel-Based
Assembler.”

The only two MS-DOS commands you need are CM32 and DASM. An example of compiling
one of the source files is:

C:\MMURTL> CM32 Monitor.C

After all the C source files are compiled, you use the DASM command as follows:

C:\MMURTL> DASM MMURTL.ATF

It's truly that simple. If you want an error file, specify /E on the command line after the name. If
you want a complete listing of all processor instructions and addresses, /L on the command line
after the name.

The following is the Assembler Template File (ATF). This file is required to assemble complex
programs with DASM. The assembler is discussed in detail in chapter 28, but you don't need to
read all the DASM documentation to build MMURTL.

MMURTL V1.0 Page 300 of 667

Listing 17.1 – Assembler Template File

;Assembler Template File for MMURTL V1.0
.DATA
;These first 5 INCLUDES MUST be in this order!!!!
.INCLUDE MOSIDT.ASM ; Defines the Interrupt Descriptor Table
.INCLUDE MOSGDT.ASM ; 6K for GDT @ 00000800h Physical (1.5 Pages, 6K)
.INCLUDE MOSPDR.ASM ; OS Page Directory & 1st Table (8k)
.INCLUDE MPublics.ASM ; Indirect calling address table
.INCLUDE MAIN.ASM ; Main OS code and some data & START address

; Ordering for the remainder of the modules is not as important.
; An asterisk (*) by the include file indicates it originates as
; a C source file and must be compiled first with
; CM32 (no switches needed).
;
.INCLUDE Keyboard.ASM ; Keyboard ISR and Service
.INCLUDE Video.ASM ; Video code and data
.INCLUDE Debugger.ASM ; Code & Data for Debugger
.INCLUDE UASM.ASM ;* Code & Data for Debugger Disassembler
.INCLUDE DevDrvr.ASM ; Code and Data for Device Driver Interface
.INCLUDE Floppy.ASM ;* Floppy Device Driver
.INCLUDE HardIDE.ASM ;* IDE Disk Device Driver
.INCLUDE RS232.ASM ;* Serial Comms Device Driver
.INCLUDE Parallel.ASM :* Parallel Comms Device Driver (RAB)
.INCLUDE FSys.ASM ;* File System Service
.INCLUDE JobCode.ASM ; Additional Job management
.INCLUDE JOBC.ASM ;* Loader/Job handling Code & Data
.INCLUDE TmrCode.ASM ; Timer Code
.INCLUDE IntCode.ASM ; ISR handling code
.INCLUDE RQBCode.ASM ; Request Block Code
.INCLUDE DMACode.ASM ; DMA Handling Code
.INCLUDE NumCnvrt.ASM ; Maybe Move to DLL later or can it
.INCLUDE MemCode.ASM ; Memory management code
.INCLUDE SVCCode.ASM ; System Service management code
.INCLUDE MiscCode.ASM ; Misc. code (string,array,I/O support)
.INCLUDE Kernel.ASM ; Kernel code
.INCLUDE Except.ASM ; Exception handlers
.INCLUDE InitCode.ASM ; Initialization support code
.INCLUDE Monitor.ASM ;* The monitor code & data

.END

If you’ve read all of the chapters that precede this one, you’ll understand that all MMURTL
programs are comprised of only two segments - code and data. The order of the assembler files
in the ATF file determines the order of the data and code. As each piece of code is assembled, it
is placed into the code segment in that order. The same is true for the data as it is encountered in
the files.

MMURTL V1.0 Page 301 of 667

Using Pieces of MMURTL in Your OS

You’ll find that most of the source code is modular. For instance, you can take the file system
code (FSYS.C) and it can be turned into a free-standing program with little effort. I built each
section of code in modular sections and tried to keep it that way.

Even though I use CM32 to compile the C source files, the code can be compiled with any ANSI
C compiler. You will, no doubt, use another compiler for your project. You’ll find that many
items in MMURTL depend on the memory alignment of some of the structures. This is one thing
you should watch. CM32 packs all structure fields completely. In fact, CM32 packs all variables
with no additional padding.

Using Pieces of MMURTL in Other Projects

Some of you may find some of the code useful in other projects that have absolutely nothing to
do with writing an operating system. The same basic warning about the alignment of structures
applies.

The assembler INCLUDE files that define all the structures actually define offsets from a
memory location. This is because DASM doesn’t support structures, but you would have no
problem setting them up for TASM or MASM.

The calling conventions (described earlier) may get you into trouble if you want to use some of
the assembler routines from a high-level language. If your C compiler allows it, you can declare
them as Pascal functions (some even use the old PLM type modifier), and they will work fine.
Otherwise, you can calculate the correct offsets and fix the EQU statements for access where a C
compiler would put them on the stack. You would also need to remove the numbers following
the RET and RETF statements so the caller could clean the stack as is the C convention.

MMURTL V1.0 Page 302 of 667

Chapter 18, The Kernel

Introduction

The kernel code is very small. The actual message handling functions, the scheduler, and
associated kernel helper procedures turn out to be less than 3K of executable code.

The code in the kernel is divided into four main sections: data, local helper functions, internal
public functions, and kernel publics functions. Being an old "structured" programmer, I have
made most of the "called" functions reside above those that call them. If you read through the
descriptions of these little "helper" routines before you look at the code for the kernel primitives,
I think it will make more sense to you.

Naming Conventions

For helper routines that are only called from other assembly language routines, the name of the
routine is unmodified (no underscores used).

For functions that must be reached by high-level languages (such as C), a single underscore will
be prepended to the name. For public functions that are reached through call gates from
applications, two underscores will be prepended to the name.

Kernel Data

The source file for the kernel doesn’t really contain any data variable declarations. The bulk of
them are in the file Main.ASM. The data that the kernel primitives deal with are usually used in
context to the task that is running. These are things such as the task state segments, job control
blocks, and memory management tables. These all change with respect to the task that is
running.

The bulk of the other data items are things for statistics:

the number of task switches (_nSwitches);
the number of times the CPU found itself with nothing to do (_nHalts);
and the number of tasks ready to run (_nReady).

Variables named with a leading underscore are accessible from code generated with the C
compiler. For the most part these are statistic-gathering variables, so I could get to them with the
monitor program.

The INCLUDE files define things like error codes, and offsets into structures and tables. See
listing 18.1.

MMURTL V1.0 Page 303 of 667

Listing 18.1.Kernel data segment source.

.DATA
.INCLUDE MOSEDF.INC
.INCLUDE TSS.INC
.INCLUDE RQB.INC
.INCLUDE JOB.INC

dJunk DD 0 ;Used as temp in Service Abort function
EXTRN TimerTick DD
EXTRN SwitchTick DD
EXTRN dfHalted DD
EXTRN _nSwitches DD
EXTRN _nHalts DD
EXTRN _nReady DD

Local Kernel Helper Functions

This section has all of the little functions that help the kernel primitives and scheduler code.
Most of these functions manipulate all the linked lists that maintain things like the ready queue,
link blocks, and exchanges.

The interface to these calls are exclusively through registers. This is strictly a speed issue. It’s not
that the routines are called so often; it’s that they manipulate common data and therefor are not
reentrant, which means interrupts must be cleared. I also had to really keep good track of which
registers I used.

Because certain kernel functions may be called from ISRs, and because portions of other kernel
functions may be interrupted by a task change that happens because of an action that an ISR
takes, we must ensure that interrupts are disabled prior to the allocation or deallocation of all
kernel data segment resources. This especially applies when a message is "in transit" (taken, for
example, from an exchange but not yet linked to a TSS and placed on the ready queue). This is
important. The concept itself should be very important to you if you intend to write your own
multitasking operating system.

The functions described have a certain symmetry that you’ll notice, such as enQueueMsg and
deQueueMsg, along with enQueueRdy and deQueueRdy. You may notice that there is a
deQueueTSS but no enQueueTSS. This is because the enQueueTSS functionality is only
needed in two places, and therefore, is coded in-line.

The following lines begin the code segment for the kernel:

.CODE

EXTRN LinToPhy NEAR

MMURTL V1.0 Page 304 of 667

enQueueMsg

The enQueueMsg places a link block containing a message on an exchange. The message can
be a pointer to a Request or an 8-byte generic message. Interrupts will already be disabled when
this routine is called.

In MMURTL, an exchange is a place where either messages or tasks wait (link blocks that
contain the message actually wait there). There can never be tasks and messages at an exchange
at the same time (unless the kernel is broken!). When a message is sent to an exchange, and if a
task is waiting there, the task is immediately associated with the message and placed on the
ready queue in priority order. For this reason we share the HEAD and TAIL link pointers of an
exchange for tasks and messages. A flag tells you whether it’s a task on a message. See listing
18.2.

Listing 18.2.Queueing for messages at an exchange.

enQueueMsg:
;
; INPUT : ESI,EAX
; OUTPUT : NONE
; REGISTERS : EAX,EDX,ESI,FLAGS
; MODIFIES : EDX
;
; This routine will place the link block pointed to by EAX onto the exchange
; pointed to by the ESI register. If EAX is NIL then the routine returns.
;
 OR EAX,EAX ; if pLBin = NIL THEN Return;
 JZ eqMsgDone ;
 MOV DWORD PTR [EAX+NextLB], 0 ; pLBin^.Next <= NIL;
 XCHG ESI,EAX ; pExch => EAX, pLBin => ESI
 CMP DWORD PTR [EAX+EHead], 0 ; if ..MsgHead = NIL
 JNE eqMNotNIL ; then
 MOV [EAX+EHead],ESI ; ..MsgHead <= pLBin;
 MOV [EAX+ETail],ESI ; ..MsgTail <= pLBin;
 MOV DWORD PTR [EAX+fEMsg], 1 ; Flag it as a Msg (vice a task)
 XCHG EAX,ESI ; Put pExch Back in ESI
 RETN ; else
eqMNotNIL:
 MOV EDX,[EAX+ETail] ; ..MsgTail^.NextLB <= pLBin;
 MOV [EDX+NextLB],ESI ;
 MOV [EAX+ETail],ESI ; ..MsgTail <= pLBin;
 MOV DWORD PTR [EAX+fEMsg], 1 ; Flag it as a Msg (vice a task)
 XCHG EAX,ESI ; Put pExch Back in ESI
eqMsgDone:
 RETN ;

deQueueMsg

The deQueueMsg removes a link block from an exchange if one exists there. If not, it returns
NIL (0) in the EAX register.

MMURTL V1.0 Page 305 of 667

As stated before, exchanges can hold messages or tasks, but not both. You check the flag in the
exchange structure to see which is there. If it’s a message you remove it from the linked list and
return it. If not, you return NIL (0). See listing 18.3.

Listing 18.3.De-queueing a message from an exchange.

deQueueMsg:
;
; INPUT : ESI
; OUTPUT : EAX
; REGISTERS : EAX,EBX,ESI,FLAGS
; MODIFIES : *prgExch[ESI].msg.head and EBX
;
; This routine will dequeue a link block on the exchange pointed to by the
; ESI register and place the pointer to the link block dequeued into EAX.
;
 MOV EAX,[ESI+fEMsg] ; Get Msg Flag
 OR EAX, EAX ; Is it a Msg?
 JZ deMsgDone ; No! (return 0)
 MOV EAX,[ESI+EHead] ; pLBout <= ..MsgHead;
 OR EAX, EAX ; if pLBout = NIL then Return;
 JZ deMsgDone ;
 MOV EBX,[EAX+NextLB] ; ..MsgHead <= ..MsgHead^.Next;
 MOV [ESI+EHead],EBX ;

deMsgDone:
 RETN ;

deQueueTSS

The deQueueTSS removes a pointer to a TSS from an exchange if one exists there. If not, it
returns NIL (0) in the EAX register. See listing 18.4.

Listing 18.4.De-queueing a task from an exchange.

deQueueTSS:
;
; INPUT : ESI
; OUTPUT : EAX
; REGISTERS : EAX,EBX,ESI,FLAGS
; MODIFIES : EAX,EBX
;
; This routine will dequeue a TSS on the exchange pointed to by the ESI
; register and place the pointer to the TSS dequeued into EAX.
; EAX return NIL if no TSS is waiting at Exch ESI
;
 XOR EAX,EAX ; Set up to return nothing
 MOV EBX,[ESI+fEMsg] ; Msg flag (is it a Msg)

MMURTL V1.0 Page 306 of 667

 OR EBX, EBX
 JNZ deTSSDone ; It’s a Msg (return leaving EAX 0)
 MOV EAX,[ESI+EHead] ; pTSSout <= ..TSSHead;
 OR EAX, EAX ; if pTSSout = NIL then Return;
 JZ deTSSDone ;
 MOV EBX,[EAX+NextTSS] ; ..TSSHead <= ..TSSHead^.Next;
 MOV [ESI+EHead],EBX ;

deTSSDone:
 RETN ;

enQueueRdy

The enQueueRdy places a task (actually a TSS) on the ready queue. The ready queue is a
structure of 32 linked lists, one for each of the possible task priorities in MMURTL. You
dereference the TSS priority and place the TSS on the proper linked list. See listing 18.5.

Listing 18.5.Adding a task to the ready queue.

PUBLIC enQueueRdy:
;
; INPUT : EAX
; OUTPUT : NONE
; REGISTERS : EAX,EBX,EDX,FLAGS
; MODIFIES : EAX,EBX,EDX
;
; This routine will place a TSS pointed to by EAX onto the ReadyQueue. This
; algorithm chooses the proper priority queue based on the TSS priority.
; The Rdy Queue is an array of QUEUES (2 pointers, head & tail per QUEUE).
; This links the TSS to rgQueue[nPRI].
;
 OR EAX,EAX ; if pTSS = NIL then return;
 JZ eqRdyDone ;
 INC _nReady ;
 MOV DWORD PTR [EAX+NextTSS], 0 ; pTSSin^.Next <= NIL;
 XOR EBX,EBX ; get the priority
 MOV BL,[EAX+Priority] ; in EBX
 XCHG EAX,EBX ; Priority => EAX, pTSSin => EBX
 SHL EAX, 3 ; Times 8 (size of QUEUE)
 LEA EDX,RdyQ ; Add offset of RdyQ => EAX
 ADD EAX,EDX ; EAX pts to proper Rdy Queue
 CMP DWORD PTR [EAX+Head], 0 ; if Head = NIL
 JNE eqRNotNIL ; then
 MOV [EAX+Head],EBX ; ..Head <= pTSSin;
 MOV [EAX+Tail],EBX ; ..Tail <= pTSSin;
 RETN ; else

eqRNotNIL:
 MOV EDX,[EAX+Tail] ; ..Tail^.NextTSS <= pTSSin;
 MOV [EDX+NextTSS],EBX ;
 MOV [EAX+Tail],EBX ; ..Tail <= pTSSin;

MMURTL V1.0 Page 307 of 667

eqRdyDone:
 RETN ;

deQueueRdy

The deQueueRdy finds the highest-priority ready queue (out of 32) that has a task waiting there
and returns a pointer to the first TSS in that list. The pointer to this TSS is also removed from the
list. If none is found, this returns NIL (0). Keep in mind, that 0 is the highest priority, and 31 is
the lowest. See listing 18.6.

Listing 18.6.De-queueing the highest priority task.

PUBLIC deQueueRdy:
;
; INPUT : NONE
; OUTPUT : EAX
; REGISTERS : EAX,EBX,ECX,FLAGS
; MODIFIES : RdyQ
;
; This routine will return a pointer in EAX to the highest priority task
; queued on the RdyQ. Then the routine will "pop" the TSS from the RdyQ.
; If there was no task queued, EAX is returned as NIL.
;
 MOV ECX,nPRI ; Set up the number of times to loop
 LEA EBX,RdyQ ; Get base address of RdyQ in EBX

deRdyLoop:
 MOV EAX,[EBX] ; Get pTSSout in EAX
 OR EAX, EAX ; IF pTSSout is NIL Then go and
 JNZ deRdyFound ; check the next priority.
 ADD EBX,sQUEUE ; Point to the next Priority Queue
 LOOP deRdyLoop ; DEC ECX and LOOP IF NOT ZERO

deRdyFound:
 OR EAX, EAX ; IF pTSSout is NIL Then there are
 JZ deRdyDone ; No TSSs on the RdyQ; RETURN
 DEC _nReady ;
 MOV ECX,[EAX+NextTSS] ; Otherwise, deQueue the process
 MOV [EBX],ECX ; And return with the pointer in EAX

deRdyDone:
 RETN ;

ChkRdyQ

MMURTL’s preemptive nature requires that you have the ability to check the ready queues to see
what the highest priority task is that could be executed, without actually removing it from the
queue. This routine provides that functionality for the piece of code in the timer interrupt routine

MMURTL V1.0 Page 308 of 667

(in TimerCode.ASM) that provides preemptive task switching. This why it’s specified as
PUBLIC. See listing 18.7.

Listing 18.7.Finding the highest priority task

PUBLIC ChkRdyQ:
;
; INPUT : NONE
; OUTPUT : EAX
; REGISTERS : EAX,EBX,ECX,FLAGS
; MODIFIES : RdyQ
;
; This routine will return a pointer to the highest priority TSS that
; is queued to run. It WILL NOT remove it from the Queue.
; If there was no task queued, EAX is returned as NIL.
;
 MOV ECX,nPRI ; Set up the number of times to loop
 LEA EBX,RdyQ ; Get base address of RdyQ in EBX

ChkRdyLoop:
 MOV EAX,[EBX] ; Get pTSSout in EAX
 OR EAX, EAX ; IF pTSSout is NIL Then go and
 JNZ ChkRdyDone ; check the next priority.
 ADD EBX,sQUEUE ; Point to the next Priority Queue
 LOOP ChkRdyLoop ; DEC ECX and LOOP IF NOT ZERO

ChkRdyDone:
 RETN ;

Internal Public Helper Functions

The routines described in the following sections are "public" to the rest of the operating system
but not accessible to outside callers. They are located in Kernel.ASM because they work closely
with kernel structures.

They provide things like resource garbage collection and exchange owner manipulation.

RemoveRdyJob

When a job terminates, either by its own choosing or is killed off due to some unforgivable
protection violation, the RemoveRdyJob recovers the task state segments (TSSs) that belonged
to that job. "It’s a nasty job, but someone’s got to it." See Listing 18.8.

Listing 18.8.Removing a terminated task from the ready queue.

; RemoveRdyJob (NEAR)
;

MMURTL V1.0 Page 309 of 667

; This routine searchs all ready queue priorities for tasks belonging
; to pJCB. When one is found it is removed from the queue
; and the TSS is freed up. This is called when we are killing
; a job.
;
; Procedureal Interface :
;
; RemoveRdyJob(char *pJCB):ercType
;
; pJCB is a pointer to the JCB that the tasks to kill belong to.
;
; pJCB EQU DWORD PTR [EBP+8]
;
; INPUT : (pJCB on stack)
; OUTPUT : NONE
; REGISTERS : All general registers are trashed
; MODIFIES : RdyQ
;
;
PUBLIC _RemoveRdyJob:
;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ECX,nPRI ; Set up the number of times to loop
 LEA EBX,RdyQ ; Get base address of RdyQ in EBX

 ;EBX points to begining of next Priority Queue
RemRdyLoop:
 MOV EAX,[EBX+Head] ; Get pTSS in EAX
 MOV EDI, EAX ; EDI points to last TSS by default (or NIL)
 OR EAX,EAX ; Is pTSS 0 (none left queued here)
 JNZ RemRdy0 ; Valid pTSS!

RemRdyLoop1:
 MOV [EBX+Tail], EDI ; EDI always points to last TSS or NIL
 ADD EBX,sQUEUE ; Point to the next Priority Queue
 LOOP RemRdyLoop ; DEC ECX and LOOP IF NOT ZERO

 XOR EAX, EAX ; No error
 POP EBP
 RETN 4 ; All done (clean stack)

 ;Go here to dequeue a TSS at head of list
RemRdy0:
 CMP EDX, [EAX+TSS_pJCB] ; Is this from the JCB we want?
 JNE RemRdy2 ; No

 MOV EDI, [EAX+NextTSS] ; Yes, deQueue the TSS
 MOV [EBX+Head], EDI ; Fix link in Queue list

 PUSH EBX ; Save ptr to RdyQue (crnt priority)

 ;Free up the TSS (add it to the free list)
 MOV EBX,pFreeTSS ; pTSSin^.Next <= pFreeTSS;
 MOV [EAX+NextTSS],EBX ;
 MOV DWORD PTR [EAX+TSS_pJCB], 0 ; Make TSS invalid
 MOV pFreeTSS,EAX ; pFreeTSS <= pTSSin;

MMURTL V1.0 Page 310 of 667

 INC _nTSSLeft ;

 POP EBX
 MOV EAX, EDI ; Make EAX point to new head TSS
 OR EAX, EAX ; Is it Zero?
 JZ RemRdyLoop1 ; Next Queue please
 JMP RemRdy0 ; back to check next at head of list

 ;Go here to dequeue a TSS in middle or end of list

RemRdy2:
 MOV EAX, [EDI+NextTSS] ; Get next link in list
 OR EAX, EAX ; Valid pTSS?
 JZ RemRdyLoop1 ; No. Next Queue please
 CMP EDX, [EAX+TSS_pJCB] ; Is this from JCB we want?
 JE RemRdy3 ; Yes. Trash it.
 MOV EDI, EAX ; No. Next TSS
 JMP RemRdy2

RemRdy3:
 ;EDI points to prev TSS
 ;EAX points to crnt TSS
 ;Make ESI point to NextTSS

 MOV ESI, [EAX+NextTSS] ; Yes, deQueue the TSS

 ;Now we fix the list (Make Prev point to Next)
 ;This extracts EAX from the list

 MOV [EDI+NextTSS], ESI ;Jump the removed link
 PUSH EBX ;Save ptr to RdyQue (crnt priority)

 ;Free up the TSS (add it to the free list)
 MOV EBX,pFreeTSS ; pTSSin^.Next <= pFreeTSS;
 MOV [EAX+NextTSS],EBX ;
 MOV DWORD PTR [EAX+TSS_pJCB], 0 ; Make TSS invalid
 MOV pFreeTSS,EAX ; pFreeTSS <= pTSSin;
 INC _nTSSLeft ;

 POP EBX
 ;
 OR ESI, ESI ;Is EDI the new Tail? (ESI = 0)
 JZ RemRdyLoop1 ;Yes. Next Queue please
 JMP RemRdy2 ;back to check next TSS

GetExchOwner

The code that loads new jobs must have the capability to allocate default exchanges for the new
program. The Exchange allocation routines assume that the caller will own this exchange. This is
not so if it’s for a new job. This call identifies who owns an exchange by returning a pointer to
the job control block. This function is used with the next one; SetExchOwner(). These are
NEAR functions and not available to outside callers (via call gates). See listing 18.9.

MMURTL V1.0 Page 311 of 667

Listing 18.9.Finding the owner of an exchange.

; GetExchOwner (NEAR)
;
; This routine returns the owner of the exchange specified.
; A pointer to the JCB of the owner is returned.
; ErcNotAlloc is returned if the exchange isn’t allocated.
; ErcOutofRange is returned is the exchange number is invalid (too high)
;
; Procedureal Interface :
;
; GetExchOwner(long Exch, char *pJCBRet): dErrror
;
; Exch is the exchange number.
; pJCBRet is a pointer to the JCB that the tasks to kill belong to.
;
; Exch EQU DWORD PTR [EBP+12]
; pJCBRet EQU DWORD PTR [EBP+8]

PUBLIC _GetExchOwner: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV EAX, [EBP+12] ; Get Resp Exchange in EDX
 CMP EAX,nExch ; Is the exchange out of range?
 JB GEO01 ; No, continue
 MOV EAX,ErcOutOfRange ; Yes, Error in EAX register
 JMP GEOEnd ;

GEO01:
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ; sExch * Exch number
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EDX,EAX ; EDX -> Exch
 MOV EAX, [EDX+Owner]
 OR EAX, EAX ; Valid Exch (Allocated)
 JNZ GEO02
 MOV EAX, ErcNotAlloc ; No, not allocated
 JMP SHORT GEOEnd

GEO02:
 MOV ESI, [EBP+8] ;Where to return pJCB of Exchange
 MOV [ESI], EAX ;
 XOR EAX, EAX

GEOEnd:
 MOV ESP,EBP ;
 POP EBP ;
 RETN 8 ;

MMURTL V1.0 Page 312 of 667

SetExchOwner

This is the complimentary call to GetExchOwner(), mentioned previously. This call sets the
exchange owner to the owner of the job control block pointed by the second parameter of the
call. See listing 18.10.

Listing 18.10.Changing the owner of an exchange.

; SetExchOwner (NEAR)
;
; This routine sets the owner of the exchange specified to the
; pJCB specified. This is used by the Job code to set the owner of
; a TSS exchange to a new JCB (even though the exchange was allocated
; by the OS). No error checking is done as the job code does it upfront!
;
; Procedureal Interface :
;
; SetExchOwner(long Exch, char *pNewJCB): dErrror
;
; Exch is the exchange number.
; pNewJCB is a pointer to the JCB of the new owner.
;
; Exch EQU DWORD PTR [EBP+12]
; pNewJCB EQU DWORD PTR [EBP+8]

PUBLIC _SetExchOwner: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX, [EBP+12] ; Exchange Number
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ; sExch * Exch number
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ; EAX -> oExch + prgExch
 MOV EBX, [EBP+8]
 MOV [EAX+Owner], EBX
 XOR EAX, EAX
 POP EBP ;
 RETN 8 ;

SendAbort

System services are programs that respond to requests from applications, other services, or the
operating system itself. System services may hold requests from many jobs at a time until they
can service the requests (known as asynchronous servicing).

If a program sent a request, then exited or was killed off because of nasty behavior, the
SendAbort function is called to send a message to all active services, telling them that a
particular job has died. If a service is holding a request from the job that died, it should respond
to it as soon as it gets the abort message. It should not process any data for the program (because
it’s dead). The error it returns is of no consequence. The kernel knows it’s already dead and will
reclaim the request block and exchanges that were used. See listing 18.11.

MMURTL V1.0 Page 313 of 667

Listing 18.11.Notifying services of a job’s demise.

; SendAbort (NEAR)
;
; This routine sends one abort message to each valid service
; with the jobnum of the aborting job. If we receive a
; kernel error on Request it may be becuase it is a service
; that is aborting itself. We ignore the kernel errors.
;
; Procedureal Interface :
;
; SendAbort(long JobNum, ValidExch): dErrror
;
; JobNum is the job that is aborting
; ValidExch is any valid exchange so the request will go through
;
; JobNum EQU DWORD PTR [EBP+12]
; ValidExch EQU DWORD PTR [EBP+8]

PUBLIC _SendAbort: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV ESI,OFFSET rgSVC ; Get the address of rgSVC
 MOV ECX,nSVC ; Get the number of Service Descriptors

SAB01:
 CMP DWORD PTR [ESI], 0 ; Valid name?
 JE SAB05 ; NO, next service

 PUSH ESI ;Save count and pointer to SVC name
 PUSH ECX
 ;Push all the params to make the request
 PUSH ESI ;pName
 PUSH 0 ;Abort Service Code
 MOV EAX, [EBP+8] ;Exchange
 PUSH EAX
 PUSH OFFSET dJunk ;pHandleRet
 PUSH 0 ;npSend
 PUSH 0 ;pData0
 PUSH 0 ;cbData0
 PUSH 0 ;pData1
 PUSH 0 ;cbData1
 MOV EAX, [EBP+12] ;JobNum
 PUSH EAX ;dData0
 PUSH 0 ;dData1
 PUSH 0 ;dData2
 CALL FWORD PTR _Request
 ;Get count and ptr to SVC names back from stack
 POP ECX
 POP ESI

SAB05:
 ADD ESI, sSVC ;Next Service name

MMURTL V1.0 Page 314 of 667

 LOOP SAB01
 XOR EAX, EAX
 MOV ESP,EBP ;
 POP EBP ;
 RETN 8 ;

Public Kernel Functions

The remainder of the code defines the kernel public functions that are called through call gates.
These are called with 48-bit (FAR) pointers that include the selector of the call gate. Some of the
functions are auxiliary functions for outside callers and not actually part of the kernel code that
defines the tasking model; These are functions such as GetPriority(). They’re in this file because
they work closely with the kernel.
The offsets to the stack parameters are defined in the comments for each of calls.

Request()

The kernel Request primitive sends a message like the Send() primitive, except this function
requires several more parameters. A system structure called a request block is allocated and
some of these parameters are placed in it. A request block is the basic structure used for
client/server communications. The exchange where a request should be queued is determined by
searching the system-service array for a matching request service name specified in the request
block. The function that searches the array is GetExchange(), and code for it is in the file
SVCCode.asm. See listing 18.12.

Listing 18.12.Request kernel primitive code.

; The procedural interface to Request looks like this:
;
; Request(pSvcName [EBP+56]
; wSvcCode [EBP+52]
; dRespExch [EBP+48]
; pRqHndlRet [EBP+44]
; dnpSend [EBP+40]
; pData1 [EBP+36]
; dcbData1 [EBP+32]
; pData2 [EBP+28]
; dcbData2 [EBP+24]
; dData0 [EBP+20]
; dData1 [EBP+16]
; dData2 [EBP+12]) : dError

PUBLIC __Request: ;
 PUSH EBP ; Save the Previous FramePtr
 MOV EBP,ESP ; Set up New FramePtr

 ;Validate service name from registry and get exchange
 MOV EAX, [EBP+56] ;pServiceName

MMURTL V1.0 Page 315 of 667

 CALL GetExchange ;Leaves Service Exch in ESI if no errors
 OR EAX,EAX ;Any errors?
 JZ SHORT Req02 ;No
 JMP ReqEnd ;Yes, return error

Req02:
 ;Validate exchange
 MOV EDX, [EBP+48] ; Get Resp Exchange in EDX
 CMP EDX,nExch ; Is the exchange out of range?
 JB Req03 ; No, continue
 MOV EAX,ercOutOfRange ; Yes, Error in EAX register
 JMP ReqEnd ;

Req03:
 ;Get them a request block
 CLI
 CALL NewRQB ;EAX has ptr to new RqBlk (or 0 if none)
 STI
 OR EAX, EAX ;Did we get one? (NIL (0) means we didn’t)
 JNZ Req04 ;Yes. EAX ptr to new RqBlk
 MOV EAX, ErcNoMoreRqBlks ;No, Sorry...
 JMP ReqEnd ;

Req04:
 ;ESI still has the exchange for the service
 ;EDX still has the response exchange
 ;EAX has pRqBlk (Handle)

 MOV EBX, EAX ;EBX now pts to RqBlk
 MOV [EBX+ServiceExch], ESI ;Put Svc Exch into RqBlk
 MOV EAX, [EBP+52] ;Get Svc Code
 MOV [EBX+ServiceCode], AX ;Put Svc Code into RqBlk
 MOV [EBX+RespExch], EDX ;Put Resp Exch into RqBlk
 CALL GetCrntJobNum ;Get crnt JCB (Job Num of owner)
 MOV [EBX+RqOwnerJob], EAX ;put in RqBlk
 MOV EAX, [EBP+20] ;Get dData0
 MOV [EBX+dData0], EAX ;put in RqBlk
 MOV EAX, [EBP+16] ;Get dData1
 MOV [EBX+dData1], EAX ;put in RqBlk
 MOV EAX, [EBP+20] ;Get dData2
 MOV [EBX+dData2], EAX ;put in RqBlk
 MOV EAX, [EBP+36] ;Get pData1
 MOV [EBX+pData1], EAX ;put in RqBlk
 MOV EAX, [EBP+32] ;Get cbData1
 MOV [EBX+cbData1], EAX ;put in RqBlk
 MOV EAX, [EBP+28] ;Get pData2
 MOV [EBX+pData2], EAX ;put in RqBlk
 MOV EAX, [EBP+24] ;Get cbData2
 MOV [EBX+cbData2], EAX ;put in RqBlk
 MOV EAX, [EBP+40] ;Number of Send PbCbs
 CMP EAX, 3 ;Must be 2 or less
 JB Req06 ;
 MOV EAX, 2

Req06:
 MOV [EBX+npSend], AL ;Put nSend PbCbs into RqBlk
 MOV CL, 2 ;Caculate nRecv (2-nSend)

MMURTL V1.0 Page 316 of 667

 SUB CL, AL ;Leave in CL
 MOV [EBX+npRecv], CL ;Put npRecv in RqBlk

 ;At this point the RqBlk is all filled in.
 ;Now we will return the RqBlkHandle to the user.
 ;The handle is actually a ptr to the RqBlk but they can’t use
 ;it as one anyway (so no problem)

 MOV EDI, [EBP+44] ;Ptr to return handle to
 MOV [EDI], EBX ;Give it to them
 MOV EDX, EBX ;Save RqBlk in EDX

 CLI ; No interruptions from here on
 ;Now we allocate a Link block to use

 MOV EAX,pFreeLB ; EAX <= pFreeLB;
 OR EAX,EAX ; Is pFreeLB NIL? (out of LBs)
 JNZ Req08 ;
 CALL DisposeRQB ; NO... free up RqBlk
 MOV EAX,ercNoMoreLBs ; Move error in the EAX register
 JMP ReqEnd ; Go home with bad news

Req08:
 MOV EBX,[EAX+NextLB] ; pFreeLB <= pFreeLB^.Next
 MOV pFreeLB,EBX ;
 DEC _nLBLeft ;

 MOV DWORD PTR [EAX+LBType],REQLB ; This is a Request Link Block
 MOV DWORD PTR [EAX+NextLB], 0 ; pLB^.Next <= NIL;
 MOV [EAX+DataLo],EDX ; RqHandle into Lower 1/2 of Msg
 MOV DWORD PTR [EAX+DataHi], 0 ; Store zero in upper half of
pLB^.Data
 PUSH EAX ; Save pLB on the stack

 ;ESI still has the exchange Number for the service.
 ;The ptr to the exch is required for deQueueTSS so we get it.

 MOV EAX,ESI ; Exch => EAX
 MOV EDX, sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; MAKE ESI <= pExch

 ;ESI now points to the exchange

 CALL deQueueTSS ; DeQueue a TSS on that Exch
 OR EAX,EAX ; Did we get one?
 JNZ Req10 ; Yes, give up the message
 POP EAX ; No, Get the pLB just saved
 CALL enQueueMsg ; EnQueue the Message on Exch
 XOR EAX,EAX ; No Error
 JMP SHORT ReqEnd ; And get out!

Req10:
 POP EBX ; Get the pLB just saved into EBX
 MOV [EAX+pLBRet],EBX ; and put it in the TSS

MMURTL V1.0 Page 317 of 667

 CALL enQueueRdy ; EnQueue the TSS on the RdyQ
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 CALL enQueueRdy ; and put him on the RdyQ
 CALL deQueueRdy ; Get high priority TSS off the RdyQ
 CMP EAX,pRunTSS ; If the high priority TSS is the
 JNE Req12 ; same as the Running TSS then return
 XOR EAX,EAX ; Return to Caller with erc ok.
 JMP SHORT ReqEnd

Req12:
 MOV pRunTSS,EAX ; Make the TSS in EAX the Running TSS
 MOV BX,[EAX+Tid] ; Get the task Id (TR)
 MOV TSS_Sel,BX ; Put it in the JumpAddr for Task Swtich
 INC _nSwitches ; Keep track of how many swtiches for stats
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ; JMP TSS (This is the task swtich)
 XOR EAX,EAX ; Return to Caller with erc ok.

ReqEnd:
 STI ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 48 ; Rtn to Caller & Remove Params from stack

Respond()

The Respond primitive is used by system services to respond to a Request() received at their
service exchange. The request block handle must be supplied along with the error/status code to
be returned to the caller. This is very similar to Send() except it de-aliases addresses in the
request block and then deallocates it. The exchange to respond to is located inside the request
block. See listing 18.13.

Listing 18.13.Respond kernel primitive code.

;
; Respond(dRqHndl, dStatRet): dError
;
;
dRqHndl EQU DWORD PTR [EBP+16]
dStatRet EQU DWORD PTR [EBP+12]

PUBLIC __Respond: ;
 PUSH EBP ; Save Callers Frame
 MOV EBP,ESP ; Setup Local Frame
 MOV EAX, dRqHndl ; pRqBlk into EAX
 MOV ESI, [EAX+RespExch] ; Response Exchange into ESI
 CMP ESI,nExch ; Is the exchange out of range?
 JNAE Resp02 ; No, continue
 MOV EAX,ercOutOfRange ; Error into the EAX register.
 JMP RespEnd ; Get out

MMURTL V1.0 Page 318 of 667

Resp02:
 MOV EAX,ESI ; Exch => EAX
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; MAKE ESI <= pExch
 CMP DWORD PTR [EAX+Owner], 0 ; If the exchange is not allocated
 JNE Resp04 ; return to the caller with error
 MOV EAX,ercNotAlloc ; in the EAX register.
 JMP RespEnd ;

Resp04:
 MOV EAX, dRqHndl ; Get Request handle into EBX (pRqBlk)
 MOV EBX, [EAX+RqOwnerJob]
 CALL GetCrntJobNum
 CMP EAX, EBX
 JE Resp06 ;Same job - no DeAlias needed

 MOV EAX, dRqHndl ; Get Request handle into EBX (pRqBlk)
 MOV EBX, [EAX+cbData1] ;
 OR EBX, EBX
 JZ Resp05 ;No need to dealias (zero bytes)
 MOV EDX, [EAX+pData1]
 OR EDX, EDX
 JZ Resp05 ;Null pointer!

 PUSH ESI ;Save pExch across call
 PUSH EDX ;pMem
 PUSH EBX ;cbMem
 CALL GetCrntJobNum
 PUSH EAX
 CALL FWORD PTR _DeAliasMem ;DO it and ignore errors
 POP ESI ;get pExch back

Resp05:
 MOV EAX, dRqHndl ; Get Request handle into EBX (pRqBlk)
 MOV EBX, [EAX+cbData2] ;
 OR EBX, EBX
 JZ Resp06 ;No need to dealias (zero bytes)
 MOV EDX, [EAX+pData2]
 OR EDX, EDX
 JZ Resp06 ;Null pointer!
 PUSH ESI ;Save pExch across call
 PUSH EDX ;pMem
 PUSH EBX ;cbMem
 CALL GetCrntJobNum ;
 PUSH EAX
 CALL FWORD PTR _DeAliasMem ;DO it and ignore errors
 POP ESI ;get pExch back

Resp06:
 MOV EAX, dRqHndl ; Get Request handle into EBX (pRqBlk)
 CLI ; No interruptions
 CALL DisposeRQB ; Return Rqb to pool. Not needed anymore

MMURTL V1.0 Page 319 of 667

 ; Allocate a link block
 MOV EAX,pFreeLB ; NewLB <= pFreeLB;
 OR EAX,EAX ; IF pFreeLB=NIL THEN No LBs;
 JNZ Resp07 ;
 MOV EAX,ercNoMoreLBs ; caller with error in the EAX register
 JMP RespEnd

Resp07:
 MOV EBX,[EAX+NextLB] ; pFreeLB <= pFreeLB^.Next
 MOV pFreeLB,EBX ;
 DEC _nLBLeft ; Update stats
 MOV DWORD PTR [EAX+LBType], RESPLB ; This is a Response Link Block
 MOV DWORD PTR [EAX+NextLB], 0 ; pLB^.Next <= NIL;
 MOV EBX, dRqHndl ; Get Request handle into EBX
 MOV [EAX+DataLo],EBX ; Store in lower half of pLB^.Data
 MOV EBX, dStatRet ; Get Status/Error into EBX
 MOV [EAX+DataHi],EBX ; Store in upper half of pLB^.Data
 PUSH EAX ; Save pLB on the stack
 CALL deQueueTSS ; DeQueue a TSS on that Exch
 OR EAX,EAX ; Did we get one?
 JNZ Resp08 ; Yes, give up the message
 POP EAX ; Get the pLB just saved
 CALL enQueueMsg ; EnQueue the Message on Exch
 XOR EAX, EAX ; No Error
 JMP SHORT RespEnd ; And get out!

Resp08:
 POP EBX ; Get the pLB just saved into EBX
 MOV [EAX+pLBRet],EBX ; and put it in the TSS
 CALL enQueueRdy ; EnQueue the TSS on the RdyQ
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 CALL enQueueRdy ; and put him on the RdyQ
 CALL deQueueRdy ; Get high priority TSS off the RdyQ

 CMP EAX,pRunTSS ; If the high priority TSS is the
 JNE Resp10 ; same as the Running TSS then return
 XOR EAX,EAX ; Return to Caller with erc ok.
 JMP SHORT RespEnd ;

Resp10:
 MOV pRunTSS,EAX ; Make the TSS in EAX the Running TSS
 MOV BX,[EAX+Tid] ; Get the task Id (TR)
 MOV TSS_Sel,BX ; Put it in the JumpAddr
 INC _nSwitches
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ; JMP TSS
 XOR EAX,EAX ; Return to Caller with erc ok.

RespEnd:
 STI
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ; Rtn to Caller & Remove Params

MMURTL V1.0 Page 320 of 667

MoveRequest()

This is the kernel MoveRequest primitive. This allows a service to move a request to another
exchange it owns. This cannot be used to forward a request to another service or job, because the
pointers in the request block are not properly aliased. It is very similar to SendMsg() except it
checks to ensure the destination exchange is owned by the sender. See listing 18.14.

Listing 18.14, MoveRequest kernel primitive code.

; Procedural Interface :
;
; MoveRequest(dRqBlkHndl, DestExch):ercType
;
; dqMsg is the handle of the RqBlk to forward.
; DestExch the exchange to where the Request should be sent.
;
;
;dRqBlkHndl EQU [EBP+16]
;DestExch EQU [EBP+12]

PUBLIC __MoveRequest: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI, [EBP+12] ; Get Exchange Parameter in ESI
 CMP ESI,nExch ; Is the exchange is out of range
 JNAE MReq02 ; No, continue
 MOV EAX,ercOutOfRange ; in the EAX register.
 JMP MReqEnd ; Get out

MReq02:
 MOV EAX,ESI ; Exch => EAX
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; MAKE ESI <= pExch
 MOV EDX, [EAX+Owner] ; Put exch owner into EDX (pJCB)
 CALL GetpCrntJCB ; Leaves it in EAX (uses only EAX)
 CMP EDX, EAX ; If the exchange is not owned by sender
 JE MReq04 ; return to the caller with error
 MOV EAX, ErcNotOwner ; in the EAX register.
 JMP MReqEnd ; Get out

MReq04:
 CLI ; No interruptions from here on
 ; Allocate a link block
 MOV EAX,pFreeLB ; NewLB <= pFreeLB;
 OR EAX,EAX ; IF pFreeLB=NIL THEN No LBs;
 JNZ MReq08 ;
 MOV EAX,ercNoMoreLBs ; caller with error in the EAX register
 JMP MReqEnd ; Go home with bad news

MMURTL V1.0 Page 321 of 667

MReq08:
 MOV EBX,[EAX+NextLB] ; pFreeLB <= pFreeLB^.Next
 MOV pFreeLB,EBX ;
 DEC _nLBLeft ; Update stats

 MOV DWORD PTR [EAX+LBType], REQLB ; This is a Request Link Block
 MOV DWORD PTR [EAX+NextLB], 0 ; pLB^.Next <= NIL;
 MOV EBX, [EBP+16] ; RqHandle
 MOV [EAX+DataLo],EBX ; RqHandle into Lower 1/2 of Msg
 MOV DWORD PTR [EAX+DataHi], 0 ; Store zero in upper half of
pLB^.Data
 PUSH EAX ; Save pLB on the stack
 CALL deQueueTSS ; DeQueue a TSS on that Exch
 OR EAX,EAX ; Did we get one?
 JNZ MReq10 ; Yes, give up the message
 POP EAX ; Get the pLB just saved
 CALL enQueueMsg ; EnQueue the Message on Exch
 JMP SHORT MReqEnd ; And get out!

MReq10:
 POP EBX ; Get the pLB just saved into EBX
 MOV [EAX+pLBRet],EBX ; and put it in the TSS
 CALL enQueueRdy ; EnQueue the TSS on the RdyQ
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 CALL enQueueRdy ; and put him on the RdyQ
 CALL deQueueRdy ; Get high priority TSS off the RdyQ
 CMP EAX,pRunTSS ; If the high priority TSS is the
 JNE MReq12 ; same as the Running TSS then return
 XOR EAX,EAX ; Return to Caller with erc ok.
 JMP SHORT MReqEnd

MReq12:
 MOV pRunTSS,EAX ; Make the TSS in EAX the Running TSS
 MOV BX,[EAX+Tid] ; Get the task Id (TR)
 MOV TSS_Sel,BX ; Put it in the JumpAddr for Task Swtich
 INC _nSwitches ; Keep track of how many swtiches for stats
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ; JMP TSS (This is the task swtich)
 XOR EAX,EAX ; Return to Caller with erc ok.

MReqEnd:
 STI ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

SendMsg()

This is the kernel SendMsg primitive. This sends a non-specific message from a running task to
an exchange. This may cause a task switch, if a task is waiting at the exchange and it is of equal
or higher priority than the task which sent the message. See listing 18.15.

MMURTL V1.0 Page 322 of 667

Listing 18.15.SendMsg kernel primitive code.

;
; Procedural Interface :
;
; SendMsg(exch, dMsg1, dMsg2):ercType

;
; exch is a DWORD (4 BYTES) containing the exchange to where the
; message should be sent.
;
; dMsg1 & dMsg2 are DWord values defined and understood
; only by the sending and receiving tasks.
;
SendExchange EQU [EBP+14h]
MessageHi EQU DWORD PTR [EBP+10h]
MessageLo EQU DWORD PTR [EBP+0Ch]

PUBLIC __SendMsg: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI,SendExchange ; Get Exchange Parameter in ESI
 CMP ESI,nExch ; If the exchange is out of range
 JNAE Send00 ; the return to caller with error
 MOV EAX,ercOutOfRange ; in the EAX register.
 JMP SendEnd

Send00:
 MOV EAX,ESI ; Exch => EAX
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; MAKE ESI <= pExch
 CMP DWORD PTR [EAX+Owner], 0 ; If the exchange is not allocated
 JNE Send01 ; return to the caller with error
 MOV EAX,ercNotAlloc ; in the EAX register.
 JMP SendEnd ;

Send01:
 CLI ; No interrupts
 ; Allocate a link block
 MOV EAX,pFreeLB ; NewLB <= pFreeLB;
 OR EAX,EAX ; IF pFreeLB=NIL THEN No LBs;
 JNZ SHORT Send02 ;
 MOV EAX,ercNoMoreLBs ; caller with error in the EAX register
 JMP SHORT MReqEnd ; Go home with bad news

Send02:
 MOV EBX,[EAX+NextLB] ; pFreeLB <= pFreeLB^.Next
 MOV pFreeLB,EBX ;
 DEC _nLBLeft ; Update stats

 MOV DWORD PTR [EAX+LBType], DATALB ; This is a Data Link Block
 MOV DWORD PTR [EAX+NextLB], 0 ; pLB^.Next <= NIL;

MMURTL V1.0 Page 323 of 667

 MOV EBX,MessageLo ; Get lower half of Msg in EBX
 MOV [EAX+DataLo],EBX ; Store in lower half of pLB^.Data
 MOV EBX,MessageHi ; Get upper half of Msg in EBX
 MOV [EAX+DataHi],EBX ; Store in upper half of pLB^.Data

 PUSH EAX ; Save pLB on the stack

 CLI ; No interrupts
 CALL deQueueTSS ; DeQueue a TSS on that Exch
 STI
 OR EAX,EAX ; Did we get one?
 JNZ Send25 ; Yes, give up the message
 POP EAX ; Get the pLB just saved
 CLI ; No interrupts
 CALL enQueueMsg ; EnQueue the Message on Exch
 JMP Send04 ; And get out (Erc 0)!

Send25:
 POP EBX ; Get the pLB just saved into EBX
 CLI ; No interrupts
 MOV [EAX+pLBRet],EBX ; and put it in the TSS
 CALL enQueueRdy ; EnQueue the TSS on the RdyQ
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 CALL enQueueRdy ; and put him on the RdyQ
 CALL deQueueRdy ; Get high priority TSS off the RdyQ
 CMP EAX,pRunTSS ; If the high priority TSS is the
 JNE Send03 ; same as the Running TSS then return
 JMP SHORT Send04 ; Return with ErcOk

Send03:
 MOV pRunTSS,EAX ; Make the TSS in EAX the Running TSS
 MOV BX,[EAX+Tid] ; Get the task Id (TR)
 MOV TSS_Sel,BX ; Put it in the JumpAddr
 INC _nSwitches
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ; JMP TSS

Send04:
 XOR EAX,EAX ; Return to Caller with erc ok.

SendEnd:
 STI ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

ISendMsg()

This is the kernel ISendMsg primitive (Interrupt Send). This procedure allows an ISR to send a
message to an exchange. This is the same as SendMsg() except no task switch is performed. If a
task is waiting at the exchange, the message is associated (linked) with the task and then moved
to the RdyQ. It will get a chance to run the next time the RdyQ is evaluated by the kernel, which
will probably be caused by the timer interrupt slicer.

MMURTL V1.0 Page 324 of 667

Interrupt tasks can use ISendMsg() to send single or multiple messages to exchanges during
their execution. Interrupts are cleared on entry and will not be set on exit! It is the responsibility
of the caller to set them, if desired. ISendMsg is intended only to be used by ISRs in device
drivers.

You may notice that jump instructions are avoided and code is placed in-line, where possible, for
speed. See listing 18.16.

Listing 18.16.IsendMsg kernel primitive code.

; Procedural Interface :
;
; ISendMsg(exch, dMsg1, dMsg2):ercType
;
; exch is a DWORD (4 BYTES) containing the exchange to where the
; message should be sent.
;
; dMsg1 and dMsg2 are DWORD messages.
;
; Parameters on stack are the same as _SendMsg.

PUBLIC __ISendMsg: ;
 CLI ;INTS ALWAYS CLEARED AND LEFT THAT WAY!
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI,SendExchange ; Get Exchange Parameter in ESI
 CMP ESI,nExch ; If the exchange is out of range
 JNAE ISend00 ; then return to caller with error
 MOV EAX,ercOutOfRange ; in the EAX register.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

ISend00:
 MOV EAX,ESI ; Exch => EAX
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; MAKE ESI <= pExch
 CMP DWORD PTR [EAX+Owner], 0 ; If the exchange is not allocated
 JNE ISend01 ; return to the caller with error
 MOV EAX,ercNotAlloc ; in the EAX register.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

ISend01:
 ; Allocate a link block
 MOV EAX,pFreeLB ; NewLB <= pFreeLB;
 OR EAX,EAX ; IF pFreeLB=NIL THEN No LBs;
 JNZ SHORT ISend02 ;

MMURTL V1.0 Page 325 of 667

 MOV EAX,ercNoMoreLBs ; caller with error in the EAX register
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

ISend02:
 MOV EBX,[EAX+NextLB] ; pFreeLB <= pFreeLB^.Next
 MOV pFreeLB,EBX ;
 DEC _nLBLeft ;

 MOV DWORD PTR [EAX+LBType],DATALB ; This is a Data Link Block
 MOV DWORD PTR [EAX+NextLB],0 ; pLB^.Next <= NIL;
 MOV EBX,MessageLo ; Get lower half of Msg in EBX
 MOV [EAX+DataLo],EBX ; Store in lower half of pLB^.Data
 MOV EBX,MessageHi ; Get upper half of Msg in EBX
 MOV [EAX+DataHi],EBX ; Store in upper half of pLB^.Data
 PUSH EAX ; Save pLB on the stack
 CALL deQueueTSS ; DeQueue a TSS on that Exch
 OR EAX,EAX ; Did we get one?
 JNZ ISend03 ; Yes, give up the message
 POP EAX ; No, Get the pLB just saved
 CALL enQueueMsg ; EnQueue the Message on Exch
 JMP ISend04 ; And get out!

ISend03:
 POP EBX ; Get the pLB just saved into EBX
 MOV [EAX+pLBRet],EBX ; and put it in the TSS
 CALL enQueueRdy ; EnQueue the TSS on the RdyQ

ISend04:
 XOR EAX,EAX ; Return to Caller with erc ok.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

WaitMsg()

This is the kernel WaitMsg primitive. This procedure allows a task to receive information from
another task via an exchange. If no message is at the exchange, the task is placed on the
exchange, and the ready queue is reevaluated to make the next highest-priority task run.

This is a very key piece to task scheduling. You will notice that if there is no task ready to run, I
simply halt the processor with interrupts enabled. A single flag named fHalted is set to let the
interrupt slicer know that it doesn’t have to check for a higher-priority task. If you halted, there
wasn’t one to begin with.

The WaitMsg() and CheckMsg() primitives also have the job of aliasing memory addresses
inside of request blocks for system services. This is because they may be operating in completely
different memory contexts, which means they have different page directories. See listing 18.17.

MMURTL V1.0 Page 326 of 667

Listing 18.17.WaitMsg kernel primitive code.

;
; A result code is returned in the EAX register.
;
; Procedural Interface :
;
; Wait(dExch,pdqMsgRet):ercType
;
; dExch is a DWORD (4 BYTES) containing the exchange to
; where the message should be sent.
;
; pMessage is a pointer to an 8 byte area where the
; message is stored.
;
WaitExchange EQU [EBP+10h]
pMessage EQU [EBP+0Ch]
;
;
PUBLIC __WaitMsg: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI,WaitExchange ; Get Exchange Parameter in ESI
 CMP ESI,nExch ; If the exchange is out of range
 JNAE Wait00 ; the return to caller with error
 MOV EAX,ercOutOfRange ; in the EAX register.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

Wait00:
 MOV EAX,ESI ; ExchId => EAX
 MOV EBX,sEXCH ; Compute offset of ExchId in rgExch
 MUL EBX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; Put Exch in to ESI
 CMP DWORD PTR [EAX+Owner], 0 ; If the exchange is not allocated
 JNE Wait01 ; return to the caller with error
 MOV EAX,ercNotAlloc ; in the EAX register.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

Wait01:
 CLI ;
 CALL deQueueMsg ; EAX <= pLB from pExch (ESI)
 OR EAX,EAX ; If no message (pLB = NIL) Then
 JZ Wait02 ; Wait for Message Else
 JMP Wait05 ; Get Message and Return

Wait02:
 MOV EAX,pRunTSS ; Get pRunTSS in EAX to Wait

 ;This next section of code Queues up the TSS pointed to
 ;by EAX on the exchange pointed to by ESI

MMURTL V1.0 Page 327 of 667

 ; (i.e., we make the current task "wait")

 MOV DWORD PTR [EAX+NextTSS], 0 ; pTSSin^.Next <= NIL;
 XCHG ESI,EAX ; pExch => EAX, pTSSin => ESI
 CMP DWORD PTR [EAX+EHead], 0 ; if ..TSSHead = NIL
 JNE Wait025 ; then
 MOV [EAX+EHead],ESI ; ..TSSHead <= pTSSin;
 MOV [EAX+ETail],ESI ; ..TSSTail <= pTSSin;
 MOV DWORD PTR [EAX+fEMsg], 0 ; Flag it as a TSS (vice a Msg)
 XCHG ESI,EAX ; Make ESI <= pExch Again
 JMP SHORT Wait03 ; else

Wait025:
 MOV EDX,[EAX+ETail] ; ..TSSTail^.NextTSS <= pTSSin;
 MOV [EDX+NextTSS],ESI ;
 MOV [EAX+ETail],ESI ; ..TSSTail <= pTSSin;
 MOV DWORD PTR [EAX+fEMsg], 0 ; Flag it as a TSS (vice a Msg)
 XCHG ESI,EAX ; Make ESI <= pExch Again

 ;We just placed the current TSS on an exchange,
 ;now we get the next TSS to run (if there is one)

Wait03:
 CALL deQueueRdy ; Get highest priority TSS off the RdyQ
 OR EAX, EAX ; Anyone ready to run?
 JNZ Wait035 ; Yes (jump to check pTSS)

 MOV EDI, 1
 MOV dfHalted, EDI
 INC _nHalts
 STI ; No, then HLT CPU until ready
 HLT ; Halt CPU and wait for interrupt
 CLI ; An interrupt has occured. Clear Interrupts
 XOR EDI,EDI
 MOV dfHalted, EDI
 JMP Wait03 ; Check for a task to switch to

Wait035:
 CMP EAX,pRunTSS ; Same one as before???
 JE Wait04 ; You bet! NO SWITCH!!!

 ;Now we switch tasks by placing the address of the
 ;new TSS in pRunTSS and jumping to it. This forces
 ;a hardware task switch.

 MOV pRunTSS,EAX ; Make high priority TSS Run.
 MOV BX,[EAX+Tid] ;
 MOV TSS_Sel,BX ;
 INC _nSwitches
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ; JUMP TSS (Switch Tasks)

 ; A task has just finished "Waiting"
 ; We are now in the new task with its memory space
 ; (or the same task if he was high pri & had a msg)
 ; If this is a system service it may need RqBlk address aliases

MMURTL V1.0 Page 328 of 667

 ; If it is an OS service we alias in OS memory!

Wait04:
 MOV EDX,pRunTSS ; Put the TSS in EAX into EDX
 MOV EAX,[EDX+pLBRet] ; Get the pLB in EAX

Wait05:
 ; If we got here, we have either switched tasks
 ; and we are delivering a message (or Req) to the new task,
 ; or the there was a message waiting at the exch of
 ; the first caller and we are delivering it.
 ; Either way, the message is already deQueued from
 ; the exch and the critical part of WaitMsg is over.
 ; We can start interrupts again except when we have
 ; to return the Link Block to the pool (free it up)

 STI ; WE CAN RESTART INTERRUPTS HERE
 CMP DWORD PTR [EAX+LBType],REQLB ; Is the link block a Req Link
Block?
 JNE Wait06 ; No, Treat it as a data link
block

 ;pLB.DataLo is RqHandle (pRqBlk)

 PUSH EAX ; Save ptr to Link Block
 MOV EBX,[EAX+DataLo] ; Get pRqBlk into EBX

 ;Now we set up to alias the memory for the service
 ; (Alias the 2 Pointers in the RqBlk)
 ;_AliasMem(pMem, dcbMem, dJobNum, ppAliasRet): dError

 MOV ECX, [EBX+cbData1] ;
 OR ECX, ECX ;is cbData1 0?
 JZ Wait051 ;Yes

 MOV EAX, [EBX+pData1] ;
 OR EAX, EAX ;is pData1 NULL?
 JZ Wait051 ;Yes

 ;Set up params for AliasMem
 PUSH EAX ;pMem
 PUSH ECX ;cbMem
 MOV EAX, [EBX+RqOwnerJob]
 PUSH EAX ;dJobNum
 ADD EBX, pData1 ;Offset to pData1 in RqBlk
 PUSH EBX ;Linear Address of pData1
 CALL FWORD PTR _AliasMem
 OR EAX, EAX ;Error??
 JZ Wait051 ;No, continue
 POP EBX ;Make stack right
 MOV ESP,EBP ;Return Error...
 POP EBP ;
 RETF 8 ;

Wait051: ;Second Pointer (pData2)
 POP EAX ;Restore ptr to Link Block
 PUSH EAX ;Save again

MMURTL V1.0 Page 329 of 667

 MOV EBX,[EAX+DataLo] ; Get pRqBlk into EBX

 MOV ECX, [EBX+cbData2] ;
 OR ECX, ECX ;is cbData2 0?
 JZ Wait052 ;Yes

 MOV EAX, [EBX+pData2] ;
 OR EAX, EAX ;is pData2 NULL?
 JZ Wait052 ;Yes
 ;Set up params for AliasMem
 PUSH EAX ;pMem
 PUSH ECX ;cbMem
 MOV EAX, [EBX+RqOwnerJob]
 PUSH EAX ;dJobNum
 ADD EBX, pData2 ;Offset to pData2 in RqBlk
 PUSH EBX ;Linear Address of PData1
 CALL FWORD PTR _AliasMem
 OR EAX, EAX ;Error??
 JZ Wait052 ;No, continue
 POP EBX ;Make stack right
 MOV ESP,EBP ;Return Error...
 POP EBP ;
 RETF 8 ;

Wait052:
 POP EAX ;Restore ptr to Link Block

Wait06:
 MOV EBX,[EAX+DataLo] ; Get pLB^.Data into ECX:EBX
 MOV ECX,[EAX+DataHi] ;
 MOV EDX,pMessage ; Get Storage Addr in EDX
 MOV [EDX],EBX ; Put pLB^.Data in specified
 MOV [EDX+4],ECX ; memory space (EDX)

 ;Return the LB to the pool
 CLI
 MOV EBX,pFreeLB ; pLBin^.Next <= pFreeLB;
 MOV [EAX+NextLB],EBX ;
 MOV pFreeLB,EAX ; pFreeLB <= pLBin;
 INC _nLBLeft ;
 STI ;
 XOR EAX,EAX ; ErcOK! (0)
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

CheckMsg()

This is the kernel CheckMsg primitive. This procedure allows a task to receive information
from another task without blocking. In other words, if no message is available CheckMsg()
returns to the caller. If a message is available it is returned to the caller immediately.

MMURTL V1.0 Page 330 of 667

The caller is never placed on an exchange and the ready queue is not evaluated. As with
WaitMsg(), address aliasing must also be accomplished here for system services if they have
different page directories. See listing 18.18.

Listing 18.18 -CheckMsg kernel primitive code.

; A result code is returned in the EAX register.
;
; Procedureal Interface :
;
; CheckMsg(exch,pdqMsg):ercType
;
; exch is a DWORD (4 BYTES) containing the exchange to where the
; message should be sent.
;
; pdqMsg is a pointer to an 8 byte area where the message is
stored.
;
ChkExchange EQU [EBP+10h]
pCkMessage EQU [EBP+0Ch]

PUBLIC __CheckMsg: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI,ChkExchange ; Get Exchange Parameter in ESI
 CMP ESI,nExch ; If the exchange is out of range
 JNAE Chk01 ; the return to caller with error
 MOV EAX,ercOutOfRange ; in the EAX register.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;
Chk01:
 MOV EAX,ESI ; Exch => EAX
 MOV EBX,sEXCH ; Compute offset of Exch in rgExch
 MUL EBX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ESI,EAX ; Put pExch in to ESI
 CMP DWORD PTR [EAX+Owner], 0 ; If the exchange is not allocated
 JNE Chk02 ; return to the caller with error

 MOV EAX,ercNotAlloc ; in the EAX register.
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;
Chk02:
 CLI ; Can’t be interrupted
 CALL deQueueMsg ; EAX <= pLB from pExch (ESI)
 OR EAX,EAX ; If pLB = NIL Then
 JNZ Chk03 ; Go to get msg and return

 STI ;
 MOV EAX,ercNoMsg ; return with erc no msg
 MOV ESP,EBP ;

MMURTL V1.0 Page 331 of 667

 POP EBP ;
 RETF 8 ;
Chk03:
 STI ;We can be interrupted again

 CMP DWORD PTR [EAX+LBType],REQLB ; Is the link block a Req Link
Block?
 JNE Chk04 ; No, Treat it as a data link block

 ;pLB.DataLo is RqHandle (pRqBlk)

 PUSH EAX ; Save ptr to Link Block
 MOV EBX,[EAX+DataLo] ; Get pRqBlk into EBX

 ;Now we set up to alias the memory for the service
 ; (Alias the 2 Pointers in the RqBlk)
 ;_AliasMem(pMem, dcbMem, dJobNum, ppAliasRet): dError

 MOV ECX, [EBX+cbData1] ;
 OR ECX, ECX ;is cbData1 0?
 JZ Chk031 ;Yes

 MOV EAX, [EBX+pData1] ;
 OR EAX, EAX ;is pData1 NULL?
 JZ Chk031 ;Yes
 ;Set up params for AliasMem
 PUSH EAX ;pMem
 PUSH ECX ;cbMem
 MOV EAX, [EBX+RqOwnerJob]
 PUSH EAX ;dJobNum
 ADD EBX, pData1 ;Offset to pData1 in RqBlk
 PUSH EBX ;Linear Address of pData1
 CALL FWORD PTR _AliasMem
 OR EAX, EAX ;Error??
 JZ Chk031 ;No, continue
 POP EBX ;Make stack right
 MOV ESP,EBP ;Return Error...
 POP EBP ;
 RETF 8 ;

Chk031: ;Second Pointer (pData2)
 POP EAX ;Restore ptr to Link Block
 PUSH EAX ;Save again
 MOV EBX,[EAX+DataLo] ; Get pRqBlk into EBX

 MOV ECX, [EBX+cbData2] ;
 OR ECX, ECX ;is cbData2 0?
 JZ Chk032 ;Yes

 MOV EAX, [EBX+pData2] ;
 OR EAX, EAX ;is pData2 NULL?
 JZ Chk032 ;Yes
 ;Set up params for AliasMem
 PUSH EAX ;pMem
 PUSH ECX ;cbMem
 MOV EAX, [EBX+RqOwnerJob]
 PUSH EAX ;dJobNum

MMURTL V1.0 Page 332 of 667

 ADD EBX, pData2 ;Offset to pData2 in RqBlk
 PUSH EBX ;Linear Address of PData1
 CALL FWORD PTR _AliasMem
 OR EAX, EAX ;Error??
 JZ Chk032 ;No, continue
 POP EBX ;Make stack right
 MOV ESP,EBP ;Return Error...
 POP EBP ;
 RETF 8 ;

Chk032:
 POP EAX ;Restore Ptr to Link Block

Chk04:
 MOV EBX,[EAX+DataLo] ; Get pLB^.Data into ECX:EBX
 MOV ECX,[EAX+DataHi] ;
 MOV EDX,pCkMessage ; Get Storage Addr in EDX
 MOV [EDX],EBX ; Put pLB^.Data in specified
 MOV [EDX+4],ECX ; memory space (EDX)

 ;Return the LB to the pool
 CLI
 MOV EBX,pFreeLB ; pLBin^.Next <= pFreeLB;
 MOV [EAX+NextLB],EBX ;
 MOV pFreeLB,EAX ; pFreeLB <= pLBin;
 INC _nLBLeft ;
 STI ;

 XOR EAX,EAX ;ErcOK! (0)
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;
;

NewTask()

This is the kernel NewTask() primitive. This creates a new task and schedules it for execution.
This is used primarily to create a task for a job other than the one you are in. The operating
system job-management code uses this to create the initial task for a newly loaded job.

For MMURTL version 1.x, stack protection is not provided for transitions through the call gates
to the OS code. In future versions, NewTask() will allocate operating system stack space
separately from the stack memory the caller provides as a parameter. The protect in this version
of MMURTL is limited to page protection, and any other access violations caused with result in
a general protection violation, or page fault. The change will be transparent to applications when
it occurs. See listing 18.19.

Listing 18.19.NewTaskkernel primitive code.

;
; Procedural interface:
;

MMURTL V1.0 Page 333 of 667

; NewTask(JobNum, CodeSeg, Priority, fDebug, Exch, ESP, EIP): dErcRet
;
;
NTS_Job EQU [EBP+36] ;Job Num for this task
NTS_CS EQU [EBP+32] ;8 for OS, 18h for user task
NTS_Pri EQU [EBP+28] ;Priority of this task
NTS_fDbg EQU [EBP+24] ;TRUE for DEBUGing
NTS_Exch EQU [EBP+20] ;Exchange for TSS
NTS_ESP EQU [EBP+16] ;Initial stack pointer
NTS_EIP EQU [EBP+12] ;Task start address

PUBLIC __NewTask: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV EDX, NTS_Pri ;
 CMP EDX, nPRI-1 ;Priority OK?
 JBE NT0000
 MOV EAX,ercBadPriority
 JMP NTEnd

NT0000:
 MOV ECX, NTS_Exch
 CMP ECX, nExch ;Exch in range?
 JBE NT0001
 MOV EAX,ercOutOfRange
 JMP NTEnd

NT0001:
 CLI ;we can’t be interrupted
 MOV EAX,pFreeTSS ; NewTSS <= pFreeTSS;
 OR EAX,EAX ; IF pFreeTSS=NIL THEN Return;
 JNZ NT0002 ;
 MOV EAX,ercNoMoreTSSs ;No...
 JMP NTEnd

NT0002:
 MOV EBX,[EAX+NextTSS] ; pFreeTSS <= pFreeTSS^.Next
 MOV pFreeTSS,EBX ;
 DEC _nTSSLeft ;
 STI

 ;EAX now has pNewTSS

 MOV [EAX+Priority],DL ;put Priority into TSS
 MOV DWORD PTR [EAX+TSS_EFlags],0202h ;Load the Flags Register
 MOV [EAX+TSS_Exch], ECX ;Put new Exch in TSS (ECX is free)
 MOV EBX, NTS_EIP ;mov EIP into TSS (Start Address)
 MOV [EAX+TSS_EIP],EBX
 MOV EBX, NTS_ESP ;mov ESP into TSS
 MOV [EAX+TSS_ESP],EBX
 MOV [EAX+TSS_ESP0],EBX ;
 MOV ECX, NTS_CS ;mov CS into TSS
 MOV [EAX+TSS_CS],CX

 PUSH EAX ;Save pNewTSS

MMURTL V1.0 Page 334 of 667

 ;Now we get pJCB from JobNum they passed in so we can
 ;get the PD from the JCB

 MOV EAX, NTS_Job ;Set up to call GetpJCB
 CALL GetpJCB ;EAX now has pJCB
 MOV ECX, EAX ;ECX now has pJCB

 POP EAX ;Restore pNewTSS to EAX

 MOV [EAX+TSS_pJCB],ECX ;Put pJCB into TSS
 MOV EBX, [ECX+JcbPD] ;Set up to call LinToPhy

 PUSH EAX ;Save pNewTSS again

 MOV EAX, NTS_Job ;
 CALL LinToPhy ;Get Physical Address for PD into EAX
 MOV EBX, EAX
 POP EAX ;pNewTSS into EAX
 MOV [EAX+TSS_CR3],EBX ;Put Physical Add for PD into TSS_CR3
 CMP DWORD PTR NTS_fDbg, 0 ;Debug on entry?
 JE NT0004 ;No
 MOV WORD PTR [EAX+TSS_TrapBit], 1 ;Yes

NT0004:
 MOV EBX, NTS_Pri ;Get priority of new task

 CLI ;We can’t be interrupted
 MOV EDX,pRunTSS ;Get who’s running
 CMP BYTE PTR [EDX+Priority],BL ;Who got the highest Pri?
 JA NT0005 ;New guy does (lowest num)
 CALL enQueueRdy ;Just put new guy on the ReadyQue (EAX)
 XOR EAX,EAX ;ercOk
 JMP NTEnd ;Return to caller

NT0005:
 XCHG EAX,EDX ;CrntTSS -> EAX, New TSS -> EDX
 PUSH EDX ;Save New TSS
 CALL enQueueRdy ;
 POP EAX ;New TSS -> EAX
 MOV pRunTSS,EAX ;Move new TSS into pRunTSS
 MOV BX,[EAX+Tid] ;Put Selector/Offset in "TSS"
 MOV TSS_Sel,BX ;
 INC _nSwitches
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ;Jump to new TSS
 XOR EAX,EAX ;ErcOk

NTEnd:
 STI ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 28 ;

MMURTL V1.0 Page 335 of 667

SpawnTask()

SpawnTask is the kernel primitive used to create another task (a thread) in the context of the
caller’s job control block and memory space. It’s the easy way to create additional tasks for
existing jobs.

As with NewTask(), the newly created task is placed on the ready queue if it is not a higher
priority than the task that created it. See listing 18.20.

Listing 18.20.SpawnTask kernel primitive code

;
; Procedural Interface:
; SpawnTask(pEntry, dPriority, fDebug, pStack, fOSCode);
;
;
pEntryST EQU DWORD PTR [EBP+28]
dPriST EQU DWORD PTR [EBP+24]
fDebugST EQU DWORD PTR [EBP+20]
pStackST EQU DWORD PTR [EBP+16]
fOSCodeST EQU DWORD PTR [EBP+12]

NewExchST EQU DWORD PTR [EBP-4]
NewTSSST EQU DWORD PTR [EBP-8]

PUBLIC __SpawnTask: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 SUB ESP, 8 ;two local DWORD vars
 CMP dPriST, nPRI-1 ;Priority OK?
 JBE ST0001
 MOV EAX,ercBadPriority
 JMP STEnd

ST0001:
 LEA EAX, NewExchST ;Allocate exchange
 PUSH EAX
 CALL FWORD PTR _AllocExch
 OR EAX, EAX ;see if we got an error
 JNZ STEnd ;Yup, bad news

 ;Allocate a new TSS
 CLI ;we can’t be interrupted
 MOV EAX,pFreeTSS ; NewTSS <= pFreeTSS;
 OR EAX,EAX ; IF pFreeTSS=NIL THEN Return;
 JNZ ST0002 ;
 STI

 ;Dealloc Exch if we didn’t get a TSS
 PUSH NewExchST
 CALL FWORD PTR _DeAllocExch
 MOV EAX,ercNoMoreTSSs ;No...
 JMP NTEnd

MMURTL V1.0 Page 336 of 667

ST0002:
 MOV EBX,[EAX+NextTSS] ; pFreeTSS <= pFreeTSS^.Next
 MOV pFreeTSS,EBX ;
 DEC _nTSSLeft ;
 STI

 MOV NewTSSST, EAX ;Save new TSS
 MOV EBX, NewExchST ;mov exch into TSS
 MOV [EAX+TSS_Exch],EBX
 MOV WORD PTR [EAX+TSS_CS], OSCodeSel ;Defaults to OS code selector
 CMP fOSCodeST, 0
 JNE ST0003
 MOV WORD PTR [EAX+TSS_CS], JobCodeSel ;Make OS code selector

ST0003:
 MOV EBX,pEntryST ;mov EIP into TSS
 MOV [EAX+TSS_EIP],EBX
 MOV EBX, pStackST ;mov ESP into TSS
 MOV [EAX+TSS_ESP],EBX
 MOV [EAX+TSS_ESP0],EBX
 MOV EBX, pRunTSS
 MOV EDX, [EBX+TSS_pJCB] ;Get pJCB from Crnt Task
 MOV [EAX+TSS_pJCB],EDX
 MOV EDX, [EBX+TSS_CR3] ;Get CR3 from crnt task
 MOV [EAX+TSS_CR3],EDX ; move into new TSS
 MOV DWORD PTR [EAX+TSS_EFlags],0202h ;Load the Flags Register
 CMP fDebugST, 0 ;Debug on entry?
 JE ST0004 ;No
 MOV WORD PTR [EAX+TSS_TrapBit], 1 ;Yes

ST0004:
 MOV EBX, dPriST ;mov priority into BL
 MOV [EAX+Priority],BL ;put in TSS

 CLI ;we can’t be interrupted
 MOV EDX,pRunTSS ;Get who’s running
 CMP [EDX+Priority],BL ;Who got the highest Pri?
 JA ST0005 ;If crnt >, New guy does (lowest num)
 CALL enQueueRdy ;Old guy does, just put new guy on Q.
 XOR EAX,EAX ;ercOk
 JMP STEnd ;Return to caller

ST0005:
 XCHG EAX,EDX ;CrntTSS -> EAX, New TSS -> EDX
 PUSH EDX ;New TSS -> Stack
 CALL enQueueRdy ;Place crnt TSS on Q
 POP EAX ;New TSS -> EAX
 MOV pRunTSS,EAX ;Move new TSS into pRunTSS
 MOV BX,[EAX+Tid] ;Put Selector/Offset in "TSS"
 MOV TSS_Sel,BX ;
 INC _nSwitches
 MOV EAX, TimerTick ;Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 JMP FWORD PTR [TSS] ;Jump to new TSS
 XOR EAX,EAX ;ErcOk

STEnd:

MMURTL V1.0 Page 337 of 667

 STI ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 20 ;

AllocExch()

This is an auxiliary function to allocate an exchange. The exchange is a "message port" where
you send and receive messages. It is property of a Job (not a task). See listing 18.21.

Listing 18.21.Allocate exchange code

;
; Procedural Interface :
;
; AllocExch(pExchRet):dError
;
; pExchRet is a pointer to where you want the Exchange Handle
; returned. The Exchange Handle is a DWORD (4 BYTES).
;

PUBLIC __AllocExch: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 XOR ESI,ESI ; Zero the Exch Index
 MOV EBX,prgExch ; EBX <= ADR rgExch
 MOV ECX,nExch ; Get number of exchanges in ECX

AE000:
 CLI ;
 CMP DWORD PTR [EBX+Owner], 0 ; Is this exchange free to use
 JE AE001 ; If we found a Free Exch, JUMP
 ADD EBX,sEXCH ; Point to the next Exchange
 INC ESI ; Increment the Exchange Index
 LOOP AE000 ; Keep looping until we are done
 STI ;
 MOV EAX,ercNoMoreExch ; There are no instances of the
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;

AE001:
 MOV EDX,[EBP+0CH] ; Get the pExchRet in EDX
 MOV [EDX],ESI ; Put Index of Exch at pExchRet
 MOV EDX,pRunTSS ; Get pRunTSS in EDX
 MOV EAX,[EDX+TSS_pJCB] ; Get the pJCB in EAX
 MOV [EBX+Owner],EAX ; Make the Exch owner the Job
 STI ;
 MOV DWORD PTR [EBX+EHead],0 ; Make the msg/TSS queue NIL
 MOV DWORD PTR [EBX+ETail],0 ;
 DEC _nEXCHLeft ; Stats
 XOR EAX,EAX ;ercOK (0)
 MOV ESP,EBP ;

MMURTL V1.0 Page 338 of 667

 POP EBP ;
 RETF 4 ;

DeAllocExch()

This is the compliment of AllocExch(). This function has a lot more to do, however. When an
exchange is returned to the free pool of exchanges, it may have left over link blocks hanging on
it. Those link blocks may also contain requests. This means that DeAllocExch() must also be a
garbage collector.

Messages are deQueued, and link blocks, TSSs, and request blocks are freed up as necessary.
See listing 18.22.

Listing 18.22.Deallocate exchange code

;
; Procedural Interface :
;
; DeAllocExch(Exch):ercType
;
; Exch is the Exchange Handle the process is asking to be released.

PUBLIC __DeAllocExch: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV ESI,[EBP+0CH] ; Load the Exchange Index in ESI
 MOV EAX,ESI ; Get the Exchange Index in EAX
 MOV EDX,sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ;
 MOV ECX,EAX ; Make a copy in ECX (ECX = pExch)

 MOV EDX,pRunTSS ; Get the pRunTSS in EDX
 MOV EBX,[EDX+TSS_pJCB] ; Get pJCB in EBX
 MOV EDX,[EAX+Owner] ; Get the Exchange Owner in EDX
 CMP EBX,EDX ; If the CurrProc owns the Exchange,
 JE DE000 ; yes
 CMP EBX, OFFSET MonJCB ; if not owner, is this the OS???
 JE DE000 ; yes
 MOV EAX,ercNotOwner ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;

DE000:
 CLI ;
 CMP DWORD PTR [ECX+fEMsg],0 ; See if a message may be queued
 JE DE001 ; No. Go check for Task (TSS)
 MOV ESI, ECX ; ESI must point to Exch for deQueue
 CALL deQueueMsg ; Yes, Get the message off of the Exchange
 OR EAX, EAX

MMURTL V1.0 Page 339 of 667

 JZ DE002 ; Nothing there. Go free the Exch.

 ;Return the LB to the pool
 MOV EBX,pFreeLB ; pLBin^.Next <= pFreeLB;
 MOV [EAX+NextLB],EBX ;
 MOV pFreeLB,EAX ; pFreeLB <= pLBin;
 INC _nLBLeft ;
 JMP DE000 ; Go And Check for more.

 ; If we find an RqBlk on the exchange we must respond
 ;with ErcInvalidExch before we continue! This will
 ;only happen if a system service writer doesn’t follow
 ;instructions or a service crashes!
 ;
DE001:
 CMP DWORD PTR [ECX+EHead], 0 ; Check to See if TSS is queued
 JE DE002 ; NIL = Empty, JUMP
 MOV ESI, ECX ; ESI must point to Exch for deQueue
 CALL deQueueTSS ; Get the TSS off of the Exchange

 ;Free up the TSS (add it to the free list)
 MOV EBX,pFreeTSS ; pTSSin^.Next <= pFreeTSS;
 MOV [EAX+NextTSS],EBX ;
 MOV DWORD PTR [EAX+TSS_pJCB], 0 ; Make TSS invalid
 MOV pFreeTSS,EAX ; pFreeTSS <= pTSSin;
 INC _nTSSLeft ;
 JMP DE001 ; Go And Check for more.

DE002:
 MOV DWORD PTR [ECX+Owner], 0 ; Free up the exchange.
 MOV DWORD PTR [ECX+fEMsg], 0 ; Reset msg Flag.
 INC _nEXCHLeft ; Stats
 STI ;
 XOR EAX,EAX ;ercOK (0)
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;

GetTSSExch()

This is an auxiliary function that returns the exchange of the current TSS to the caller. This is
primarily provided for system services that provide direct access blocking calls for customers.
These services use the default exchange in the TSS to make a request for the caller of a
procedural interface. See listing 18.23.

Listing 18.23.GetTSS exchange code.

;
; Procedural Interface :
;
; GetTSSExch(pExchRet):dError
;

MMURTL V1.0 Page 340 of 667

; pExchRet is a pointer to where you want the Exchange Handle
; returned. The Exchange is a DWORD (4 BYTES).
;
PUBLIC __GetTSSExch: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 MOV ESI,[EBP+0CH] ; Get the pExchRet in EDX
 MOV EBX, [EAX+TSS_Exch] ; Get Exch in EBX
 MOV [ESI],EBX ; Put Index of Exch at pExchRet
 XOR EAX, EAX ; ErcOK
 POP EBP ;

 RETF 4 ;

SetPriority()

This is an auxiliary function that sets the priority of the caller’s task. This doesn’t really affect the
kernel, because the new priority isn’t used until the task is rescheduled for execution. If this is
used to set a temporary increase in priority, the complimentary call GetPriority() should be used
so the task can be returned to it’s original priority. See listing 18.24

Listing 18.24.Set priority code.

;
; SetPriority - This sets the priority of the task that called it
; to the priority specified in the single parameter.
;
; Procedural Interface :
;
; SetPriority(bPriority):dError
;
; bPriority is a byte with the new priority.
;
PUBLIC __SetPriority ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 MOV EBX,[EBP+0CH] ; Get the new pri into EBX
 AND EBX, 01Fh ; Nothing higher than 31!
 MOV BYTE PTR [EAX+Priority], BL ;Put it in the TSS
 XOR EAX, EAX ; ErcOK - No error.
 POP EBP ;
 RETF 4 ;

MMURTL V1.0 Page 341 of 667

GetPriority()

This is an auxiliary function that returns the current priority of the running task. Callers should
use GetPriority() before using the SetPriority() call so they can return to their original priority
when their "emergency" is over. See listing 18.25.

Listing 18.25.Get priority code.

;
; GetPriority - This gets the priority of the task that called it
; and passes it to bPriorityRet.
;
; Procedural Interface :
;
; SetPriority(bPriorityRet):dError
;
; bPriorityret is a pointer to a byte where you want the
; priority returned.
;
PUBLIC __GetPriority ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX,pRunTSS ; Get the Ptr To the Running TSS
 MOV EBX,[EBP+0CH] ; Get the return pointer into EBX
 MOV DL, BYTE PTR [EAX+Priority]
 MOV BYTE PTR [EBX], DL ;
 XOR EAX, EAX ; ErcOK - No error.
 POP EBP ;
 RETF 4 ;

MMURTL V1.0 Page 342 of 667

Chapter 19, Memory Management Code

Introduction

The memory management code is contained in the file MemCode.ASM. It begins with data
definitions that are used by all the private (local) and public functions.

Memory Management Data

Three important structures that you modify and deal with are the page allocation map (PAM),
page directories (PDs) and page tables (PTs). The variable naming conventions should help you
follow the code. The task state segments are also used extensively. Listing 19.1 is the data
segment portion of the memory management code.

Listing 19.1.Memory management constants and data

.DATA

.INCLUDE MOSEDF.INC
.INCLUDE TSS.INC
.INCLUDE JOB.INC

PUBLIC _nPagesFree DD 0 ;Number of free physical pages left

PUBLIC _oMemMax DD 000FFFFFh ;Default to 1 MB
 ;Page Allocation Map
PUBLIC rgPAM DB 2048 DUP (0) ;1 bit/4Kbytes - 2048 bytes = 64Mb
PUBLIC sPAM DD 32 ;Deafult is 32 (1Mb)
sPAMmax EQU 2048 ;Max is 2048 (64Mb)

MemExch DD 00000000h ;Semaphore exchange for Mem Mgmt
pNextPT DD 00000000h ;We alloc the "next" page table
 ;in advance (MANDATORY)

It was easier for me to define masks in assembly language. The following definitions are used to
set memory pages for specific access rights:

; 20 Bit Address AVL00DA00UWP
MEMALIAS EQU 00000000000000000000100000000111b ;User Writable
MEMUSERD EQU 00000000000000000000000000000111b ;User Writable (Data)
MEMUSERC EQU 00000000000000000000000000000101b ;User Readable (Code)
MEMSYS EQU 00000000000000000000000000000101b ;System Read/Write
ALIASBIT EQU 00000000000000000000100000000000b
PRSNTBIT EQU 00000000000000000000000000000001b
;

MMURTL V1.0 Page 343 of 667

Internal Code

The code is divided into two basic sections. The first section comprises all of the internal
routines that are used by the public functions users access. I call these internal support code. I
will describe the purpose of each of these functions just prior to showing you the code. As with
all assembler files for DASM, the code section must start with the .CODE command.

InitMemMgmt

InitMemMgmt finds out how much memory, in megabytes, you have, by writing to the highest
dword in each megabyte until it fails a read-back test. It sets nPagesFree after finding out just
how much you have. We assume 1MB to start, which means we start at the top of 2Mb
(1FFFFCh). It places the highest addressable offset in global oMemMax. You also calculate the
number of pages of physical memory this is and store it in the GLOBAL variable nPagesFree.
See listing 19.2.

Listing 19.2.Memory management initialization code

;IN: Nothing
;OUT: Nothing (except that you can use memory management routines now!)
;USED: ALL REGISTERS ARE USED.
;
PUBLIC InitMemMgmt:
 MOV _nPagesFree, 256 ;1 Mb of pages = 256
 MOV EAX,1FFFFCh ;top of 2 megs (for DWORD)
 XOR EBX,EBX ;
 MOV ECX,06D72746CH ;’mrtl’ test string value for memory
MEMLoop:
 MOV DWORD PTR [EAX],0h ;Set it to zero intially
 MOV DWORD PTR [EAX],ECX ;Move in test string
 MOV EBX,DWORD PTR [EAX] ;Read test string into EBX
 CMP EBX,ECX ;See if we got it back OK
 JNE MemLoopEnd ;NO!
 ADD EAX,3 ;Yes, oMemMax must be last byte
 MOV _oMemMax,EAX ;Set oMemMax
 SUB EAX,3 ;Make it the last DWord again
 ADD EAX,100000h ;Next Meg
 ADD _nPagesFree, 256 ;Another megs worth of pages
 ADD sPAM, 32 ;Increase PAM by another meg
 CMP EAX,3FFFFFCh ;Are we above 64 megs
 JAE MemLoopEnd ;Yes!
 XOR EBX,EBX ;Zero out for next meg test
 JMP MemLoop
MemLoopEnd:

The Page Allocation Map is now sized and Zeroed. Now you must fill in bits used by OS, which
was just loaded, and the Video RAM and Boot ROM, neither of which you consider free. The
code in listing 19.3 also fills out each of the page table entries (PTEs) for the initial OS code and

MMURTL V1.0 Page 344 of 667

data. Note that linear addresses match physical addresses for the initial OS data and code. Its the
law!

Listing 19.3.Continuation of memory management init.

; This first part MARKS the OS code and data pages as used
; and makes PTEs.
;
 MOV EDX, OFFSET pTbl1 ;EDX points to OS Page Table 1
 XOR EAX, EAX ;Point to 1st physical/linear page (0)
IMM001:
 MOV [EDX], EAX ;Make Page Table Entry
 AND DWORD PTR [EDX], 0FFFFF000h ;Leave upper 20 Bits
 OR DWORD PTR [EDX], 0001h ;Supervisor, Present
 MOV EBX, EAX
 CALL MarkPage ;Marks page in PAM
 ADD EDX, 4 ;Next table entry
 ADD EAX, 4096
 CMP EAX, 30000h ;Reserve 192K for OS (for now)
 JAE SHORT IMM002
 JMP SHORT IMM001 ;Go for more

Now you fill in PAM and PTEs for Video and ROM slots. This covers A0000 through 0FFFFFh,
which is the upper 384K of the first megabyte. Right now you just mark everything from A0000
to FFFFF as used. The routine in listing 19.4 could be expanded to search through the ROM
pages of ISA memory, C0000h –FFFFFh, finding the inaccessible ones and marking them as
allocated in the PAM. Several chip sets on the market, such as the 82C30 C&T, allow you to set
ROM areas as usable RAM, but I can't be sure everyone can do it, nor can I provide instructions
to everyone.

Listing 19.4.Continuation of memory management init.

IMM002:
 MOV EAX, 0A0000h ;Points to 128K Video & 256K ROM area
 MOV EBX, EAX ;
 SHR EBX, 10 ;Make it index (SHR 12, SHL 2)
 MOV EDX, OFFSET pTbl1 ;EDX pts to Page Table
 ADD EDX, EBX
IMM003:
 MOV [EDX], EAX ;Make Page Table Entry
 AND DWORD PTR [EDX], 0FFFFF000h ;Leave upper 20 Bits
 OR DWORD PTR [EDX], 0101b ;Mark it "User" "ReadOnly" &
"Present"
 MOV EBX, EAX ;Setup for MarkPage call
 CALL MarkPage ;Mark it used in the PAM
 ADD EDX, 4 ;Next PTE entry
 ADD EAX, 4096 ;Next page please
 CMP EAX, 100000h ;1Mb yet?
 JAE IMM004 ;Yes
 JMP SHORT IMM003 ;No, go back for more

MMURTL V1.0 Page 345 of 667

;

The initial page directory and the page table are static. Now we can go into paged memory
mode. This is done by loading CR3 with the physical address of the page directory, then reading
CR0, ANDing it with 8000000h, and then writing it again. After the MOV CR0 you must issue a
JMP instruction to clear the prefetch queue of any bogus physical addresses. See listing 19.5.

Listing 19.5.Turning on paged memory management

IMM004:
 MOV EAX, OFFSET PDir1 ;Physical address of OS page directory
 MOV CR3, EAX ;Store in Control Reg 3
 MOV EAX, CR0 ;Get Control Reg 0
 OR EAX, 80000000h ;Set paging bit ON
 MOV CR0, EAX ;Store Control Reg 0
 JMP IM0005 ;Clear prefetch queue
IM0005:
;

Now you allocate an exchange that the OS uses as a semaphore use to prevent reentrant use of
the any of the critical memory management functions. See listing 19.6.

Listing 19.6.Allocation of memory management exchange.

;
 LEA EAX, MemExch ;Alloc Semaphore Exch for Memory calls
 PUSH EAX
 CALL FWORD PTR _AllocExch

 PUSH MemExch ;Send a dummy message to pick up
 PUSH 0FFFFFFF1h
 PUSH 0FFFFFFF1h
 CALL FWORD PTR _SendMsg

You must allocate a page table to be used when one must be added to a user PD or OS PD. This
must be done in advance of finding out we need one because we may not have a linear address to
access it if the current PTs are all used up! It a little complicated, I’m afraid. See listing 19.7.

Listing 19.7.Finishing memory management initi.

 PUSH 1 ; 1 page for Next Page Table
 MOV EAX, OFFSET pNextPT ;
 PUSH EAX
 CALL FWORD PTR _AllocOSPage ; Get ’em!

MMURTL V1.0 Page 346 of 667

 RETN ;Done initializing memory managment
;

FindHiPage

FindHiPage finds the first unused physical page in memory from the top down and returns the
physical address of it to the caller. It also marks the page as used, assuming that you will allocate
it. Of course, this means if you call FindHiPage and don’t use it you must call UnMarkPage to
release it. This reduces nPagesFree by one. See listing 19.8.

Listing 19.8.Find highest physical page code.

;
;IN : Nothing
;OUT : EBX is the physical address of the new page, or 0 if error
;USED: EBX, Flags

 PUSH EAX
 PUSH ECX
 PUSH EDX
 MOV ECX, OFFSET rgPAM ;Page Allocation Map
 MOV EAX, sPAM ;Where we are in PAM
 DEC EAX ;EAX+ECX will be offset into PAM
FHP1:
 CMP BYTE PTR [ECX+EAX],0FFh ;All 8 pages used?
 JNE FHP2 ;No
 CMP EAX, 0 ;Are we at Bottom of PAM?
 JE FHPn ;no memory left...
 DEC EAX ;Another Byte lower
 JMP SHORT FHP1 ;Back for next byte
FHP2:
 MOV EBX, 7 ;
 XOR EDX, EDX
 MOV DL, BYTE PTR [ECX+EAX] ;Get the byte with a whole in it...
FHP3:
 BT EDX, EBX ;Test bits
 JNC FHPf ;FOUND ONE! (goto found)
 CMP EBX, 0 ;At the bottom of the Byte?
 JE FHPn ;Error (BAD CPU???)
 DEC EBX ;Next bit
 JMP FHP3
FHPf:
 BTS EDX, EBX ;Set the bit indexed by EBX
 MOV BYTE PTR [ECX+EAX], DL ;Set page in use
 SHL EAX, 3 ;Multiply time 8 (page number base in
byte)
 ADD EBX, EAX ;Add page number in byte
 SHL EBX, 12 ;Now EBX = Physical Page Addr (EBX*4096)
 DEC _nPagesFree ;One less available
 POP EDX
 POP ECX

MMURTL V1.0 Page 347 of 667

 POP EAX
 RETN
FHPn:
 XOR EBX, EBX ;Set to zero for error
 POP EDX
 POP ECX
 POP EAX
 RETN

FindLoPage

FindLoPage finds the first unused physical page in memory from the bottom up and returns the
physical address of it to the caller. It also marks the page as used, assuming that you will allocate
it. Once again, if we call FindLoPage and don’t use it, we must call UnMarkPage to release it.
This reduces nPagesFree by one. See listing 19.9.\

Listing 19.9.Find lowest physical page code.

;
;IN : Nothing
;OUT : EBX is the physical address of the new page, or 0 if error
;USED: EBX, Flags

 PUSH EAX
 PUSH ECX
 PUSH EDX
 MOV ECX, OFFSET rgPAM ;Page Allocation Map
 XOR EAX, EAX ;Start at first byte in PAM
FLP1:
 CMP BYTE PTR [ECX+EAX],0FFh ;All 8 pages used?
 JNE FLP2 ;No
 INC EAX ;Another Byte lower
 CMP EAX, sPAM ;Are we past at TOP of PAM?
 JAE FLPn ;no memory left...
 JMP SHORT FLP1 ;Back for next byte
FLP2:
 XOR EBX, EBX ;
 XOR EDX, EDX
 MOV DL, BYTE PTR [ECX+EAX] ;Get the byte with a whole in it...
FLP3:
 BT EDX, EBX ;Test bits
 JNC FLPf ;FOUND ONE! (goto found)
 INC EBX ;Next bit
 CMP EBX, 8 ;End of the Byte?
 JAE FLPn ;Error (BAD CPU???)
 JMP FLP3
FLPf:
 BTS EDX, EBX ;Set the bit indexed by EBX
 MOV BYTE PTR [ECX+EAX], DL ;Set page in use

 SHL EAX, 3 ;Multiply time 8 (page number base in
byte)

MMURTL V1.0 Page 348 of 667

 ADD EBX, EAX ;Add page number in byte
 SHL EBX, 12 ;Now EBX = Physical Page Addr (EBX*4096)
 DEC _nPagesFree ;One less available
 POP EDX
 POP ECX
 POP EAX
 RETN
FLPn:
 XOR EBX, EBX ;Set to zero for error
 POP EDX
 POP ECX
 POP EAX
 RETN

MarkPage

Given a physical memory address, MarkPage finds the bit in the PAM associated with it and
sets it to show the physical page in use. This function is used with the routines that initialize all
memory management function. This reduces nPagesFree by one. See listing 19.10.

Listing 19.10.Code to mark a physical page in use.

;
;IN : EBX is the physical address of the page to mark
;OUT : Nothing
;USED: EBX, Flags

 PUSH EAX
 PUSH ECX
 PUSH EDX
 MOV EAX, OFFSET rgPAM ;Page Allocation Map
 AND EBX, 0FFFFF000h ;Round down to page modulo 4096
 MOV ECX, EBX
 SHR ECX, 15 ;ECX is now byte offset into PAM
 SHR EBX, 12 ;Get Bit offset into PAM
 AND EBX, 07h ;EBX is now bit offset into byte of PAM
 MOV DL, [EAX+ECX] ;Get the byte into DL
 BTS EDX, EBX ;BitSet nstruction with Bit Offset
 MOV [EAX+ECX], DL ;Save the new PAM byte
 DEC _nPagesFree ;One less available
 POP EDX
 POP ECX
 POP EAX
 RETN

MMURTL V1.0 Page 349 of 667

UnMarkPage

Given a physical memory address, UnMarkPage finds the bit in the PAM associated with it and
resets it to show the physical page available again. This increases nPagesFree by one. See
listing 19.11.

Listing 19.11.Code to free a physical page ofr reuse.

;
;IN : EBX is the physical address of the page to UNmark
;OUT : Nothing
;USED: EBX, Flags

 PUSH EAX
 PUSH ECX
 PUSH EDX
 MOV EAX, OFFSET rgPAM ;Page Allocation Map
 AND EBX, 0FFFFF000h ;Round down to page modulo
 MOV ECX, EBX
 SHR ECX, 15 ;ECX is now byte offset into PAM
 SHR EBX, 12 ;
 AND EBX, 07h ;EBX is now bit offset into byte of PAM
 ADD EAX, ECX
 MOV DL, [EAX]
 BTR EDX, EBX ;BitReset instruction
 MOV [EAX], DL
 INC _nPagesFree ;One more available
 POP EDX
 POP ECX
 POP EAX
 RETN

LinToPhy

LinToPhy looks up the physical address of a 32-bit linear address passed in. The JCB is used to
identify whose page tables you are translating. The linear address is used to look up the page
table entry which is used to get the physical address. This call is used for things like aliasing for
messages, DMA operations, etc. This also leave the linear address of the PTE itself in ESI for
callers that need it. This function supports the similarly named public routine. See listing 19.12.

Listing 19.12.Code to convert linear to physical addresses.

;
; INPUT: EAX -- Job Number that owns memory we are aliasing
; EBX -- Linear address
;
; OUTPUT: EAX -- Physical Address
; ESI -- Linear Address of PTE for this linear address

MMURTL V1.0 Page 350 of 667

;
; USED: EAX, EBX, ESI, EFlags
;
PUBLIC LinToPhy:
 PUSH EBX ;Save Linear
 CALL GetpJCB ;Leaves pJCB in EAX
 MOV EAX, [EAX+JcbPD] ;EAX now has ptr to PD!
 ADD EAX, 2048 ;Move to shadow addresses in PD
 SHR EBX, 22 ;Shift out lower 22 bits leaving 10 bit
offset
 SHL EBX, 2 ;*4 to make it a byte offset into PD shadow
 ADD EBX, EAX ;EBX/EAX now points to shadow
 MOV EAX, [EBX] ;EAX now has Linear of Page Table
 POP EBX ;Get original linear back in EBX
 PUSH EBX ;Save it again
 AND EBX, 003FFFFFh ;Get rid of upper 10 bits
 SHR EBX, 12 ;get rid of lower 12 to make it an index
 SHL EBX, 2 ;*4 makes it byte offset in PT
 ADD EBX, EAX ;EBX now points to Page Table entry!
 MOV ESI, EBX ;Save this address for caller
 MOV EAX, [EBX] ;Physical base of page is in EAX
 AND EAX, 0FFFFF000h ;mask off lower 12
 POP EBX ;Get original linear
 AND EBX, 00000FFFh ;Cut off upper 22 bits of linear
 OR EAX, EBX ;EAX now has REAL PHYSICAL ADDRESS!
 RETN

FindRun

FindRun finds a contiguous run of free linear memory in one of the user or operating-system
page tables. This is either at address base 0 for the operating system, or the 1Gb address mark for
the user. The EAX register will be set to 0 if you are looking for OS memory; the caller sets it to
256 if you are looking for user memory. The linear address of the run is returned in EAX unless
no run that large exists, in which case we return 0. The linear run may span page tables if
additional tables already exist. This is an interesting routine because it uses two nested loops to
walk through the page directory and page tables while using the SIB (Scale Index Base)
addressing of the Intel processor for indexing. See listing 19.13.

Listing 19.13.Code to find a free run of linear memory

;
; IN : EAX PD Shadow Base Offset for memory (0 for OS, 256 for user)
; EBX Number of Pages for run
;
; OUT: EAX Linear address or 0 if no run is large enough
; EBX still has count of pages
; USED: EAX, EBX, EFlags (all other registers saved & restored)
;
;
FindRun:
 PUSH EBX ;Holds count of pages (saved for caller)

MMURTL V1.0 Page 351 of 667

 PUSH ECX ;Keeps count of how many free found so far
 PUSH EDX ;Index into PD for PT we are working on
 PUSH ESI ;Address of PD saved here
 PUSH EDI ;

 MOV ECX, EBX ;Copy number of pages to ECX. Save in EBX
 MOV EDX, EAX ;Index into shadow addresses from EAX

 CALL GetpCrntJCB ;Leaves pCrntJCB in EAX
 MOV ESI, [EAX+JcbPD] ;ESI now has ptr to PD
 ADD ESI, 2048 ;Move to shadow addresses

FR0:
 MOV EDI, [ESI+EDX*4] ;Lin address of next page table into EDI
 OR EDI, EDI ;Is the address NON-ZERO (valid)?
 JNZ FR1 ;Yes, go for it
 XOR EAX, EAX ;Return 0 cause we didn’t find it!
 JMP SHORT FREXIT ;
FR1:
 XOR EAX, EAX ;EAX indexes into PT (to compare PTEs)
FR2:
 CMP EAX, 1024 ;Are we past last PTE of this PT?
 JB FR3 ;No, keep testing
 INC EDX ;Next PT!
 JMP SHORT FR0 ;
FR3:
 CMP DWORD PTR [EDI+EAX*4], 0 ;Zero means it’s
 ;empty (available)
 JNE FR4 ;In use
 DEC ECX ;One more empty one!
 JZ FROK ;We found enough entries goto OK
 INC EAX ;Not done yet, Next PTE Please.
 JMP SHORT FR2 ;
FR4:
 ;If we got here we must reset ECX for full count and
 ;go back and start looking again
 INC EAX ;Not empty, next PTE please
 MOV ECX, EBX ;We kept original count in EBX
 JMP FR2
FROK:
 ;If we got here it means that ECX has made it to zero and
 ;we have a linear run large enough to satisy the request.
 ;The starting linear address is equal to number of the last
 ;PTE we found minus ((npages -1) * 4096)
 ;EDX was index into PD, while EAX was index into PT.
 ;EBX still has count of pages.

 SHL EDX, 22 ;EDX is 10 MSBs of Linear Address
 SHL EAX, 12 ;EAX is next 10 bits of LA
 OR EAX, EDX ;This is the linear address we ended at
 DEC EBX ;One less page (0 offset)
 SHL EBX, 12 ;Times size of page (* 4096)
 SUB EAX, EBX ;From current linear address in tables

FREXIT:
 POP EDI ;
 POP ESI ;

MMURTL V1.0 Page 352 of 667

 POP EDX ;
 POP ECX ;
 POP EBX ;
 RETN

AddRun

AddRun adds one or more page table entries (PTEs) to a page table, or tables, if the run spans
two or more tables. The address determines the protection level of the PTE’s you add. If it is less
than 1GB it means operating-system memory space that you will set to system. Above 1Gb is
user which we will set to user level protection. The linear address of the run should be in EAX,
and the count of pages should be in EBX. This is the way FindRun left them. Many functions
that pass data in registers are designed to compliment each other’s register usage for speed. See
listing 19.14.

Listing 19.14.Adding a run of linear memory.

;
; IN : EAX Linear address of first page
; EBX Number of Pages to add
; OUT: Nothing
; USED: EAX, EFlags
;
AddRun:
 PUSH EBX ;(save for caller)
 PUSH ECX ;
 PUSH EDX ;
 PUSH ESI ;
 PUSH EDI ;

 MOV ECX, EBX ;Copy number of pages to ECX (EBX free to
use).
 MOV EDX, EAX ;LinAdd to EDX
 SHR EDX, 22 ;Get index into PD for first PT
 SHL EDX, 2 ;Make it index to DWORDS

 PUSH EAX ;Save EAX thru GetpCrntJCB call
 CALL GetpCrntJCB ;Leaves pCrntJCB in EAX
 MOV ESI, [EAX+JcbPD] ;ESI now has ptr to PD!
 POP EAX ;Restore linear address

 ADD ESI, 2048 ;Offset to shadow address of PD
 ADD ESI, EDX ;ESI now points to initial PT (EDX now free)

 MOV EDX, EAX ;LinAdd into EDX again
 AND EDX, 003FF000h ;get rid of upper 10 bits & lower 12
 SHR EDX, 10 ;Index into PD for PT (10 vice 12 -> DWORDS)
AR0:
 MOV EDI, [ESI] ;Linear address of next page table into EDI

MMURTL V1.0 Page 353 of 667

 ;At this point, EDI is pointing the next PT.
 ;SO EDI+EDX will point to the next PTE to do.
 ;Now we must call FindPage to get a physical address into EBX,
 ;then check the original linear address to see if SYSTEM or USER
 ;and OR in the appropriate control bits, THEN store it in PT.

AR1:
 CALL FindHiPage ;EBX has Phys Pg (only EBX affected)
 OR EBX, MEMSYS ;Set PTE to present, User ReadOnly
 CMP EAX, 40000000h ;See if it’s a user page
 JB AR2
 OR EBX, MEMUSERD ;Sets User/Writable bits of PTE

AR2:
 MOV DWORD PTR [EDI+EDX], EBX ;EDX is index to exact entry
 DEC ECX ;Are we done??
 JZ ARDone
 ADD EDX, 4 ;Next PTE please.
 CMP EDX, 4096 ;Are we past last PTE of this PT?
 JB AR1 ;No, go do next PTE
 ADD ESI, 4 ;Yes, next PDE (to get next PT)
 XOR EDX,EDX ;Start at the entry 0 of next PT
 JMP SHORT AR0 ;
ARDone:
 POP EDI ;
 POP ESI ;
 POP EDX ;
 POP ECX ;
 POP EBX ;
 RETN

AddAliasRun

AddAliasRun adds one or more PTEs to a page table - or tables, if the run spans two or more
tables - adding PTEs from another job’s PTs marking them as alias entries. Aliased runs are
always at user protection levels even if they are in the operating-system address span.

The new linear address of the run should be in EAX, and the count of pages should be in EBX.
Once again, this is the way FindRun left them. The ESI register has the linear address you are
aliasing and the EDX register has the job number. See listing 19.15.

Listing 19.15.Adding an aliased run of linear memory.

;
; IN : EAX Linear address of first page of new alias entries
; (from find run)
; EBX Number of Pages to alias
; ESI Linear Address of pages to Alias (from other job)
; EDX Job Number of Job we are aliasing
;
; OUT: Nothing

MMURTL V1.0 Page 354 of 667

; USED: EAX, EFlags
;
AliasLin EQU DWORD PTR [EBP-4]
AliasJob EQU DWORD PTR [EBP-8]

AddAliasRun:
 PUSH EBP ;
 MOV EBP,ESP ;
 SUB ESP, 8

 MOV AliasLin, ESI
 MOV AliasJob, EDX

 PUSH EBX ;(save for caller)
 PUSH ECX ;
 PUSH EDX ;
 PUSH ESI ;
 PUSH EDI ;

 ;This first section sets to make [ESI] point to first PT that
 ;we have to move the other guy’s physical pages into

 MOV ECX, EBX ;Copy number of pages to ECX (EBX free to
use).
 MOV EDX, EAX ;LinAdd to EDX
 SHR EDX, 22 ;Get index into PD for first PT
 SHL EDX, 2 ;Make it index to DWORDS

 PUSH EAX ;Save EAX thru GetpCrntJCB call
 CALL GetpCrntJCB ;Leaves pCrntJCB in EAX
 MOV ESI, [EAX+JcbPD] ;ESI now has linear address of PD
 POP EAX ;Restore linear address

 ADD ESI, 2048 ;Offset to shadow addresses in PD
 ADD ESI, EDX ;ESI now points to first PT of interest

 MOV EDX, EAX ;LinAdd into EDX again
 AND EDX, 003FF000h ;get rid of upper 10 bits & lower 12
 SHR EDX, 10 ;Index into PD for PT (10 vice 12 -> DWORDS)
ALR0:
 MOV EDI, [ESI] ;Linear address of crnt page table into EDI

 ;At this point, EDI is pointing to the PT we are in.
 ;SO then EDI+EDX will point to the next PTE to do.
 ;Now we must call LinToPhy with Linear Add & JobNum
 ; to get a physical address into EAX.
 ;This is the Physical address to store in the new PTE. We must
 ;mark it MEMALIAS before adding it to PT.
ALR1:
 PUSH ESI ;Save for next loop (used by LinToPhy)

 MOV EAX, AliasJob ;Job we are aliasing
 MOV EBX, AliasLin ;Address we are aliasing
 ADD AliasLin, 4096 ;Set up for next loop (post increment)
 CALL LinToPhy ;

 ;EAX now has physical address for this page

MMURTL V1.0 Page 355 of 667

 ;

 AND EAX, 0FFFFF000h ;cut off system bits of PTE
 OR EAX, MEMALIAS ;Set system bits as ALIAS

 POP ESI ;Restore ESI (LinToPhy used it)

 ;Now store it in new PTE

 MOV DWORD PTR [EDI+EDX], EAX ;EDX is index to exact entry

 DEC ECX ;Are we done??
 JZ ALRDone
 ADD EDX, 4 ;Next PTE please.
 CMP EDX, 4096 ;Are we past last PTE of this PT?
 JB ALR1 ;No, go do next PTE
 ADD ESI, 4 ;Yes, next PDE (to get next PT)
 XOR EDX,EDX ;Start at the entry 0 of next PT
 JMP SHORT ALR0 ;
ALRDone:
 POP EDI ;
 POP ESI ;
 POP EDX ;
 POP ECX ;
 POP EBX ;

 MOV ESP,EBP ;
 POP EBP ;
 RETN

AddUserPT

AddUserPT creates a new user page table, initializes it, and sticks it in the user’s page directory.
This will be in user address space above 1GB.
This is easier than AddOSPT, as shown in the following, because there is no need to update
anyone else’s PDs. This sets the protection on the PT to user-Read-and-Write. Individual PTEs
will be set read-only for code. See listing 19.16.

Listing 19.16.Adding a page table for user memory

;
; IN : Nothing
; OUT: 0 if OK or Error (ErcNoMem - no free phy pages!)
; USED: EAX, EFlags
;
AddUserPT:
 PUSH EBX ;(save for caller)
 PUSH ECX ;
 PUSH EDX ;
 PUSH ESI ;

MMURTL V1.0 Page 356 of 667

 PUSH EDI ;

 MOV EAX, _nPagesFree ;See if have enuf physical memory
 OR EAX, EAX
 JNZ AUPT01
 MOV EAX, ErcNoMem ;Sorry, out of physical mem
 JMP AUPTDone
AUPT01:
 CALL GetCrntJobNum ;Leaves job num in EAX (for LinToPhy)
 MOV EBX, pNextPT ;Pre allocated Page (Linear Address)
 CALL LinToPhy ;EAX will have Physical address

 ; Put it in the User PD (and linear in shadow).
 ; Find first empty slot

 CALL GetpCrntJCB ;pJCB in EAX
 MOV EDI, JcbPD ;Offset to PcbPD in JCB
 ADD EDI, EAX ;EDI points to UserPD Address
 MOV ESI, [EDI] ;ESI now points to PD
 ADD ESI, 2048 ;ESI now points to upper 1 GB in PD
 MOV ECX, 511 ;Number of entries (at least 1 is already
gone)
AUPT02:
 ADD ESI, 4 ; Next possible empty entry
 MOV EBX, [ESI]
 OR EBX, EBX ; Is it empty?
 LOOPNZ AUPT02 ; No! (Try again)

 ; ESI now points to empty Slot
 ; Physical Address of new table is still in EAX
 ; Get Linear address back into EBX
 ; and put them into PD

 OR EAX, MEMUSERD ;Set user bits (Read/Write)
 MOV [ESI], EAX ;Physical address in lower half
 ADD ESI, 2048 ;Move to shadow
 MOV EBX, pNextPT ;Linear add back into EBX
 MOV [ESI], EBX ;Put in Linear address of PT (upper half)

 ;Now we now need another PreAllocated Page Table for
 ;next time. Get a run of 1 for next new page table

 MOV EBX, 1 ;size of request
 XOR EAX, EAX ;PD shadow offset needed by FindRun (0)
 CALL FindRun
 OR EAX, EAX ;was there an error (0 means no mem)
 JNZ AUPT05
 MOV EAX, ErcNoMem ;
 JMP SHORT AUPTDone
AUPT05:
 MOV pNextPT, EAX ;save pNextPT (the linear address)
 CALL AddRun ;AddRun will return NON-ZERO on error
AUPTDone:
 POP EDI ;
 POP ESI ;
 POP EDX ;
 POP ECX ;

MMURTL V1.0 Page 357 of 667

 POP EBX ;
 RETN

AddOSPT

AddOSPT is more complicated than AddUserPT because a reference to each new operating-
system page table must be placed in all user page directories. You must do this to ensure the
operating-system code can reach its memory no matter what job or task it’s is running in. Adding
an operating-system page table doesn’t happen often; in many cases, it won’t happen except once
or twice while the operating system is running. See listing 19.17.

Listing 19.17.Adding an operating system page table.

;
; IN : Nothing
; OUT: 0 if OK or Error (ErcNoMem - no free phy pages!)
; USED: EAX, EFlags
;
AddOSPT:
 PUSH EBX ;(save for caller)
 PUSH ECX ;
 PUSH EDX ;
 PUSH ESI ;
 PUSH EDI ;

 MOV EAX, _nPagesFree ;See if have enuf physical memory
 OR EAX, EAX
 JNZ AOPT01
 MOV EAX, ErcNoMem ;Sorry, out of physical mem
 JMP AOPTDone
AOPT01:
 MOV EAX, 1 ;OS Job Number (Monitor)
 MOV EBX, pNextPT ;Pre allocated Page (Linear Address)
 CALL LinToPhy ;EAX will have Physical address

 ; Put it in the OS PD (and linear in shadow).
 ; Find first empty slot

 MOV ESI, OFFSET PDir1 ; ESI points to OS Pdir
 MOV ECX, 511 ; Count of PDEs to check
AOPT02:
 ADD ESI, 4 ; Next possible empty entry
 MOV EBX, [ESI]
 OR EBX, EBX ; Is it empty?
 LOOPNZ AOPT02 ; No! (Try again)

 ; ESI now points to empty PDir Slot
 ; EAX still has Physical Address of new table
 ; Get Physical Address back into EBX
 ; and put them into PDir

 OR EAX, PRSNTBIT ;Set present bit

MMURTL V1.0 Page 358 of 667

 MOV [ESI], EAX ;Physical address in lower half
 ADD ESI, 2048 ;Move to shadow
 MOV EBX, pNextPT ;Linear add back into EBX
 MOV [ESI], EBX ;Put in Linear address of PT (upper half)

 ; Update ALL PDs from PDir1 !!
 ; This doesn’t happen often if it happens at all.
 ; The OS will usually not take 4 MBs even with ALL
 ; of its dynamic structures (except on
 ; a 32 Mb system or larger and when fully loaded)

 MOV EDX, nJCBs ; # of dynamic JCBs
AOPT03:
 MOV EAX, EDX ;Next JCB
 CALL GetpJCB ;EAX now has pointer to a job’s PD
 MOV ECX, [EAX+JcbPD] ;See if PD id zero (Inactive JCB)
 OR ECX, ECX ;Is it a valid Job? (0 if not)
 JZ AOPT04 ;No, Not a valid JCB (unused)

 ADD EAX, JcbPD ;EAX NOW points to PD of JCB
 MOV EBX, OFFSET PDir1 ;Source of Copy

 PUSH EDX ;Save nJCB we are on

 PUSH EAX ;Save values on stack
 PUSH EBX

 PUSH EBX ;Source
 PUSH EAX ;Destination
 PUSH 1024 ;Lower half of PD (Physical Adds)
 CALL FWORD PTR _CopyData

 POP EBX ;Get values from stack
 POP EAX

 ADD EBX, 2048 ;Move to shadow
 PUSH EBX
 ADD EAX, 2048 ;Move to shadow
 PUSH EAX
 PUSH 1024 ;Upper half of PD (Linear Adds)
 CALL FWORD PTR _CopyData

 POP EDX ; Get back JCB number

AOPT04:
 DEC EDX
 CMP EDX, 2
 JA AOPT03 ;Jobs 1 & 2 use PDir1 (Mon & Debugger)

 ;At this point the new table is valid to ALL jobs!
 ;We now need another PreAllocated Page Table for
 ;next time. Get a run of 1 for next new page table

 MOV EBX, 1 ;size of request
 XOR EAX, EAX ;PD shadow offset needed by FindRun (0)
 CALL FindRun
 OR EAX, EAX ;was there an error (0 means no mem)

MMURTL V1.0 Page 359 of 667

 JNZ AOPT05
 MOV EAX, ErcNoMem ;
 JMP SHORT AOPTDone
AOPT05:
 MOV pNextPT, EAX ;save pNextPT (the linear address)
 CALL AddRun ;AddRun
 XOR EAX, EAX ;Set ErcOK (0)
AOPTDone:
 POP EDI ;
 POP ESI ;
 POP EDX ;
 POP ECX ;
 POP EBX ;
 RETN

Public Memory Management Calls

You now begin the public call definitions for memory management. Not all of the calls are
present here because some are very similar. The calling conventions all follow the Pascal-style
definition.

AddGDTCallGate

AddGDTCallGate builds and adds a GDT entry for a call gate, allowing access to OS
procedures. This call doesn’t check to see if the GDT descriptor for the call is already defined. It
assumes you know what you are doing and overwrites one if already defined. The selector
number is checked to make sure you’re in range. This is 40h through the highest allowed call
gate number. See listing 19.18.

Listing 19.18.Adding a call gate to the GDT.

;
; IN: AX - Word with Call Gate ID type as follows:
;
; DPL entry of 3 EC0x (most likely)
; DPL entry of 2 CC0x (Not used in MMURTL)
; DPL entry of 1 AC0x (Not used in MMURTL)
; DPL entry of 0 8C0x (OS call ONLY)
; (x = count of DWord params 0-F)
;
; CX Selector number for call gate in GDT (constants!)
; ESI Offset of entry point in segment of code to execute
;
; OUT: EAX Returns Errors, else 0 if all’s well
;
; USES: EAX, EBX, ECX, ESI, EFLAGS

PUBLIC __AddCallGate:

MMURTL V1.0 Page 360 of 667

 CMP CX, 40h ;Is number within range of callgates?
 JAE AddCG01 ;not too low.
 MOV EAX, ercBadGateNum
 RETF
AddCG01:
 MOVZX EBX, CX
 SUB EBX, 40 ;sub call gate base selector
 SHR EBX, 3 ;make index vice selector
 CMP EBX, nCallGates ;see if too high!
 JBE AddCG02 ;No.
 MOV EAX, ercBadGateNum ;Yes.
 RETF
AddCG02:
 MOVZX EBX, CX ;Extend selector into EBX
 ADD EBX, GDTBase ;NOW a true offset in GDT
 MOV WORD PTR [EBX+02], 8 ;Put Code Seg selector into Call gate
 MOV [EBX], SI ;0:15 of call offset
 SHR ESI, 16 ;move upper 16 of offset into SI
 MOV [EBX+06], SI ;16:31 of call offset
 MOV [EBX+04], AX ;call DPL & ndParams
 XOR EAX, EAX ;0 = No Error
 RETF

AddIDTGate

AddIDTGate builds and adds an interrupt descriptor table (IDT) trap, interrupt, or task gate. The
selector of the call is always 8 for interrupt or trap; for a task gate, the selector of the call is the
task state segment (TSS) of the task. See listing 19.19.

Listing 19.19.Adding entries to the IDT.

;
; IN: AX - Word with Gate ID type as follows:
; Trap Gate with DPL of 3 8F00
; Interrupt Gate with DPL of 3 8E00
; Task Gate with DPL of 3 8500
;
; BX - Selector of gate (08 or TSS selector for task gates)
;
; CX - Word with Interrupt Number (00-FF)
;
; ESI - Offset of entry point in OS code to execute
; (THIS MUST BE 0 FOR TASK GATES)
;
; USES: EAX, EBX, ECX, EDX, ESI, EFLAGS

PUBLIC __AddIDTGate:
 MOVZX EDX, CX ;Extend INT Num into EDX
 SHL EDX, 3 ;Gates are 8 bytes each (times 8)
 ADD EDX, OFFSET IDT ;EDX now points to gate
 MOV WORD PTR [EDX+4], AX ;Put Gate ID into gate
 MOV EAX, ESI
 MOV WORD PTR [EDX], AX ;Put Offset 15:00 into gate

MMURTL V1.0 Page 361 of 667

 SHR EAX, 16
 MOV WORD PTR [EDX+6], AX ;Put Offset 31:16 into gate
 MOV WORD PTR [EDX+2], BX ;Put in the selector
 RETF
;

AllocOSPage

This allocates one or more pages of physical memory and returns a linear pointer to one or more
pages of contiguous memory in the operating system space. A result code is returned in the EAX
register. The steps involved depend on the internal routines described above. The steps are:

1. Ensure you have physical memory by checking nPagesFree.
2. Find a contiguous run of linear pages to allocate.
3. Allocate each physical page, placing it in the run of PTEs

You search through the page tables for the current job and find enough contiguous PTEs to
satisfy the request. If the current PT doesn’t have enough contiguous entries, we add another
page table to the operating-system page directory. This allows runs to span table entries.
AllocPage and AllocDMAPage are not shown here because they are almost identical to
AllocOSPage, but not close enough to easily combine their code. See listing 19.20.

Listing 19.20.Allocating a page of linear memory.

; Procedureal Interface :
;
; AllocOSPage(dn4KPages,ppMemRet): dError
;
;
n4KPages EQU [EBP+10h] ;These equates are also used by AllocPage
ppMemRet EQU [EBP+0Ch] ;

PUBLIC __AllocOSPage: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 PUSH MemExch ;Wait at the MemExch for Msg
 MOV EAX, pRunTSS ;Put Msg in callers TSS Message Area
 ADD EAX, TSS_Msg
 PUSH EAX
 CALL FWORD PTR _WaitMsg
 CMP EAX,0h ;Kernel Error??
 JNE SHORT ALOSPExit ;Yes! Serious problem.

 MOV EAX,n4KPages ;size of request
 OR EAX,EAX ;More than 0?
 JNZ ALOSP00 ;Yes
 MOV EAX,ercBadMemReq ;Can’t be zero!
 JMP ALOSPExit ;
ALOSP00:
 CMP EAX, _nPagesFree ;See if have enuf physical memory

MMURTL V1.0 Page 362 of 667

 JBE ALOSP01 ;Yes
 MOV EAX, ErcNoMem ;Sorry boss, we’re maxed out
 JMP SHORT ALOSPExit
ALOSP01:
 MOV EBX,n4KPages ;size of request
 XOR EAX, EAX ;PD shadow offset needed by FindRun (0)
 CALL FindRun
 OR EAX, EAX ;(0 = No Runs big enuf)
 JNZ SHORT ALOSP02 ;No Error!

 ;If we didn’t find a run big enuf we add a page table

 CALL AddOSPT ;Add a new page table (we need it!)
 OR EAX, EAX ;See if it’s 0 (0 = NO Error)
 JZ SHORT ALOSP01 ;Go back & try again
 JMP SHORT ALOSPExit ;ERROR!!
ALOSP02:
 ;EAX now has linear address
 ;EBX still has count of pages
 CALL AddRun ;Does not return error
 ;EAX still has new linear address
 MOV EBX, ppMemRet ;Get address of caller’s pointer
 MOV [EBX], EAX ;Give em new LinAdd
 XOR EAX, EAX ;No error
ALOSPExit: ;
 PUSH EAX ;Save last error
 PUSH MemExch ;Send a Semaphore msg (so next guy can get
in)
 PUSH 0FFFFFFF1h ;
 PUSH 0FFFFFFF1h ;
 CALL FWORD PTR _SendMsg ;
 POP EAX ;Get original error back (ignore kernel erc)
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

AliasMem

AliasMem creates alias pages in the current job’s PD/PTs if the current PD is different than the
PD for the job specified. This allows system services to access a caller memory for messaging
without having to move data around. The pages are created at user protection level even if they
are in operating memory space. This is for the benefit of system services installed in operating-
system memory. Even if the address is only two bytes, if it crosses page boundaries, you need
two pages. This wastes no physical memory, however - Only an entry in a table.

The step involved in the algorithm are:

1. See if the current PD equals specified Job PD. If so, Exit. No alias is needed.
2. Calculate how many entries (pages) will be needed.
3. See if they are available.
4. Make PTE entries and return alias address to caller.

MMURTL V1.0 Page 363 of 667

Listing 19.21.Code to alias memory.

;
; Procedureal Interface :
;
; AliasMem(pMem, dcbMem, dJobNum, ppAliasRet): dError
;
; pMem is the address to alias.
; dcbMem is the number of bytes needed for alias access.
; JobNum is the job number that pMem belongs to.
; ppAliasRet is the address to return the alias address to.
;
;
;pMem EQU [EBP+24] ;
;dcbMem EQU [EBP+20] ;
;JobNum EQU [EBP+16] ;
;ppAliasRet EQU [EBP+12] ;

PUBLIC __AliasMem ;
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetCrntJobNum ;Puts Current Job Num in EAX
 MOV EBX, [EBP+16] ;Get Job number for pMem
 CMP EAX, EBX ;Are they the same Page Directory??
 JNE ALSPBegin ;No, alias it
 XOR EAX, EAX ;Yes, No Error
 JMP ALSPDone ;Exit, we’re done

ALSPBegin:
 ;Now wait our turn with memory management

; PUSH MemExch ;Wait at the MemExch for Msg
; MOV EAX, pRunTSS ;Put Msg in callers TSS Message Area
; ADD EAX, TSS_Msg
; PUSH EAX
; CALL FWORD PTR _WaitMsg
; CMP EAX,0h ;Kernel Error??
; JNE ALSPDone ;Yes! Serious problem.

 ; We’re IN!

ALSP00:
 MOV EBX, [EBP+24] ;pMem into EAX
 AND EBX, 0FFFh ;MODULO 4096 (remainder)
 MOV EAX, [EBP+20] ;dcbMem
 ADD EAX, EBX ;Add the remainder of address
 ADD EAX, DWORD PTR [EBP+20] ;Add to dcbMem
 SHR EAX, 12 ;EAX is nPages-1
 INC EAX ;EAX is now nPages we need!
 MOV ECX, EAX ;Save nPages in ECX

 ;Now we find out whos memory we are in to make alias
 ;EAX is 256 for user space, 0 for OS
 ;EBX is number of pages for run

MMURTL V1.0 Page 364 of 667

 CALL GetCrntJobNum ;See if it is OS based service
 CMP EAX, 1 ;OS Job?
 JE SHORT ALSP011 ;Yes
 MOV EAX, 256 ;No, User memory
 JMP SHORT ALSP01
ALSP011:
 XOR EAX, EAX ;Set up for OS memory space
ALSP01:
 MOV EBX, ECX ;Number of pages we need into EBX
 CALL FindRun ;EAX has 0 or 256

 ;EAX is now linear address or 0 if no run is large enough
 ;EBX still has count of pages

 OR EAX, EAX ;Was there enough PTEs?
 JNZ ALSP04 ;Yes

 CALL GetCrntJobNum ;See if it is OS based service
 CMP EAX, 1 ;OS Job?
 JE SHORT ALSP03 ;Yes
 CALL AddUserPT ;No! Add a new USER page table
 JMP SHORT ALSP03
ALSP02:
 CALL AddOSPT ;No! Add a new OS page table
ALSP03:
 OR EAX, EAX ;0 = NO Error
 JZ SHORT ALSP00 ;Go back & try again
 JMP SHORT ALSPExit ;ERROR!!

ALSP04:
 ;EAX has linear address (from find run) Sve in EDI
 ;EBX still has number of pages to alias
 ;Set ESI to linear address of pages to alias (from other job)
 ;Set EDX job number of job we are aliasing

 MOV EDI, EAX ;Save alias page address base
 MOV ESI, [EBP+24] ;Address to alias
 MOV EDX, [EBP+16] ;Job number
 CALL AddAliasRun

 ;Now, take new alias mem and add trailing bits to address
 ;and return to caller so he knows address (EDI is lin add)

 MOV EAX, [EBP+24] ;original pMem
 AND EAX, 0FFFh ;Get remaining bits
 ADD EDI, EAX
 MOV ESI, [EBP+12] ;pAliasRet
 MOV [ESI], EDI ;Returned address to caller!
 XOR EAX, EAX ;Set to 0 (no error)

 ;We are done
ALSPExit: ;
; PUSH EAX ;Save last error
; PUSH MemExch ;Send a Semaphore msg (so next guy can get
in)
; PUSH 0FFFFFFF1h ;

MMURTL V1.0 Page 365 of 667

; PUSH 0FFFFFFF1h ;
; CALL FWORD PTR _SendMsg ;
; POP EAX ;Get original error back (ignore kernel erc)
ALSPDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 16 ;

DeAliasMem

DeAliasMem zeros out the page entries that were made during the AliasMem call. you do not
need to go through the operating system memory semaphore exchange because you are only
zeroing out PTE’s one at a time. This would not interfere with any of the memory allocation
routines. See listing 19.22.

Listing 19.22.Code to remove alias PTEs.

;
; Procedureal Interface :
;
; DeAliasMem(pAliasMem, dcbAliasBytes, JobNum):ercType
;
; pAliasMem is the address to "DeAlias"
; dcbAliasBytes is the size of the original memory aliased
;
;pAliasMem EQU [EBP+20]
;dcbAliasBytes EQU [EBP+16]
;AliasJobNum EQU [EBP+12]

PUBLIC __DeAliasMem ;
 PUSH EBP ;
 MOV EBP,ESP ;

 ;Calculate the number of pages to DeAlias

 MOV EBX, [EBP+20] ;pMem into EAX
 AND EBX, 0FFFh ;MODULO 4096 (remainder)
 MOV EAX, [EBP+16] ;dcbMem
 ADD EAX, EBX ;Add the remainder of address
 ADD EAX, DWORD PTR [EBP+20] ;Add to dcbMem
 SHR EAX, 12 ;EAX is nPages-1
 INC EAX ;EAX is now nPages we need!
 MOV ECX, EAX ;Number of pages into EDI & ECX
 MOV EDI,ECX ;Save also in EDI (for compare)
 MOV EDX, [EBP+20] ;Linear Mem to DeAlias
DALM01:
 MOV EBX, EDX ;Address of next page to deallocate
 MOV EAX, [EBP+12] ;Job num into EAX for LinToPhy
 CALL LinToPhy ;Call this to get address of PTE into ESI

 ;Now we have Physical Address in EAX (we don’t really need it)

MMURTL V1.0 Page 366 of 667

 ;and pointer to PTE in ESI (We NEEDED THIS).
 ;See if PTE is an alias, if so just ZERO PTE.
 ;DO NOT deallocate the physical page

 MOV EBX, [ESI] ;Get PTE into EBX
 TEST EBX, PRSNTBIT ;Is page present (valid)???
 JNZ DALM02 ;Yes, it’s page is present

 CMP ECX, EDI ;NO! (did we do any at all)
 JNE DALM011 ;We did some.
 MOV EAX, ErcBadLinAdd ;None at all!
 JMP SHORT DALMExit

DALM011:
 MOV EAX, ErcBadAlias ;We dealiased what we could,
 JMP SHORT DALMExit ;but less than you asked for!

DALM02:
 TEST EBX, ALIASBIT ;Is page an ALIAS?
 JZ DALM03 ;NO - DO not zero it!

 ;If we got here the page is presnt and IS an alias
 ;so we zero out the page.

 XOR EAX, EAX ;
 MOV [ESI], EAX ;ZERO PTE entry
DALM03:

 ADD EDX, 4096 ;Next linear page
 LOOP DALM01
 ;If we fall out EAX = ErcOK already
DALMExit:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

DeAllocPage

This frees up linear memory and also physical memory that was acquired with any of the
allocation calls. This will only free physical pages if the page is not marked as an alias. It will
always free linear memory, providing it is valid. Even if you specify more pages than are valid,
this will deallocate or deAlias as much as it can before reaching an invalid page. See listing
19.23.

Listing 19.23.Deallocating linear memory.

;
; Procedureal Interface :
;

MMURTL V1.0 Page 367 of 667

; DeAllocPage(pOrigMem, n4KPages):ercType
;
; pOrigMem is a POINTER which should be point to memory page(s) to be
; deallocate. The lower 12 bits of the pointer is actually ignored
; because we deallocate 4K pages.
;
; n4KPages is the number of 4K pages to deallocate
;
pOrigMem EQU [EBP+10h]
n4KPagesD EQU [EBP+0Ch] ;

PUBLIC __DeAllocPage: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 PUSH MemExch ;Wait at the MemExch for Msg
 MOV EAX, pRunTSS ;Put Msg in callers TSS Message Area
 ADD EAX, TSS_Msg
 PUSH EAX
 CALL FWORD PTR _WaitMsg
 CMP EAX,0h ;Error??
 JNE DAMExit ;Yes!

 MOV EDX, pOrigMem ;Linear Mem to deallocate
 AND EDX, 0FFFFF000h ;Drop odd bits from address (MOD 4096)
 MOV ECX, n4KPagesD ;Number of pages to deallocate

DAP01:
 MOV EBX, EDX ;Address of next page to deallocate
 CALL GetCrntJobNum ;Leave Job# in EAX for LinToPhy
 CALL LinToPhy ;

 ;Now we have Physical Address in EAX
 ;and pointer to PTE in ESI.
 ;See if PTE is an alias, if so just ZERO PTE,
 ;else deallocate physical page THEN zero PTE

 MOV EBX, [ESI] ;Get PTE into EBX
 TEST EBX, PRSNTBIT ;Is page present (valid)???
 JNZ DAP02 ;Yes, it’s page is present

 CMP ECX, n4KPagesD ;NO! (did we do any at all)
 JNE DAP011 ;We did some..
 MOV EAX, ErcBadLinAdd ;None at all!
 JMP SHORT DAMExit

DAP011:
 MOV EAX, ErcShortMem ;We deallocated what we could,
 JMP SHORT DAMExit ;but less than you asked for!

DAP02:
 TEST EBX, ALIASBIT ;Is page an ALIAS?
 JNZ DAP03 ;Yes, it’s an Alias

 ;If we got here the page is presnt and NOT an alias
 ;so we must unmark (release) the physical page.

MMURTL V1.0 Page 368 of 667

 AND EBX, 0FFFFF000h ;get rid of OS bits
 CALL UnMarkPage ;

DAP03:
 XOR EAX, EAX ;
 MOV [ESI], EAX ;ZERO PTE entry

 ADD EDX, 4096 ;Next linear page
 LOOP DAP01
 ;If we fall out EAX = ErcOK already
DAMExit:
 PUSH EAX ;save Memory error

 PUSH MemExch ;Send a dummy message to pick up
 PUSH 0FFFFFFF1h ; so next guy can get in
 PUSH 0FFFFFFF1h
 CALL FWORD PTR _SendMsg ;
 CMP EAX, 0 ;Kernel error has priority
 JNE DAMExit1 ; over memory error

 POP EAX ;get Memory error back

DAMExit1:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

QueryMemPages

This gives callers the number of physical pages left that can be allocated. You can do this
because you can give them any physical page in the system. Their 1Gb linear space is sure to
hold what we have left. See listing 19.24.

Listing 19.24.Code to find number of free pages

; Procedureal Interface :
;
; QueryMemPages(pdnPagesRet):ercType
;
; pdnPagesRet is a pointer where you want the count of pages
; left available returned
;
pMemleft EQU [EBP+0Ch]

PUBLIC __QueryPages: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV ESI, pMemLeft
 MOV EAX, _nPagesFree
 MOV [ESI], EAX

MMURTL V1.0 Page 369 of 667

 XOR EAX, EAX ;No Error

 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;
;

GetPhyAdd

This returns the physical address for a linear address. This call would be used by device drivers
that have allocated buffers in their data segment and need to know the physical address for DMA
purposes. Keep in mind that the last 12 bits of the physical address always match the last 12 of
the linear address because this is below the granularity of a page. See listing 19.25.

Listing 19.25.Public for linear to physical conversion.

;
; Procedureal Interface :
;
; GetPhyAdd(JobNum, LinAdd, pPhyRet):ercType
;
; LinAdd is the Linear address you want the physical address for
; pPhyRet points to the unsigned long where the physical address will
; be returned
;
;
;JobNum EQU [EBP+20]
;LinAdd EQU [EBP+16]
;pPhyRet EQU [EBP+12]
;

PUBLIC __GetPhyAdd: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EBX, [EBP+16] ; Linear Address
 MOV EAX, [EBP+20] ; Job Number
 CALL LinToPhy
 MOV ESI, [EBP+12] ; pPhyRet
 MOV [ESI], EAX ;
 XOR EAX, EAX ; No Error
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12 ;

MMURTL V1.0 Page 370 of 667

Chapter 20, Timer Management Source Code

Introduction

The timer code is the heart of all timing functions for the operating system. This file contains all
of the code that uses or deals with timing functions in MMURTL.

The timer interrupt service routine (ISR) is also documented here, along with a piece of the
kernel, actually the scheduler. It’s at the end of the timer ISR.

Choosing a Standard Interval

Most operating systems have a timer interrupt function that is called at a fixed interval to update
a continuously running counter. MMURTL is no exception. I experimented with several different
intervals. I began with 50ms but determined I couldn’t get the resolution required for timing
certain events, and it also wasn’t fast enough to provide smooth, preemptive multitasking. I
ended up with 10ms. Back when I started this project, 20-MHz machines were "screamers" and I
was even worried about consuming bandwidth on machines that were slower than that. As you
well know, with 100-MHz machines around, and anything less than 20-MHz all but
disappearing, my worries were unfounded.

I did some time-consuming calculations to figure what percentage of CPU bandwidth I was using
with my timer ISR. I added up all the clock cycles in the ISR for a maximum time-consuming
interrupt, as well as the fastest one possible. Somewhere between these two was the average. The
average really depends on program loading, because the timer interrupt sends messages for the
Sleep() and Alarm() functions. I was consuming less than 0.2 percent of available bandwidth.
But even with these calculations, however, testing is the only real way to be sure it will function
properly. Your bandwidth is the percentage of clocks executed for a given period, divided by the
total clocks for the same period. In a 10-ms period we have 200,000 clocks on a 20-MHz
machine. My calculated worst case was approximately 150us, or 3000 clocks, which works out
to about 1.6 percent for the worst case. The average is was far less. It was 0.2 percent.

Even more important than total bandwidth, was the effect on interrupt latency. The most time-
critical interrupts are non-buffered serial communications, especially synchronous. A single
communications channel running at 19,200 BPS will interrupt every 520us. Two of them will
come in at 260us.

The following are the instructions in the timer interrupt service routine that could be "looped" on
for the maximum number of times in the worst case. The numbers before each instruction are the
count of clocks to execute the instruction on a 20-MHz-386, a slow machine. This doesn’t take
into account nonaligned memory operands, certain problems with memory access such as non-
cached un-decoded instructions, memory wait-states, etc., so I simply added 10 percent for the
overhead, which is very conservative. See listing 20.1.

MMURTL V1.0 Page 371 of 667

Listing 20.1.Loop in timer ISR

 IntTmr01:
6 CMP DWORD PTR [EAX+fInUse],FALSE
3 JE IntTmr03
6 CMP DWORD PTR [EAX+CountDown],0h
3 JNE IntTmr02
2 PUSH EAX
2 PUSH ECX
5 PUSH DWORD PTR [EAX+TmrRespExch]
2 MOV EAX, -1
2 PUSH EAX
2 PUSH EAX
40 CALL FWORD PTR _ISendMsg
2 POP ECX
2 POP EAX
6 MOV DWORD PTR [EAX+fInUse],FALSE
5 DEC nTmrBlksUsed
7 JMP IntTmr03
 IntTmr02:
6 DEC DWORD PTR [EAX+CountDown]
 IntTmr03:
2 ADD EAX,sTmrBlk
11 LOOP IntTmr01

This works out to 125 clocks for each loop, including the 10 percent overhead, plus 130 clocks
for the execution of ISendMsg() in each loop. Multiply the total (255) times the maximum
number of timer blocks (64) and it totals 16,320 clocks. That’s a bunch! On a 20-MHz machine,
that would be 860us just for this worst-case interrupt. But, hold on a minute! That only happens
if all of the tasks on the system want an alarm or must wake up from sleep exactly at the same
time. The odds of this are truly astronomical. The real worst case would probably be more like
150us, and I tried a hundred calculations with a spread sheet, and finally with test programs. This
I could live with. The only additional time consumer is if we tack on a task switch at the end if
we must preempt someone.

A task switch made by jumping to a TSS takes approximately 400 clocks on a 386, and 250 on a
486 or a Pentium. 400 clocks on a 20-MHz CPU is 50 nanoseconds times 400, or 20us. This
doesn’t cause a problem at all.

Timer Data

The following section is the data and constants defined for the timer interrupt and associated
functions. SwitchTick and dfHalted are flags for the task-scheduling portion of the timer
interrupt. See listing 20.2.

MMURTL V1.0 Page 372 of 667

Listing 20.2 - Data and constants for timer code

.DATA
.INCLUDE MOSEDF.INC
.INCLUDE TSS.INC
.ALIGN DWORD

; TIMER INTERRUPT COUNTER and TimerBlocks

; The Timer Block is a structure that contains
; the exchange number of a task that is sleeping,
; or one that has requested an alarm.
; Each TimerBlock is 12 Bytes long
; These are the offsets into the structure
;
sTmrBlk EQU 12
fInUse EQU 0 ;DD 00000000h
TmrRespExch EQU 4 ;DD 00000000h
CountDown EQU 8 ;DD 00000000h
;
EXTRN SwitchTick DD
EXTRN dfHalted DD

PUBLIC TimerTick DD 0 ;Incremented every 10ms (0 on bootup).
PUBLIC nTmrBlksUsed DD 0 ;Number of timer blocks in use
PUBLIC rgTmrBlks DB (sTmrBlk * nTmrBlks) DUP (0)

Timer Code

The timer interrupt and timing related function are all defined in the file TmrCode.ASM. The
three external near calls, the first things defined in this code segment, allow the timer interrupt to
access kernel helper functions from Kernel.ASM. The timer interrupt is part of the scheduling
mechanism. See listing 20.3.

Listing 20.3 - External functions for timer code

.CODE
EXTRN ChkRdyQ NEAR
EXTRN enQueueRdy NEAR
EXTRN deQueueRdy NEAR
;

The Timer Interrupt

The timer interrupt checks the timer blocks for values to decrement. The timer interrupt fires off
every 10 milliseconds. The Sleep() and Alarm() functions set these blocks as callers require.

MMURTL V1.0 Page 373 of 667

The timer interrupt code also performs the important function of keeping tabs on CPU hogs. It’s
really the only part of task scheduling that isn’t cooperative. It is a small, yet very important part.

At all times on the system, only one task is actually executing. You have now interrupted that
task. Other tasks maybe waiting at the ready queue to run. They may have been placed there by
other ISRs, and they may be of an equal, or higher, priority than the task that is now running,
which is the one you interrupted.

You check to see if the same task has been running for 30ms or more. If so, we call ChkRdyQ
and check the priority of that task. If it is the same or higher, you switch to it. The task you
interrupted is placed back on the ready queue in exactly the state you interrupted it. You couldn’t
reschedule tasks this way if you were using interrupt tasks because this would nest hardware task
switches. It would require manipulating items in the TSS to make it look as if they weren’t
nested. Keep this in mind if you use interrupt tasks instead of interrupt procedures like I do. See
listing 20.4.

Listing 20.4 - The timer interrupt service routine

;
PUBLIC IntTimer:
 PUSHAD ;INTS are disabled automatically
 INC TimerTick ;Timer Tick, INT 20
 CMP nTmrBlksUsed, 0 ;Anyone sleeping or have an alarm set?
 JE SHORT TaskCheck ;No...

IntTmr00: ;Yes!
 LEA EAX,rgTmrBlks ;EAX has addr of Timer Blocks
 MOV ECX,nTmrBlks ;ECX has count of Timer Blocks
 CLD ;Move forward thru the blocks

IntTmr01:
 CMP DWORD PTR [EAX+fInUse],FALSE ;Timer Block found?
 JE IntTmr03 ;No - goto next block
 CMP DWORD PTR [EAX+CountDown],0h ;Yes - is count at zero?
 JNE IntTmr02 ;No - goto decrement it
 PUSH EAX ;save ptr to rgTmpBlk
 PUSH ECX ;save current count
 PUSH DWORD PTR [EAX+TmrRespExch] ;Yes - ISend Message
 MOV EAX, -1 ;FFFFFFFFh
 PUSH EAX ;bogus msg
 PUSH EAX ;bogus msg
 CALL FWORD PTR _ISendMsg ;tell him his times up!
 POP ECX ;get count back
 POP EAX ;get ptr back
 MOV DWORD PTR [EAX+fInUse],FALSE ;Free up the timer block
 DEC nTmrBlksUsed ;Correct count of used blocks
 JMP IntTmr03 ;skip decrement - empty blk

IntTmr02:
 DEC DWORD PTR [EAX+CountDown] ;10ms more gone...

IntTmr03:

MMURTL V1.0 Page 374 of 667

 ADD EAX,sTmrBlk ;next block please!
 LOOP IntTmr01 ;unless were done

 ;We will now check to see if this guy has been running
 ;for more then 30ms (3 ticks). If so, we will
 ;switch him out if someone with an equal or higher pri
 ;is on the RdyQ

TaskCheck:
 MOV EAX, dfHalted ;Is this from a HALTed state?
 OR EAX, EAX
 JNZ TaskCheckDone ;YES.. no need to check tasks

 MOV EAX, TimerTick
 MOV EBX, SwitchTick
 SUB EAX, EBX
 CMP EAX, 3 ;Change this to change the "time slice"
 JL SHORT TaskCheckDone ;Hasn’t been 30ms yet for this guy!

 CALL ChkRdyQ ;Get next highest Pri in EAX (Leave Queued)
 OR EAX, EAX ;Is there one at all??
 JZ TaskCheckDone ;No...

 MOV ESI, pRunTSS
 MOV DL, [ESI+Priority] ;DL is pri of current
 CMP DL, [EAX+Priority] ;Compare current pri to highest queued
 ;The CMP subtracts Pri of Queued from
 ;current pri. If the Queued Pri is LOWER
 ;or Equal, we want to Switch. That means
 ;if we got a CARRY on the subtract, his
 ;number was higher and we DON’T
 JC TaskCheckDone ;If current is higher(lower num),keep going

 CALL deQueueRdy ; Get high priority TSS off the RdyQ
 MOV EDI, EAX ; and save in EDI
 MOV EAX, ESI ; Put current one in EAX
 CALL enQueueRdy ; and on the RdyQ

 MOV pRunTSS,EDI ; Make the TSS in EDI the Running TSS
 MOV BX,[EDI+Tid] ; Get the task ID
 MOV TSS_Sel,BX ; Put it in the JumpAddr for Task Swtich
 INC _nSwitches ; Keep track of how many switches for stats
 INC _nSlices ; Keep track of # of preemptive switches
 MOV EAX, TimerTick ; Save time of this switch for scheduler
 MOV SwitchTick, EAX ;
 PUSH 0 ;Must do this before we switch!
 CALL FWORD PTR _EndOfIRQ ;
 JMP FWORD PTR [TSS] ; JMP TSS (This is the task swtich)
 POPAD ;
 IRETD ;

TaskCheckDone:
 PUSH 0 ;Must do this before we switch!
 CALL FWORD PTR _EndOfIRQ ;
 POPAD ;
 IRETD ;

MMURTL V1.0 Page 375 of 667

Sleep()

The sleep routine delays the calling task by setting up a timer block with a countdown value and
an exchange to send a message to when the countdown reaches zero. The timer interrupt sends
the message and clears the block when it reaches zero. This requires an exchange. The exchange
used is the TSS_Exch in the TSS for the current task. See listing 20.5.

Listing 20.5 - Code for the Sleep function

DelayCnt EQU [EBP+0Ch]
;
PUBLIC __Sleep:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX, DelayCnt
 CMP EAX, 0 ;See if there’s no delay
 JE Delay03
 LEA EAX,rgTmrBlks ;EAX points to timer blocks
 MOV ECX,nTmrBlks ;Count of timer blocks
 CLD ;clear direction flag
Delay01:
 CLI ;can’t let others interfere
 CMP DWORD PTR [EAX+fInUse],FALSE ;Empty block?
 JNE Delay02 ;No - goto next block
 MOV EBX,DelayCnt ;Get delay count
 MOV [EAX+CountDown],EBX ;
 MOV DWORD PTR [EAX+fInUse],TRUE ;Use the Timer Block
 INC nTmrBlksUsed ;Up the blocksInUse count
 MOV ECX,pRunTSS ;Get TSS_Exch for our use
 MOV EBX,[ECX+TSS_Exch] ;
 MOV [EAX+TmrRespExch],EBX ;put it in timer block!
 STI
 PUSH EBX ;Pass exchange (for WaitMsg)
 ADD ECX,TSS_Msg ;Offset of msg area
 PUSH ECX
 CALL FWORD PTR _WaitMsg ;and Wait for it to come back
 MOV EAX,ErcOk ;all is well
 JMP Delay03
Delay02:
 STI
 ADD EAX,sTmrBlk
 LOOP Delay01 ;unless were done
 MOV EAX,ErcNoMoreTBs ;Sorry, out of timer blocks
Delay03:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;FAR return from publics

MMURTL V1.0 Page 376 of 667

Alarm()

Alarm() sets up a timer block with a fixed message that will be sent when the countdown reaches
zero. The message is not repeatable. It must be set up each time. The message will always be two
dwords with 0FFFFFFFFh (-1) in each. See listing 20.6.

Listing 20.6 - Code for the Alarm function

; Procedural Interface:
; Alarm(nAlarmExch, AlarmCnt):dErc
;
AlarmExch EQU [EBP+10h]
AlarmCnt EQU [EBP+0Ch]
;
;
PUBLIC __Alarm:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX, AlarmCnt
 CMP EAX, 0 ;See if there’s no delay
 JE Alarm03
 LEA EAX,rgTmrBlks ;EAX points to timer blocks
 MOV ECX,nTmrBlks ;Count of timer blocks
 CLD ;clear direction flag

Alarm01:
 CLI ;can’t let others interfere
 CMP DWORD PTR [EAX+fInUse],FALSE ;Empty block?
 JNE Alarm02 ;No - goto next block
 MOV EBX,AlarmCnt ;Get delay count
 MOV [EAX+CountDown],EBX ;
 MOV DWORD PTR [EAX+fInUse],TRUE ;Use the Timer Block
 INC nTmrBlksUsed ;Up the blocksInUse count
 MOV EBX, AlarmExch
 MOV [EAX+TmrRespExch],EBX ;put it in timer block!
 STI ;It’s OK to interrupt now
 MOV EAX,ErcOk ;all is well
 JMP Alarm03

Alarm02:
 STI ;It’s OK to interrupt now
 ADD EAX,sTmrBlk
 LOOP Alarm01 ;unless were done
 MOV EAX,ErcNoMoreTBs ;Sorry, out of timer blocks

Alarm03:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;
;

MMURTL V1.0 Page 377 of 667

KillAlarm()

KillAlarm searches the timer blocks looking for any block that is destined for the specified
Alarm exchange. All alarms set to fire off to that exchange are killed. If the alarm is already
queued through the kernel, which means the message has already been sent, nothing will stop it.
See listing 20.7.

Listing 20.7 - Code for the KillAlarm function

; Procedural Interface:
; KillAlarm(nAlarmExch):dErc
;
KAlarmExch EQU [EBP+0Ch]
;
PUBLIC __KillAlarm:
 PUSH EBP ;
 MOV EBP,ESP ;
 CMP nTmrBlksUsed, 0 ;No blocks in use
 JE KAlarm03 ; so we get out!
 MOV EBX,KAlarmExch ;Get exchange for killing alarms to
 LEA EAX,rgTmrBlks ;EAX points to timer blocks
 MOV ECX,nTmrBlks ;Count of timer blocks
 CLD ;clear direction flag

KAlarm01:
 CLI ;can’t let others interfere
 CMP DWORD PTR [EAX+fInUse],TRUE ;Block in use?
 JNE KAlarm02 ;No - goto next block
 CMP [EAX+TmrRespExch],EBX ;Does this match the Exchange?
 JNE KAlarm02
 MOV DWORD PTR [EAX+fInUse],FALSE ;Make Empty
 DEC nTmrBlksUsed ;Make blocksInUse correct

KAlarm02:
 STI ;It’s OK to interrupt now
 ADD EAX,sTmrBlk
 LOOP KAlarm01 ;unless were done

KAlarm03:
 XOR EAX,EAX ;ALl done -- ErcOk
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;
;

MicroDelay()

Microdelay() provides small-value timing delays for applications and device drivers. The count
is in 15us increments. The timing for this delay is based on the toggle of the refresh bit from the

MMURTL V1.0 Page 378 of 667

system status port. The refresh bit is based on the system’s quartz crystal oscillator, which drives
the processor clock.

The task is actually not suspended at all. This forms an instruction loop checking the toggled
value of an I/O port.

This call will not be very accurate for values less than 3 or 4 (45 to 60 microseconds). But it’s
still very much needed. The call can also be inaccurate due to interrupts if they are not disabled.
See listing 20.8.

Listing 20.8 - Code for the MicrDelay function

; Procedural Interface

; MicroDelay(dDelay):derror

PUBLIC __MicroDelay:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ECX, [EBP+0Ch] ;Get delay count
 CMP ECX, 0
 JE MDL01 ;get out if they came in with 0!

MDL00:
 IN AL, 61h ;Get system status port
 AND AL, 10h ;check refrest bit
 CMP AH, AL ;Check toggle of bit
 JE MDL00 ;No toggle yet
 MOV AH, AL ;Toggle! Move to AH for next compare
 LOOP MDL00

MDL01:
 XOR EAX, EAX
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;

GetCMOSTime()

This reads the time from the CMOS clock on the PC-ISA machines. MMURTL doesn’t keep the
time internally. The time is returned from the CMOS clock as a dword. The low order byte is the
seconds in Binary Coded Decimal (BCD); the next byte is the minutes in BCD; the next byte is
the Hours in BCD; and the high order byte is 0. See listing 20.9.

MMURTL V1.0 Page 379 of 667

Listing 20.9.Code to read the CMOS time

; Procedural Interface:
; GetCMOSTime(pdTimeRet):derror

pCMOSTimeRet EQU [EBP+12]

PUBLIC __GetCMOSTime:
 PUSH EBP ;
 MOV EBP,ESP ;
 XOR EBX, EBX ;Clear time return

 MOV EAX,04h ;Hours
 OUT 70h,AL
 IN AL,71h
 MOV BL, AL

 SHL EBX, 8 ;Minutes
 MOV EAX,02h
 OUT 70h,AL
 IN AL,71h
 MOV BL,AL

 SHL EBX, 8 ;Seconds
 MOV EAX,00h
 OUT 70h,AL
 IN AL,71h
 MOV BL,AL

 MOV ESI, pCMOSTimeRet ;Give ’em the time
 MOV [ESI], EBX
 XOR EAX, EAX ; No Error

 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;

GetCMOSDate()

The Date is returned from the CMOS clock as a dword. The low-order byte is the day of the
week (BCD, 0-6 0=Sunday); the next byte is the day (BCD 1-31); the next byte is the month
(BCD 1-12); and the high order byte is year (BCD 0-99). See listing 20.20.

Listing 20.10 - Code to read the CMOS date

; Procedural Interface:
;
; GetCMOSDate(pdTimeRet):derror
;

MMURTL V1.0 Page 380 of 667

pCMOSDateRet EQU [EBP+12]
PUBLIC __GetCMOSDate:
 PUSH EBP ;
 MOV EBP,ESP ;
 XOR EBX, EBX ;Clear date return

 MOV EAX,09h ;Year
 OUT 70h,AL
 IN AL,71h
 MOV BL, AL
 SHL EBX, 8 ;

 MOV EAX,08h ;Month
 OUT 70h,AL
 IN AL,71h
 MOV BL, AL
 SHL EBX, 8

 MOV EAX,07h ;Day of month
 OUT 70h,AL
 IN AL,71h
 MOV BL,AL
 SHL EBX, 8 ;

 MOV EAX,06h ;Day of week
 OUT 70h,AL
 IN AL,71h
 MOV BL,AL

 MOV ESI, pCMOSDateRet ;Give ’em the time
 MOV [ESI], EBX
 XOR EAX, EAX ; No Error

 MOV ESP,EBP ;
 POP EBP ;
 RETF 4 ;

GetTimerTick()

This returns the ever-increasing timer tick to the caller. MMURTL maintains a double word
counter that begins at zero and is incremented until the machine is reset or powered down.
Because it is a dword, there are over 4 billion ticks before roll-over occurs. With a 10ms interval,
this amounts to 262,800,000 ticks per month. This means the system tick counter will roll-over
approximately every 16 months. See listing 20.11.

Listing 20.11.Code to return the timer tick

; The procedural interface:
;
; GetTimerTick(pdTickRet):derror

MMURTL V1.0 Page 381 of 667

;
; The Current Timer Tick is returned (it’s a DWord).
;
pTickRet EQU [EBP+12]

PUBLIC __GetTimerTick:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI, pTickRet
 MOV EAX, TimerTick
 MOV [ESI], EAX
 XOR EAX, EAX ;No Error
 POP EBP ;
 RETF 4 ;

Beep_Work()

Beep_Work() is an internal function (a helper) used by the public calls Tone() and Beep().
Hardware timer number 2, which is connected to the system internal speaker, is used to generate
tones. The system clock drives the timer so the formula to find the proper frequency is a function
of the clocks frequency. The length of time the tone is on is controlled by the Sleep() function
which is driven by the system tick counter. See listing 20.12.

Listing 20.12.Helper function for Beep() and Tone()

;The clock freq to Timer 2 is 1.193182 Mhz
;To find the divisor of the clock, divide 1.193182Mhz by Desired Freq.
;This does all work for BEEP and TONE

;EBX needs the desired tone frequency in HERTZ
;ECX needs length of tone ON-TIME in 10ms increments

BEEP_Work:
 MOV AL, 10110110b ;Timer 2, LSB, MSB, Binary
 OUT 43h, AL
 XOR EDX, EDX
 MOV EAX, 1193182 ;1.193182Mhz
 DIV EBX ;DIVISOR is in EBX (Freq)
 OUT 42h, AL ;Send quotient (left in AX)
 MOV AL, AH
 NOP
 NOP
 NOP
 NOP
 OUT 42h, AL
 IN AL, 61h
 OR AL, 00000011b
 PUSH EAX
 POP EAX
 OUT 61h, AL
 PUSH ECX ;
 CALL FWORD PTR _Sleep ;ECX is TIME ON in 50ms incs.

MMURTL V1.0 Page 382 of 667

 IN AL, 61h
 NOP
 NOP
 NOP
 NOP
 AND AL, 11111100b
 OUT 61h, AL
 RETN

Beep()

This function has nothing to with the Road Runner; if it had, I would have called it
Beep_Beep(). (Sorry, I couldn’t resist.) This provides a fixed tone from the system’s internal
speaker as a public call for applications to make noise at the user. It uses the helper function
Beep_Work described earlier. See listing 20.13.

Listing 20.13.Code to produce a beep.

; Procedural Interface:
;
; Beep()

PUBLIC __Beep:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EBX, 800 ;Freq
 MOV ECX, 35 ;350ms
 CALL Beep_Work
 POP EBP ;
 RETF

Tone()

Tone allows the caller to specify a frequency and duration of a tone to be generated by the
system’s internal speaker. This call uses the helper function Beep_Work described earlier. See
listing 20.14.

Listing 20.14 - Code to produce a tone

; Procedural Interface:
;
; Tone(dFreq, dTickseRet):derror
;
; dFreq is a DWord with the FREQUENCY in HERTZ
; dTicks is a DWord with the duration of the tone in
; 10ms increments

MMURTL V1.0 Page 383 of 667

ToneFreq EQU [EBP+10h]
ToneTime EQU [EBP+0Ch]
;
PUBLIC __Tone:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EBX, ToneFreq
 MOV ECX, ToneTime
 CALL Beep_Work
 POP EBP ;
 RETF 8

MMURTL V1.0 Page 384 of 667

Chapter 21, Initialization Code

Introduction

This chapter contains code from two separate files. The first file is Main.ASM. It is the entry
point in the operating system, the first instruction executed after boot up. The second file is
InitCode.ASM, a workhorse for Main.ASM.

OS Global Data

Listing 21.1 begins the data segment after the static tables that were in previous include files.
The order of the first 5 files included in the assembler template file for MMURTL are critical.
The tables prior to this portion of the data segment are:

• Interrupt Descriptor Table (IDT),
• Global Descriptor table (GDT),
• Initial OS Page Directory (PD),
• Initial OS Page Table (PT), and
• Public Call Gate table.

The public call gate table is not a processor-defined table as the others are. It defines the
selectors for public call gates so the rest of the OS code can call into the OS.

Following these tables is the data segment portion from Main.ASM which is presented later in
this chapter.

In chapter 7, “OS Initialization,” I covered the basics of a generic sequence that would be
required for initialization of an operating system.

Certain data structures and variables are allocated that may only be used once during the
initialization process. This is because many things have to be started before you can allocate
memory where the dynamic allocation of resources can begin. The code contains comments
noting which of these items are temporary.

Periodically you will see the .ALIGN DWORD command issued to the assembler. Even though
the Intel processors can operate on data that is not aligned by it's size, access to the data is faster
if it is. I generally try to align data that is accessed often, and I don't worry about the rest of it.
The assembler does no alignment on its own. Everything is packed unless you tell it otherwise
with the .ALIGN command.

MMURTL V1.0 Page 385 of 667

Listing 21.1 - Main Operating System Data

.DATA
.INCLUDE MOSEDF.INC
.INCLUDE JOB.INC
.INCLUDE TSS.INC

.ALIGN DWORD
;===
; Kernel Structures - See MOSEDF.INC for structure details.
;===

PUBLIC MonTSS DB sTSS dup (0) ; Initial TSS for OS/Monitor
PUBLIC DbgTSS DB sTSS dup (0) ; Initial TSS for Debugger
PUBLIC pFreeTSS DD NIL ; Pointer to Free List of Task State Segs
PUBLIC pDynTSSs DD 0 ; ptr to alloced mem for dynamic TSSs
PUBLIC _nTSSLeft DD nTSS-2 ; For stats (less static TSSs)

;------------------

PUBLIC rgLBs DB (nLB*sLINKBLOCK) dup (0) ; pool of LBs
PUBLIC pFreeLB DD NIL ; Ptr to Free List of Link Block
PUBLIC _nLBLeft DD nLB ; For Monitor stats

;------------------
; The RUN Queue for "Ready to Run" tasks

PUBLIC RdyQ DB (sQUEUE*nPRI) dup (0) ; Priority Based Ready Queue

;------------------
; Two static Job Control Blocks (JCBs) to get us kick-started.
; The rest of them are in allocated memory

PUBLIC MonJCB DB sJCB dup (0) ; Monitor JCB
PUBLIC DbgJCB DB sJCB dup (0) ; Debugger JCB

;------------------

PUBLIC GDTLimit DW 0000h ;Global Descriptor Table Limit
PUBLIC GDTBase DD 00000000h ;base
PUBLIC IDTLimit DW 0000h ;Interrupt Descriptor Table Limit
PUBLIC IDTBase DD 00000000h ;base

;------------------
PUBLIC rgSVC DB (sSVC*nSVC) dup (0) ; Setup an array of Service
Descriptors

;------------------
;Exchanges take up a fair amount of memory. In order to use certain kernel
;primitives, we need exchanges before they are allocated dynamically.
;We have an array of 3 exchanges set aside for this purpose. After
;the dynamic array is allocated an initialized, we copy these into
;the first three dynamic exchanges. These static exchanges are used
;by the Monitor TSS, Debugger TSS, and memory Management.

MMURTL V1.0 Page 386 of 667

PUBLIC nExch DD 3 ; This will be changed after allocation
 ; of dynamic exchanges.
rgExchTmp DB (sEXCH * 3) dup (0) ; Setup three static temporary Exchanges
 ; for Monitor and Debugger TSSs
 ; These are moved to a dynamic Exch Array
 ; as soon as it’s allocated.
PUBLIC prgExch DD OFFSET rgExchTmp
 ; Pointer to current array of Exchanges.
PUBLIC pExchTmp DD 0 ; Pointer to dynamic array Exchanges.
PUBLIC _nEXCHLeft DD nDynEXCH ; For Monitor stats

;-------------------
;Scheduling management variables

PUBLIC TSS DD 00000000h ; Used for jumping to next task
PUBLIC TSS_Sel DW 0000h ; " "

.ALIGN DWORD

PUBLIC pRunTSS DD NIL ; Pointer to the Running TSS
PUBLIC SwitchTick DD 0 ; Tick of last task switch
PUBLIC dfHalted DD 0 ; nonzero if processor was halted

PUBLIC _nSwitches DD 0 ; # of switches for statistics
PUBLIC _nSlices DD 0 ; # of sliced switches for stats
PUBLIC _nReady DD 0 ; # of task Ready to Run for stats
PUBLIC _nHalts DD 0 ; # of times CPU halted for stats

;THESE ARE THE INITIAL STACKS FOR THE OS Monitor AND Debugger

OSStack DD 0FFh DUP (00000000h) ;1K OS Monitor Stack
OSStackTop DD 00000000h
OSStackSize EQU OSStackTop-OSStack

Stack1 DD 0FFh DUP (00000000h) ;1K Debugger Stack
Stack1Top DD 00000000h
Stack1Size EQU Stack1Top-Stack1

;-----------------

rgNewJob DB ’New Job’ ;Placed in New JCBs
cbNewJob EQU 7

rgOSJob DB ’MMOS Monitor’ ;Placed in first JCB
cbOSJob EQU 12

rgDbgJob DB ’Debugger ’ ;Name for Job
cbDbgJob DD 12 ;Size of Job Name

_BootDrive DD 00 ;Source drive of the boot

MMURTL V1.0 Page 387 of 667

Operating System Entry Point

The first instruction in Main.ASM is the entry point to the operating system. This is the first
instruction executed after the operating system is booted. Look for the .START assembler
command.

The address of this instruction is known in advance because the loader(boot) code moves the
data and code segments of the operating system to a specific hard-coded address. The .VIRTUAL
command allows you to tell the assembler where this code will execute, and all subsequent
address calculations by the assembler are offset by this value. It is similar to the MS-DOS
assembler ORIGIN command, with one major difference: DASM doesn’t try to fill the segment
prior to the virtual address with dead space.

The .VIRTUAL command can only be used once in an entire program and it must be at the very
beginning of the segment it’s used in. For MMURTL, the start address is 10000h, the first byte of
the second 64K in physical memory.

You’ll see many warnings about the order of certain initialization routines. I had to make many
warnings to myself just to keep from "housekeeping" the code into a nonworking state. I felt it
was important to leave all of these comments in for you. See listing 21.2.

Listing 21.2 - OS Initialization Code and Entry Point

; This begins the OS Code Segment
.CODE
;
.VIRTUAL 10000h ;64K boundry. This lets the assembler know
 ;that this is the address where we execute
;
; BEGIN OS INITIALIZATION CODE
;
; This code is used to initialize the permanent OS structures
; and calls procedures that initialize dynamic structures too.
;
; "Will Robinson, WARNING, WARNING!! Dr. Smith is approaching!!!"
; BEWARE ON INITIALIZATION. The kernel structures and their
; initialization routines are so interdependent, you must pay
; close attention before you change the order of ANYTHING.
; (Anything before we jump to the monitor code that is)

EXTRN InitCallGates NEAR
EXTRN InitOSPublics NEAR
EXTRN _Monitor NEAR
EXTRN InitIDT NEAR
EXTRN InitFreeLB NEAR
EXTRN InitDMA NEAR
EXTRN Set8259 NEAR
EXTRN InitKBD NEAR

MMURTL V1.0 Page 388 of 667

EXTRN AddTSSDesc NEAR
EXTRN InitMemMgmt NEAR
EXTRN InitNewJCB NEAR
EXTRN InitVideo NEAR
EXTRN InitFreeTSS NEAR
EXTRN InitDynamicJCBs NEAR
EXTRN InitDynamicRQBs NEAR
EXTRN DbgTask NEAR
;==
; Set up the initial Stack Pointer (SS = DS already).
; This is the first code we execute after the loader
; code throws us into protected mode. It’s a FAR jump
; from that code...
;==

.START
PUBLIC OSInitBegin:
 LEA EAX,OSStackTop ; Setup initial OS Stack
 MOV ESP,EAX ; FIRST THING IN OS CODE.
 MOV _BootDrive, EDX ; Left there from BootSector Code

;==
; Set up OS Common Public for IDT and GDT Base and Limits
; THE SECOND THING IN OS
;==

 SGDT FWORD PTR GDTLimit ;A formality - we know where they are!
 SIDT FWORD PTR IDTLimit ;

;==
; Setup Operating System Structures and motherboard hardware
; THIS IS RIGHT AFTER WE GET A STACK.
; YOU CAN’T ALLOCATE ANY OS RESOURCES UNTIL THIS CODE EXECUTES!!!
;==

 CALL InitCallGates ; Sets up all call gates as DUMMYs
 ; except AddCallGate which
 must be made valid first!

 CALL InitOSPublics ; Sets up OS PUBLIC call gates

 CALL InitIDT ;Sets up default Interrupt table
 ;NOTE: This uses CallGates!

 MOV ECX,nLB ; count of Link Blocks
 MOV EDX,sLinkBlock ; EDX is size of a Link Block
 CALL InitFreeLB ; Init the array of Link Blocks

 CALL InitDMA ; Sets up DMA with defaults

 CALL Set8259 ; Set up 8259s for ints (before KBD)

 CALL InitKBD ; Initialize the Kbd hardware

 PUSH 0 ; Highest IRQ number (all IRQs)
 CALL FWORD PTR _EndOfIRQ ; Tell em to work

MMURTL V1.0 Page 389 of 667

 ;Set time counter divisor to 11938 - 10ms ticks
 ;Freq in is 1.193182 Mhz/11932 = 100 per second
 ;or 1 every 10 ms. (2E9Ch = 11932 decimal)

 MOV AL,9Ch ; Makes the timer Tick (lo)
 OUT 40h,AL ; 10 ms apart by setting
 MOV AL,02Eh ; clock divisior to (hi byte)
 OUT 40h,AL ; 11,932

 STI ; We are ready to GO (for now)

;==
; The following code finishes the initialization procedures BEFORE the
; OS goes into paged memory mode.
; We set up an initial Task by filling a static TSS, creating and loading
; a descriptor entry for it in the GDT and we do the same for the debugger.
;==

 ; Make the default TSS for the CPU to switch from a valid one.
 ; This TSS is a valid TSS after the first task switch.
 ; IMPORTANT - Allocate Exch and InitMemMgmt calls depend on
 ; pRunTSS being valid. They can not be called before
 ; this next block of code!!! Note that this TSS does NOT
 ; get placed in the linked list with the rest of the TSSs.
 ; It will never be free. We also have to manaully make it’s
 ; entry in the GDT.

 ;The following code section builds a descriptor entry for
 ;the initial TSS (for Montitor program) and places it into the GDT

 MOV EAX, sTSS ; Limit of TSS (TSS + SOFTSTATE)
 MOV EBX, 0089h ; G(0),AV(0),LIM(0),P(1),DPL(0),B(0)
 MOV EDX, OFFSET MonTSS ; Address of TSS
 MOV EDI, OFFSET rgTSSDesc ; Address of GDT entry to fill
 CALL AddTSSDesc

 ;Now that we have valid Descriptor, we set up the TSS itself
 ;and Load Task Register with the descriptor (selector)
 ;Note that none of the TSS register values need to be filled in
 ;because they will be filled by the processor on the first
 ;task switch.

 MOV EBX, OFFSET MonTSS ;Get ptr to initial TSS in EBX
 MOV pRunTSS,EBX ;this IS our task now!!!
 MOV EAX, OFFSET rgTSSDesc ;ptr to initial TSS descriptor
 SUB EAX, OFFSET GDT ;Sub offset of GDT Base to get Sel of TSS
 MOV WORD PTR [EBX+TSS_IOBitBase], 0FFh; I/O Permission
 MOV [EBX+Tid],AX ; Store TSS Selector in TSS (Task ID)
 LTR WORD PTR [EBX+Tid] ; Setup the Task Register
 MOV BYTE PTR [EBX+Priority], 25
 ;Priority 25 (monitor is another APP)
 MOV DWORD PTR [EBX+TSS_CR3], OFFSET PDir1 ;Phys address of PDir1
 MOV WORD PTR [EBX+TSSNum], 1 ;Number of first TSS (Duh)

 ;Set up Job Control Block for Monitor (always Job 1)
 ;JOB 0 is not allowed. First JCB IS job 1!

MMURTL V1.0 Page 390 of 667

 MOV EAX, OFFSET MonJCB ;
 MOV DWORD PTR [EAX+JobNum], 1 ;Number the JCB
 MOV EBX, OFFSET MonTSS ;Must put ptr to JCB in TSS
 MOV [EBX+TSS_pJCB], EAX ;pJCB into MonTSS
 MOV EBX, OFFSET PDir1 ;Page Directory
 MOV ESI, OFFSET rgOSJob ;Job Name
 MOV ECX, cbOSJob ;Size of Name
 XOR EDX, EDX ;NO pVirtVid yet (set up later in init)
 CALL InitNewJCB

; IMPORTANT - You can’t call AllocExch before pRunTSS is VALID!

; THIS IS THE FIRST POINT AllocExh is valid

 MOV EAX, pRunTSS
 ADD EAX, TSS_Exch ;Alloc exch for initial (first) TSS
 PUSH EAX
 CALL FWORD PTR _AllocExch

;==
=
;
; Set up DEBUGGER Task and Job
; The debugger is set up as another job with its one task.
; The debugger must not be called (Int03) until this code executes,
; AND the video is initialized.
; We can’t use NewTask because the debugger operates independent of
; the kernel until it is called (INT 03 or Exception)
;
 ;The following code section builds a descriptor entry for
 ;the initial TSS (for Debugger) and places it into the GDT

 MOV EAX, sTSS ; Limit of TSS (TSS + SOFTSTATE)
 MOV EBX, 0089h ; G(0),AV(0),LIM(0),P(1),DPL(0),B(0)
 MOV EDX, OFFSET DbgTSS ; Address of Debugger TSS
 MOV EDI, OFFSET rgTSSDesc+8 ; Address of GDT entry to fill in
 CALL AddTSSDesc

 ;Now that we have valid Descriptor, we set up the TSS itself

 MOV EAX, OFFSET rgTSSDesc+8 ; ptr to second TSS descriptor
 SUB EAX, OFFSET GDT ; Sub offset of GDT Base to get Sel of TSS
 MOV EBX, OFFSET DbgTSS ; Get ptr to initial TSS in EBX
 MOV WORD PTR [EBX+TSS_IOBitBase], 0FFh; I/O Permission
 MOV [EBX+Tid],AX ; Store TSS Selector in TSS (Task ID)
 MOV BYTE PTR [EBX+Priority], 1 ; Debugger is HIGH Priority
 MOV DWORD PTR [EBX+TSS_CR3], OFFSET PDir1 ;Physical address of PDir1
 MOV EDX, OFFSET DbgTask
 MOV [EBX+TSS_EIP],EDX
 MOV WORD PTR [EBX+TSS_CS],OSCodeSel ; Put OSCodeSel in the TSS
 MOV WORD PTR [EBX+TSS_DS],DataSel ; Put DataSel in the TSS
 MOV WORD PTR [EBX+TSS_ES],DataSel ;
 MOV WORD PTR [EBX+TSS_FS],DataSel ;
 MOV WORD PTR [EBX+TSS_GS],DataSel ;

MMURTL V1.0 Page 391 of 667

 MOV WORD PTR [EBX+TSS_SS],DataSel ;
 MOV WORD PTR [EBX+TSS_SS0],DataSel ;
 MOV EAX, OFFSET Stack1Top
 MOV DWORD PTR [EBX+TSS_ESP],EAX ; A 1K Stack in the Dbg TSS
 MOV DWORD PTR [EBX+TSS_ESP0],EAX ;
 MOV DWORD PTR [EBX+TSS_EFlags],00000202h ; Load the Flags Register
 MOV WORD PTR [EBX+TSSNum], 2 ; Number of Dubegger TSS

 ;Set up Job Control Block for Debugger
 ;JOB 0 is not allowed. First JCB IS job 1, debugger is always 2

 MOV EAX, OFFSET DbgJCB
 MOV DWORD PTR [EAX+JobNum], 2 ;Number the JCB
 MOV [EBX+TSS_pJCB], EAX ;EBX still points to DbgTSS
 MOV EBX, OFFSET PDir1 ;Page Directory (OS PD to start)
 MOV ESI, OFFSET rgDbgJob ;Name
 MOV ECX, cbDbgJob ;size of name
 MOV EDX, 1 ;Debugger gets video 1
 CALL InitNewJCB

 ;Now allocate the default exchange for Debugger

 MOV EAX, OFFSET DbgTSS
 ADD EAX, TSS_Exch ;Alloc exch for Debugger TSS
 PUSH EAX
 CALL FWORD PTR _AllocExch

At this point, all of the static data that needs to be initialized is done. You had to set up all the
necessary items for kernel messaging so we could initialize memory management. This was
necessary because memory management uses messaging.

There are many "chickens and eggs" here. Move one incorrectly and whamo – the code doesn't
work. Not even the debugger. This really leaves a bad taste in your mouth after about 30 hours of
debugging with no debugger.

The memory-management initialization routines were presented in chapter 19, “Memory
Management Code.” See listing 21.3.

Listing 21.3.Continuation of OS initialization.

;==
; ALSO NOTE: The InitMemMgmt call enables PAGING! Physical addresses
; will not necessarily match Linear addresses beyond this point.
; Pay attention!
;

 CALL InitMemMgmt ;InitMemMgmt allocates an exch so
 ;this the first point it can be called.
 ;It also calls SEND!

MMURTL V1.0 Page 392 of 667

Once we have the memory allocation calls working, we can allocate space for
all of the dynamic arrays and structures such as task state segments,
exchanges, and video buffers. See listing 21.4.

Listing 21.4.Continuation of OS initialization

;==
; FIRST POINT memory management calls are valid
;==

 ;Now we will allocate two virtual video screens (1 Page each)
 ;for the Monitor and Debugger and place them in the JCBs
 ;Also we set pVidMem for Monitor to VGATextBase address
 ;cause it has the active video by default

 PUSH 1 ; 1 page
 MOV EAX, OFFSET MonJCB ; Ptr to Monitor JCB
 ADD EAX, pVirtVid ; Offset in JCB to pVirtVid
 PUSH EAX
 CALL FWORD PTR _AllocOSPage ; Get ’em!
 MOV EAX, OFFSET MonJCB ; Make VirtVid Active for Monitor
 MOV DWORD PTR [EAX+pVidMem], VGATextBase

 PUSH 1 ; 1 page
 MOV EAX, OFFSET DbgJCB ;
 ADD EAX, pVirtVid
 PUSH EAX
 CALL FWORD PTR _AllocOSPage ; Get ’em!
 MOV EAX, OFFSET DbgJCB ;
 MOV EBX, [EAX+pVirtVid]
 MOV [EAX+pVidMem], EBX ; Video NOT active for Debugger

 CALL InitVideo ;Set Text Screen 0

; MOV EAX,30423042h ;BB on CYAN - So we know we are here!
; MOV DS:VGATextBase+00h,EAX

;===
; FIRST POINT video calls are valid
; FIRST POINT Debugger is working (only because it needs the video)

; At this point we can allocate pages for dynamic structures and
; initialize them.
;===

; Allocate 8 pages (32768 bytes) for 64 Task State Segments (structures).
; Then call InitFreeTSS (which fills them all in with default values)

 PUSH 8 ; 8 pages for 64 TSSs (32768 bytes)
 MOV EAX, OFFSET pDynTSSs ;
 PUSH EAX
 CALL FWORD PTR _AllocOSPage ; Get ’em!

MMURTL V1.0 Page 393 of 667

 XOR EAX, EAX ; Clear allocated memory for TSSs
 MOV ECX, 8192 ; (512 * 64 = 32768 = 8192 * 4)
 MOV EDI, pDynTSSs ; where to store 0s
 REP STOSD ; Do it

 MOV EAX, pDynTSSs
 MOV ECX, nTSS-2 ; count of dynamic TSSs (- OS & Dbgr TSS)
 CALL InitFreeTSS ; Init the array of Process Control
Blocks

 CALL InitDynamicJCBs
 CALL InitDynamicRQBs

;==
; Allocate 1 page (4096 bytes) for 256 Exchanges (16*256=4096).
; Exchanges are 16 bytes each. Then zero the memory which has
; the effect of initializing them because all fields in an Exch
; are zero if not allocated.

 PUSH 1 ; 1 pages for 256 Exchs (4096 bytes)
 MOV EAX, OFFSET pExchTmp ; Returns ptr to allocated mem in pJCBs
 PUSH EAX ;
 CALL FWORD PTR _AllocOSPage ; Get it!

 XOR EAX, EAX ; Clear allocated memory
 MOV ECX, 1024 ; (4*1024=4096)
 MOV EDI, pExchTmp ; where to store 0s
 REP STOSD ; Store EAX in 1024 locations

 ;Now we move the contents of the 3 static exchanges
 ;into the dynamic array. This is 60 bytes for 3
 ;exchanges.

 MOV ESI, prgExch ; Source (static ones)
 MOV EDI, pExchTmp ; Destination (dynamic ones)
 MOV ECX, 12 ; 12 DWords (3 Exchanges)
 REP MOVSD ; Move ’em!
 MOV EAX, pExchTmp ; The new ones
 MOV prgExch, EAX ; prgExch now points to new ones
 MOV nExch, nDynEXCH ; 256 to use (-3 already in use)

All of the basic resource managers are working at this point. You actually have a working
operating system. From here, you go to code that will finish off the higher-level initialization
functions such as device drivers, loader tasks. See listing 21.5.

Listing 21.5 - End of Initialization Code

 CALL _Monitor ;Head for the Monitor!!
;
 ;The Monitor call never comes back (it better not...)
;
 HLT ;Well, you never know (I AM human)

MMURTL V1.0 Page 394 of 667

;

Initialization Helpers

The file InitCode.ASM provides much of the support "grunt work" that is required to get the
operating system up and running. The procedure InitOSPublics() sets up all the default values
for call gates, and interrupt vectors, and it initializes some of the free dynamically allocated
structures such as TSS’s and link blocks.

Near the end of this file are the little assembly routines to fill in each of the 100-plus call gate
entries in the GDT. I have not included them all here in print because they are so repetitive. This
is noted in the comments. See listing 21.6.

Listing 21.6 - Initialization Subroutines

.CODE
;
EXTRN IntQ NEAR
EXTRN IntDivBy0 NEAR
EXTRN IntDbgSS NEAR
EXTRN IntDebug NEAR
EXTRN IntOverFlow NEAR
EXTRN INTOpCode NEAR
EXTRN IntDblExc NEAR
EXTRN INTInvTss NEAR
EXTRN INTNoSeg NEAR
EXTRN INTStkOvr NEAR
EXTRN IntGP NEAR
EXTRN INTPgFlt NEAR
EXTRN IntPICU2 NEAR
EXTRN IntTimer NEAR
EXTRN IntKeyBrd NEAR

;===
;The following code initializes structures just after bootup
;===
;
; INPUT : ECX,EDX
; OUTPUT : NONE
; REGISTERS : EAX,EBX,ECX,FLAGS
; MODIFIES : pFreeLB,rgLBs
;
; This routine will initialize a free pool of link blocks.
; The data used in this algorithm are an array of ECX link blocks (rgLBs),
; each EDX bytes long and pointer to a list of free link blocks (pFreeLB).
;
; The pFreeLB pointer is set to address the first element in rgLBs. Each
; element of rgLBs is set to point to the next element of rgLBs. The
; last element of rgLBs is set to point to nothing (NIL).
;
PUBLIC InitFreeLB:

MMURTL V1.0 Page 395 of 667

 LEA EAX,rgLBs ; pFreeLB <= ^rgLBs;
 MOV pFreeLB,EAX ;

LB_Loop:
 MOV EBX,EAX ; for I = 0 TO ECX
 ADD EAX,EDX ; rgLBs[I].Next <=
 MOV [EBX+NextLB],EAX ; ^rgLBs[I+1];
 LOOP LB_Loop ;
 MOV DWORD PTR [EBX+NextLB], 0 ; rgFree[1023].Next <= NIL;
 RETN ;
;===
; AddTSSDesc
; Builds a descriptor for a task and places it in the GDT. If you
; check the intel documentation the bits of data that hold this
; information are scattered through the descriptor entry, so
; we have to do some shifting, moving, anding and oring to get
; the descriptor the way the processor expects it. See the Intel
; docs for a complete description of the placement of the bits.
;
; Note: The granularity bit represents the TSS itself, not the code
; that will run under it!
;
;
; IN:
; EAX - Size of TSS
; EBX - Decriptor type (default for OS TSS is 0089h)
; (0089h - G(0),AV(0),LIM(0000),P(1),DPL(00),(010),B(0),(1))
; EDX - Address of TSS
; EDI - Address of Desc in GDT
; OUT:
; GDT is updated with descriptor
; USED:
; EFlags (all other registers are saved)

PUBLIC AddTSSDesc:
 ;The following code section builds a descriptor entry for
 ;the TSS and places it into the GDT
 PUSH EAX
 PUSH EBX
 PUSH EDX
 PUSH EDI
 DEC EAX ; (Limit is size of TSS-1)
 SHL EBX,16 ; Chinese puzzle rotate
 ROL EDX,16 ; Exchange hi & lo words of Base Addr
 MOV BL,DH ; Base 31 .. 24
 MOV BH,DL ; Base 23 .. 16
 ROR EBX,8 ; Rotate to Final Alignment
 MOV DX,AX ; Limit 15 .. 0 with Base 15 .. 0
 AND EAX,000F0000h ; Mask Limit 19 .. 16
 OR EBX,EAX ; OR into high order word
 MOV [EDI],EDX ; Store lo double word
 MOV [EDI+4],EBX ; Store hi double word
 POP EDI
 POP EDX
 POP EBX
 POP EAX
 RETN

MMURTL V1.0 Page 396 of 667

;===
; InitFreeTSS
; INPUT : EAX, ECX
; OUTPUT : NONE
; USED : ALL General registers, FLAGS
; MODIFIES : pFreeTSS (and the dynamic array of TSSs)
;
; This routine initializes the free pool of Task State Segments.
; On entry:
; EAX points to the TSSs to initialize (allocated memory).
; ECX has the count of TSSs to initialize.
; The size of the TSS is taken from the constant sTSS.
;
; The pFreeTSS pointer is set to address the first TSS. The NextTSS
; field in each TSS is set to point to the next free TSS. The
; last TSS is set to point to nothing (NIL). The IOBitBase field is
; also set to FFFFh for NULL I/O permissions in each TSS.
; NOTE: The allocated memory area for the TSS MUST BE ZEROED before
; calling this routine. By deafult, we add the TSS descriptors at OS
; protection level. If we spawn or add a User level TSS we must
; OR the DPL bits with 3!

PUBLIC InitFreeTSS:
 MOV pFreeTSS,EAX ; First one free to use
 MOV EDI, OFFSET rgTSSDesc ; ptr to TSS descriptors
 ADD EDI, 16 ; First two TSSs are Static (Mon & Dbgr)
 MOV EDX, sTSS ; Size of TSS (in bytes) into EDX
 MOV EBX, 3 ; Number of first dynamic TSS

TSS_Loop:
 MOV ESI,EAX ; for I = 0 TO ECX
 ADD EAX,EDX ; EAX <= rgTSSs[I].Next
 MOV [ESI+NextTSS],EAX ; ^rgTSSs[I+1];
 MOV WORD PTR [ESI+TSS_IOBitBase], 0FFFFh ; IOBitBase
 MOV [ESI+TSSNum], BX ; TSS Number
 MOV WORD PTR [ESI+TSS_DS], DataSel ;Set up for Data Selectors
 MOV WORD PTR [ESI+TSS_ES], DataSel
 MOV WORD PTR [ESI+TSS_FS], DataSel
 MOV WORD PTR [ESI+TSS_GS], DataSel
 MOV WORD PTR [ESI+TSS_SS], DataSel
 MOV WORD PTR [ESI+TSS_SS0], DataSel
 PUSH EAX ;Save pTSS
 MOV EAX,EDI ; Get offset of Curr TssDesc in EAX
 SUB EAX, OFFSET GDT ; Sub offset of GDT Base to get Sel of TSS
 MOV WORD PTR [ESI+Tid],AX ; Store TSS Selector in TSS (later use)
 PUSH EBX
 PUSH EDX

 MOV EAX,EDX ; Size of TSS (TSS + SOFTSTATE)
 MOV EDX,ESI ; Address of TSS
 MOV EBX,0089h ; G(0),AV(0),LIM(0),P(1),DPL(0),B(0)

 CALL AddTSSDesc

 ADD EDI,8 ; Point to Next GDT Slot (for next one)

MMURTL V1.0 Page 397 of 667

 POP EDX
 POP EBX
 POP EAX
 INC EBX ; TSS Number
 LOOP TSS_Loop ;
 MOV DWORD PTR [ESI+NextTSS], 0 ; rgFree[LastOne].Next <= NIL;
 RETN ;

;===
; DUMMY CALL for uninitialized GDT call gate slots
;===

DummyCall:
 MOV EAX, ercBadCallGate
 RETF

Besides setting up all the call gates with a dummy procedure, InitCallGate() takes care of
another problem. This problem is that the call to AddCallGate() is a public function called
through a Call Gate. This means it can’t add itself. This code manually adds the call for
AddCallGate() so you can add the rest of them.

As I mentioned before, each of the over 100 calls are placed in the GDT. There is room reserved
for over 600.

InitIDT, a little further down, sets up each of the known entries in the IDT as well as filling in all
the unknown entries with a dummy ISR that simply returns from the interrupts. I have left all of
these in so that you can see which are interrupt gates and which are interrupt traps. The
processor handles each of these a little differently. See listing 21.7.

Listing 21.7 - Initialize call gates amd the IDT

;===
; InitCallGates inits the array of call gates with an entry to a generic
; handler that returns ErcNotInstalled when called. This prevents new code
; running on old MMURTLs or systems where special call gates don’t exist
; without crashing too horribly.
;
; IN: Nothing
; Out : Nothing
; Used : ALL registers and flags
;
PUBLIC InitCallGates:

 ;First we set up all call gates to point to a
 ;dummy procedure

 MOV ECX, nCallGates ;Number of callgates to init

InitCG01:
 PUSH ECX ;Save nCallGates
 DEC ECX ;make it an index, not the count

MMURTL V1.0 Page 398 of 667

 SHL ECX, 3 ;
 ADD ECX, 40h ;Now ecx is selector number
 MOV EAX, 0EC00h ;DPL 3, 0 Params
 MOV DX, OSCodeSel
 MOV ESI, OFFSET DummyCall

 ;Same code as in PUBLIC AddCallGate
 MOVZX EBX, CX
 SUB EBX, 40 ;sub call gate base selector
 SHR EBX, 3 ;make index vice selector
 MOVZX EBX, CX ;Extend selector into EBX
 ADD EBX, GDTBase ;NOW a true offset in GDT
 MOV WORD PTR [EBX+02], 8 ;Put Code Seg selector into Call gate
 MOV [EBX], SI ;0:15 of call offset
 SHR ESI, 16 ;move upper 16 of offset into SI
 MOV [EBX+06], SI ;16:31 of call offset
 MOV [EBX+04], AX ;call DPL & ndParams

 POP ECX ;ignore error...
 LOOP InitCG01 ;This decrements ECX till 0

 ;Another chicken and egg here.. In order to be able
 ;to call the FAR PUBLIC "AddCallGate" though a callgate,
 ;we have to add it as a callgate... ok....

 MOV EAX, 08C00h ;AddCallGate -- 0 DWord Params DPL 0
 MOV ECX, 0C8h
 MOV DX, OSCodeSel
 MOV ESI, OFFSET __AddCallGate
 ;Same code as in PUBLIC AddCallGate
 MOVZX EBX, CX
 SUB EBX, 40 ;sub call gate base selector
 SHR EBX, 3 ;make index vice selector
 MOVZX EBX, CX ;Extend selector into EBX
 ADD EBX, GDTBase ;NOW a true offset in GDT
 MOV WORD PTR [EBX+02], 8 ;Put Code Seg selector into Call gate
 MOV [EBX], SI ;0:15 of call offset
 SHR ESI, 16 ;move upper 16 of offset into SI
 MOV [EBX+06], SI ;16:31 of call offset
 MOV [EBX+04], AX ;call DPL & ndParams
 RETN

;===
; InitIDT
; First, inits the IDT with 256 entries to a generic
; handler that does nothing (except IRETD) when called.
; Second, adds each of the basic IDT entries for included
; software and hardware interrupt handlers.
; ISRs loaded with device drivers must use SetIRQVector.
;
; IN : Nothing
; Out : Nothing
; Used : ALL registers and flags
;
PUBLIC InitIDT:
 MOV ECX, 255 ;Last IDT Entry
InitID01:

MMURTL V1.0 Page 399 of 667

 PUSH ECX
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate
 POP ECX
 LOOP InitID01

 ;Now we add each of the known interrupts

 MOV ECX, 0 ;Divide By Zero
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntDivBy0
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 1 ;Single Step
 MOV EAX, 08F00h ;DPL 3, Trap gate
 MOV EBX, OSCodeSel ;
 MOV ESI, Offset IntDbgSS
 CALL FWORD PTR _AddIDTGate

 ;Trying 8E00 (Int gate vice trap gate which leave Ints disabled)

 MOV ECX, 3 ;Breakpoint
 MOV EAX, 08E00h ;DPL 3, Trap Gate (for Debugger) WAS 8F00
 MOV EBX, OSCodeSel ;This will be filled in with TSS of Dbgr later
 MOV ESI, OFFSET IntDebug
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 4 ;Overflow
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntOverFlow
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 6 ;Invalid OPcode
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntOpCode
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 8 ;Double Exception
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntDblExc
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 0Ah ;Invalid TSS
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntInvTSS
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 0Bh ;Seg Not Present
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;

MMURTL V1.0 Page 400 of 667

 MOV ESI, OFFSET IntNoSeg
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 0Ch ;Int Stack Overflow
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntStkOvr
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 0Dh ;GP fault
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntGP
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 0Eh ;Int Page Fault
 MOV EAX, 08F00h ;DPL 3, TRAP GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntPgFlt
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 20h ;Int TIMER IRQ0
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntTimer
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 21h ;Int KEYBOARD IRQ1
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntKeyBrd
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 22h ;Int PICU 2 (from PICU) IRQ2
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntPICU2
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 23h ;Int COM2 IRQ3
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 24h ;Int COM1 IRQ4
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 25h ;Int LPT2 IRQ5
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

MMURTL V1.0 Page 401 of 667

 MOV ECX, 26h ;Int Floppy IRQ6
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ ;FDD will set this himself
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 27h ;IntLPT1 IRQ7
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 28h ;Int IRQ8
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 29h ;Int IRQ9
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 2Ah ;Int IRQ10
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 2Bh ;Int IRQ11
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 2Ch ;Int IRQ12
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 2Dh ;Int IRQ13
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 2Eh ;Int IRQ14
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;
 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 MOV ECX, 2Fh ;Int IRQ15
 MOV EAX, 08E00h ;DPL 3, INTERRUPT GATE
 MOV EBX, OSCodeSel ;

MMURTL V1.0 Page 402 of 667

 MOV ESI, OFFSET IntQ
 CALL FWORD PTR _AddIDTGate

 RETN

;==
; InitOSPublics adds all OS primitives to the array of call gates. This can’t
; before initcallgates, but MUST be called before the first far call to any
; OS primitive thorugh a call gate!!!
; IF YOU ADD AN OS PUBLIC MAKE SURE IT GETS PUT HERE!!!!!
;
; IN : Nothing
; Out : Nothing
; Used : ALL registers and flags
;
PUBLIC InitOSPublics:

 MOV EAX, 0EC02h ;WaitMsg -- 2 DWord Params, DPL 3
 MOV ECX, 40h
 MOV DX, OSCodeSel
 MOV ESI, OFFSET __WaitMsg
 CALL FWORD PTR _AddCallGate

 MOV EAX, 0EC03h ;SendMsg -- 3 DWord Params, DPL 3
 MOV ECX, 48h
 MOV DX, OSCodeSel
 MOV ESI, OFFSET __SendMsg
 CALL FWORD PTR _AddCallGate

 MOV EAX, 08C03h ;ISendMsg -- 3 DWord params, DPL 0
 MOV ECX, 50h
 MOV DX, OSCodeSel
 MOV ESI, OFFSET __ISendMsg
 CALL FWORD PTR _AddCallGate

 MOV EAX, 0EC01h ;Set Priority - 1Dword param, DPL 3
 MOV ECX, 58h
 MOV DX, OSCodeSel
 MOV ESI, OFFSET __SetPriority
 CALL FWORD PTR _AddCallGate

 ;The rest of the call gate set ups go here.

 RETN

MMURTL V1.0 Page 403 of 667

Chapter 22, Job Management Code

Introduction

After you get the kernel out of the way and you want to begin loading things to run on your
system, this is the where you’ll end up. The program loader is in this chapter.

Before I wrote this code, pictures of the complications of writing a loader floated in my head for
quite a while. It was every bit as difficult as I imagined. The process of allocating all the
resources, making sure that each was correctly set and filled out, and finally starting the new
task, can be a complicated scenario. I have tried to break it down logically and keep it all in a
high-level language.

Reclamation of Resources

Equally as difficult as the loader, was the death of a job and the reclamation of its valuable
resources. In the functions ExitJob() and Chain(), I drift in and out of assembly language to do
things like switch to a temporary stack when the task that is running no longer has a valid one.
When things don’t work right, it is usually quite a mess.

The resources you reclaim include all of the memory, exchanges, link blocks, request blocks, the
JCB, TSSs, and finally the operating system memory. Pieces of related code in the kernel, the
monitor, and other places provide assistance with resource reclamation.

Job Management Helpers

The file JobCode.ASM provides many small helper functions for job management. These calls,
many of them public functions, are used by almost every module in the operating system. See
listing 22.1

Listing 22.1 - Job Management Subroutines

.DATA
.INCLUDE MOSEDF.INC
.INCLUDE JOB.INC
.INCLUDE TSS.INC

PUBLIC pFreeJCB DD 0 ; Ptr to free Job Control Blocks
PUBLIC pJCBs DD 0 ; JCBs are in allocated memory
PUBLIC _nJCBLeft DD nJCBs ; For Monitor stats

EXTRN MonJCB DB ; Monitor JCB reference
EXTRN _BootDrive DD ; From Main.asm

MMURTL V1.0 Page 404 of 667

;======= End data,Begin Code ==================

.CODE
;==
;InitNewJCB is used initially by the OS to fill in the first two
;jobs (Monitor & Debugger)
;
PUBLIC InitNewJCB:
; INPUT : EAX -- Ptr to JCB that is to be filled in
; EBX -- Linear Ptr to Page Directory for Job
; ESI -- pbJobName
; ECX -- cbJobName
; EDX -- Pointer to Job Virtual Video Buffer (all jobs have one!)
;
; OUTPUT : JOB Number in EAX
; USED : EAX, EBX, ECX, EDX, EDI, ESI, EFlags
; MODIFIES : JCB pointed to in EBX
;
; This fills in a JCB with new information. This is used to initilaize
; a new JCB during OS init and when a new Job is loaded and run.
;
 MOV [EAX+JcbPD],EBX ;Put Ptr to PD into JCB
 MOV EDI, EAX ;EDI points to JCB
 ADD EDI, sbJobName ;Now to JobName
 MOV BYTE PTR [EDI], CL ;size is filled in
 INC EDI ;first byte of name
 REP MOVSB ;Move it in
 MOV [EAX+pVirtVid], EDX ;Video number is in JCB
 MOV DWORD PTR [EAX+nCols], 80 ;
 MOV DWORD PTR [EAX+nLines], 25 ;
 MOV DWORD PTR [EAX+NormAttr], 7 ;
 MOV EAX, [EAX+JobNum]
 RETN

;==
=
; InitFreeJCB
; INPUT : EAX - Address of JCBs to be initialized
; ECX - Count of JCBs
; EDX - Size of JCBs
; OUTPUT : NONE
; USED: EAX,EBX,ECX,EDX,ESI EFLAGS
; MODIFIES: pFreeJCB, pJCBs
;
; This routine will initialize the free pool of Job Control Blocks (JCBs).
; EAX points to the first JCB,
; ECX is count of JCBs,
; EDX is size of each JCB.
;
; The pFreeJCB pointer is set to address the first element in rgJCBs.
; Each element of rgJCBs is set to point to the next element of rgJCBs.
; The last element of rgJCBs is set to point to nothing (NIL).
; The JCBs are also sequentially numbered. We can’t use it’s position
; in the array because some JCBs are static (Mon and Debugger), while
; others (the ones we are initializing now) are dynamicly allocated.

MMURTL V1.0 Page 405 of 667

;
PUBLIC InitFreeJCB:
 MOV pFreeJCB,EAX ;Set up OS pointer to list
 MOV pJCBs, EAX ;Set up global ptr to first JCB
 MOV EBX, 3 ;1st number for Dynamic JCBs
JCB_Loop:
 MOV ESI,EAX ;EBX has pointer to current one
 ADD EAX,EDX ;EAX points to next one
 MOV [ESI+NextJCB],EAX ;Make current point to next
 MOV [ESI+JobNum], EBX ;Number it
 INC EBX
 LOOP JCB_Loop ;Go back till done
 MOV DWORD PTR [ESI+NextJCB], 0 ;Make last one NIL
 RETN ;

;==
; Allocate 4 pages (16384 bytes) for 32 Job Control Blocks (structures).
; Then call InitFreeJCB

PUBLIC InitDynamicJCBs:
 PUSH 4 ; 4 pages for 32 JCBs (16384 bytes)
 MOV EAX, OFFSET pJCBs ; Returns ptr to allocated mem in pJCBs
 PUSH EAX ;
 CALL FWORD PTR _AllocOSPage ; Get ’em!

 XOR EAX, EAX ; Clear allocated memory for JCBs
 MOV ECX, 4096 ; (4*4096=16384 - DWORDS!)
 MOV EDI, pJCBs ; where to store 0s
 REP STOSD ; Do it

 MOV EAX, pJCBs ; Ptr to JCBs
 MOV ECX, nJCBs ; Count of Job Control Blocks
 MOV EDX, sJCB ; EDX is size of a JCB
 CALL InitFreeJCB ; Init the array of JCBs
 RETN

;==
=

PUBLIC NewJCB:
; INPUT : NONE
; OUTPUT : EAX
; REGISTERS : EAX,EBX,FLAGS
; MODIFIES : pFreeJCB
;
; This routine will return to the caller a pointer to the next free jcb.
; The data used in this algorithm is the free jcb pointer (pFreeJCB).
; This routine will return in EAX register the address of the next free jcb.
; If none exists, then EAX will contain NIL (0). This routine will also
; update the value of pFreeJCB to point to the next "unused" JCB in
; the free pool.
;
 MOV EAX,pFreeJCB ;Get OS pointer to JCBs
 CMP EAX,0 ;IF pFreeJCB=NIL THEN Return;
 JE NewJCBDone ;
 MOV EBX,[EAX+NextJCB] ;Get pointer to next free one
 MOV pFreeJCB,EBX ;Put it in OS pointer

MMURTL V1.0 Page 406 of 667

 DEC DWORD PTR _nJCBLeft ;
NewJCBDone:
 RETN ;

;==
=

PUBLIC DisposeJCB:
; INPUT : EAX
; OUTPUT : NONE
; REGISTERS : EBX,FLAGS
; MODIFIES : pFreeJCB
;
; This routine will place the jcb pointed to by EAX back into the free
; pool of JCBs pointed to by (pFreeJCB) if EAX is not NIL.
; This invalidates the JCB by placing 0 in JcbPD.
;
 CMP EAX, 0 ; If pJCBin = NIL THEN Return;
 JE DispJCBDone ;
 MOV DWORD PTR [EAX+JcbPD], 0 ;Invalidate JCB
 MOV EBX,pFreeJCB ;EBX has OS ptr to free list
 MOV [EAX+NextJCB],EBX ;Move it into newly freed JCB
 MOV pFreeJCB,EAX ;Move ptr to newly frred JCB to OS
 INC DWORD PTR _nJCBLeft ;
DispJCBDone:
 RETN ;

;==
;
; GetpCrntJCB
; Returns a pointer to the current Job Control Block in EAX.
; This is based on which Task is executing. All TSSs are
; assigned to a Job. A Job may have more than one Task.
;
; INPUT: Nothing
; OUTPUT: EAX -- Linear Address of current JCB
; USED: EAX, EFlags
;
PUBLIC GetpCrntJCB:
 MOV EAX, pRunTSS ;Current Task State Segment
 MOV EAX, [EAX+TSS_pJCB] ;Pointer to JCB
 RETN

;==
;
; GetCrntJobNum
; Many OS functions deal with the Job number. The Job number
; is a field in the JCB structure.
; Returns the Job number for the currently executing task.
; This is based on which Task is executing. All TSSs are
; assigned to a Job! A Job may have more than one Task.
;
; INPUT: Nothing
; OUTPUT: EAX -- Current Job Number
; USED: EAX, EFlags
;
PUBLIC GetCrntJobNum:

MMURTL V1.0 Page 407 of 667

 CALL GetpCrntJCB
 MOV EAX, [EAX+JobNum] ;Current JCB
 RETN

;==
;
; GetpJCB
; Returns a pointer to a Job Control Block identified by number
; in EAX. All TSSs are assigned to a Job.
;
; INPUT: EAX -- Job Number of desired pJCB
; OUTPUT: EAX -- Linear Address of the JCB or 0 for invalid number
; USED: EAX, EFlags
;
PUBLIC GetpJCB:
 PUSH EDX
 CMP EAX, 1
 JNE GetpJCB1
 MOV EAX, OFFSET MonJCB
 POP EDX
 RETN
GetpJCB1:
 CMP EAX, 2
 JNE GetpJCB2
 MOV EAX, OFFSET DbgJCB
 POP EDX
 RETN
GetpJCB2:
 CMP EAX, nJCBs+2 ;Add in two static JCBs
 JLE GetpJCB3 ;Within range of JCBs
 XOR EAX, EAX
 POP EDX
 RETN
GetpJCB3:
 SUB EAX, 3 ;Take off static JCBs+1 (make it an offset)
 MOV EDX, sJCB
 MUL EDX ;Times size of JCB
 ADD EAX, pJCBs ;Now points to desired JCB
 POP EDX
 RETN ;

;==
;
; GetJobNum
; Many OS functions deal with the Job number. The Job number
; is a field in the JCB structure.
; Returns the Job number for the pJCB in EAX in EAX.
;
; INPUT: EAX pJCB we want job number from.
; OUTPUT: EAX -- Current Job Number
; USED: EAX, EFlags
;
PUBLIC GetJobNum:
 MOV EAX, [EAX+JobNum] ;Current JCB
 RETN

;==

MMURTL V1.0 Page 408 of 667

;
; AllocJCB (NEAR)
; This allocates a new JCB (from the pool). This is a NEAR
; call to support the public job management calls in high level
; languages.
;
; Procedureal Interface :
;
; AllocJCB(pdJobNumRet, ppJCBRet):ercType
;
; pdJobNumRet is the number of the new JCB.
; pJCBRet is a pointer where you want the pointer to the new JCB is
returned.
;
; ErcNoMoreJCBs will be returned if no more JCBs are avaialble.
;
; pdJobNum EQU [EBP+12]
; pJCBRet EQU [EBP+8]

PUBLIC _AllocJCB: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 CALL NewJCB ; Get a new JCB
 OR EAX, EAX ;
 JNZ SHORT AJCB01 ; We got one!
 MOV EAX, ErcNoMoreJCBs ; Sorry, out of them!
 MOV ESP,EBP ;
 POP EBP ;
 RETN 8 ;

AJCB01:
 MOV ESI, [EBP+8] ;pJCBRet
 MOV [ESI], EAX
 MOV ESI, [EBP+12] ;Job Num
 CALL GetJobNum ;
 MOV [ESI], EAX ;
 XOR EAX, EAX ;No error
 MOV ESP,EBP ;
 POP EBP ;
 RETN 8 ;

;==
;
; DeAllocJCB (NEAR)
; This Deallocates a JCB (returns it to the pool). This is a NEAR
; call to support the public job management calls in high level
; languages in the OS code.
;
; Procedureal Interface :
;
; DeAllocJCB(pJCB):ercType
;
; pJCB is a pointer the JCB to be deallocated.
;
; ErcNoMoreJCBs will be returned if no more JCBs are avaialble.
;

MMURTL V1.0 Page 409 of 667

; pJCB EQU [EBP+8]

PUBLIC _DeAllocJCB: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV EAX, [EBP+8] ; pJCB
 CALL DisposeJCB ; Get a new JCB
 XOR EAX, EAX ;
 MOV ESP,EBP ;
 POP EBP ;
 RETN 4 ;

;==
;===== BEGIN PUBLIC FAR JOB CALLS ===========================
;==
;
; GetpJCB
; This PUBLIC returns a pointer to the JCB for the JobNum
; you specifiy.
;
; Procedureal Interface :
;
; GetpJCB(dJobNum, pJCBRet):ercType
;
; dJobNum is the number of the JCB you want.
; pJCBRet is a pointer where you want the JCB returned.
;
; ErcBadJobNum will be returned if dJobNum is out of range
;
; ErcBadJobNum will be returned if dJobNum is invalid
; or 0 will be returned with the data.
;
; dJobNum EQU [EBP+16]
; pJCBRet EQU [EBP+12]

PUBLIC __GetpJCB: ;
 PUSH EBP ;
 MOV EBP,ESP ;

 MOV EAX, [EBP+16] ;Job Num
 OR EAX, EAX
 JZ GetpJcbBad ;0 is invalid
 CMP EAX, nJCBs + 2; ;Dynamic + 2 static
 JBE GetpJcbOK
GetpJcbBad:
 MOV EAX, ErcBadJobNum ;
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;
GetpJcbOk:
 CALL GetpJCB ;puts address of JCB in EAX
 MOV ESI, [EBP+12] ;pJCBRet
 MOV [ESI], EAX
 CMP DWORD PTR [EAX+JcbPD], 0 ;Is this a valid JCB
 JNE GetpJCBOk1
 MOV EAX, ErcInvalidJCB ;JCB we are pointing to is unused

MMURTL V1.0 Page 410 of 667

 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;
GetpJcbOk1:
 XOR EAX, EAX
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ;

;==
;
; GetJobNum
; This PUBLIC returns the number for the current Job. This is
; the job that the task that called this belongs to.
;
; Procedureal Interface :
;
; GetJobNum(pJobNumRet):ercType
;
; pJCBRet is a pointer where you want the JCB returned.
;
; pJobNumRet EQU [EBP+12]

PUBLIC __GetJobNum: ;
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetCrntJobNum ;Leave jobnum in EAX
 MOV ESI, [EBP+12] ;pJobNumRet
 MOV [ESI], EAX ;
 XOR EAX, EAX ;No Error
 POP EBP ;
 RETF 4 ;

;==
;
; GetSystemDisk
; This PUBLIC returns a single byte which represents the
; disk that the system booted from. This is from the public
; variable _BootDrive defined in Main.asm.
; It return 0-n (which corresponds to A-x)
; This code is here for lack of a better place.
; It’s really not a filesystem function either. And will
; still be needed if a loadable filesystem is installed.
;
; Procedureal Interface :
;
; GetSystemDisk(pSysDiskRet):ercType
;
; pSysDiskRet is a pointer to a byte where
; the number representing the system disk is returned.
;
; pSysDiskRet EQU [EBP+12]

PUBLIC __GetSystemDisk ;
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV EAX, _BootDrive

MMURTL V1.0 Page 411 of 667

 AND EAX, 7Fh ;get rid of high bits
 MOV ESI, [EBP+12] ;pJobNumRet
 MOV [ESI], AL ;
 XOR EAX, EAX ;No Error
 POP EBP ;
 RETF 4 ;
;================= MODULE END =================================

Job Management Listing

This file, Jobc.c, contains all of the major high-level functions for job management. Functions
for starting new jobs, ending jobs, and public functions for working with the job control block
are contained in this module.

Listing 22.2 – Jobc.c Source code

/* This file contains functions and data used to support
 loading or terminating jobs (or services).
 It contains the public functions:

 Chain() Loads new job run file in current JCB & PD
 LoadNewJob() Loads a new job into a new JCB & PD
 ExitJob() Exits current job, loads ExitJob if specified

 GetExitJob() Gets run file name that will be loaded upon ExitJob
 SetExitJob() Sets run file name to load upon ExitJob

 SetCmdLine() Sets the command line for next job
 GetCmdLine() Gets the command line for the current job

 GetPath() Gets the path prefix for the current job
 Setpath() Sets the path prefix for the current job

 SetUserName() Sets the Username for the current job
 GetUserName() Gets the Username for the current job

*/

#define U32 unsigned long
#define S32 long
#define U16 unsigned int
#define S16 int
#define U8 unsigned char
#define S8 char
#define TRUE 1
#define FALSE 1

#include "MKernel.h"

MMURTL V1.0 Page 412 of 667

#include "MMemory.h"
#include "MData.h"
#include "MTimer.h"
#include "MVid.h"
#include "MKbd.h"
#include "MJob.h"
#include "MFiles.h"

#include "runfile.h"

#define MEMUSERD 7 /* User Writable (Data) */

#define ErcOpCancel 4 /* Operator cancel */
#define ErcOutOfRange 10 /* Bad Exchange specified in OS call */
#define ErcBadJobNum 70 /* A Bad job number was specified */
#define ErcNoExitJob 76 /* No ExitJob specified on ExitJob(n)*/
#define ErcBadRunFile 74 /* Couldn’t load specified ExitRunFile */

/* Near Support Calls from JobCode.ASM */

extern long AllocJCB(long *pdJobNumRet, char *ppJCBRet);
extern long RemoveRdyJob(char *pJCB);
extern long GetExchOwner(long Exch, char *pJCBRet);
extern long SetExchOwner(long Exch, char *pNewJCB);
extern long SendAbort(long JobNum, long Exch);

/* Temporary NEAR externals from the monitor program for debugging */

extern long xprintf(char *fmt, ...);
extern U32 Dump(unsigned char *pb, long cb);

/* We switch to this stack when we clean out a user
 PD before we rebuild it.
*/

static long TmpStack[128]; /* 512 byte temporary stack */

/* Used for allocating/filling in new JCB */

static struct JCBRec *pNewJCB; /* Used to access a JCB */
static struct JCBRec *pTmpJCB;
static struct JCBRec *pCrntJCB;

static long JobNum;

/* For ExitJob and Chain cause They can’t have local vars! */

static long JobNumE, job_fhE;
static long ExchE, ercE, iE;
static long BogusMsg[2];
static long *pPDE;
static char *pExchJCBE
static long KeyCodeE;

static char aFileE[80];
static long cbFileE;

MMURTL V1.0 Page 413 of 667

extern unsigned long KillExch; /* From the Monitor */

/* Run file data */

static char *pCode, *pData, *pStack; /* Ptrs in User mem to load to */
static long sCode, sData, sStack; /* Size of segments */
static unsigned long oCode, oData; /* Offset in file to Code & Data */

static long offCode = 0, /* Virtual Offset for Code & Data
Segs */
 offData = 0;

static unsigned long nCDFIX = 0,
 oCDFIX = 0,
 nCCFIX = 0,
 oCCFIX = 0,
 nDDFIX = 0,
 oDDFIX = 0,
 nDCFIX = 0,
 oDCFIX = 0;

static char *pStart, filetype;

static struct tagtype tag;

/************* INTERNAL SUPPORT CALLS ******************/

/**
 This deallocates all user memory in a PD. This is
 used when we ExitJob to free up all the memory.
 We get the pointer to the PD and "walk" through all
 the User PTs deallocating linear memory. When all
 PTs have been cleaned, we eliminate the user PDEs.
 This leaves a blank PD for reuse if needed.
 NOTE: This must be called from a task that is
 running in the JCB that owns the memory!
**/

static void CleanUserPD(long *pPD)
{
long i, j, k, erc;
unsigned long *pPT;
char *pMem;

 for (i=768; i<1024; i++) { /* Look at each shadow PDE */
 if (pPD[i]) { /* If it’s a linear address (non 0)*/
 pPT = pPD[i] & 0xFFFFF000; /* Point to Page Table */
 for (j=0; j<1024; j++) {

 /* Get Beginning address for each run to deallocate */

 k = 0; /* nPages to deallocate */
 pMem = ((i-512) * 0x400000) + (j * 4096);
 while ((pPT[j++]) && (j<1024))
 k++; /* one more page */
 if (k)

MMURTL V1.0 Page 414 of 667

 { /* we have pages (one or more) */
 erc = DeAllocPage(pMem, k);
 }
 }
 }
 }
}

/***
 This opens, reads and validates the run file.
 If all is well, it leaves it open and returns the
 file handle, else it closes the run file and returns
 the error to the caller.
 The caller is responsible for closing the file!!!
***/

static long GetRunFile(char *pFileName, long cbFileName, long *pfhRet)
{
long erc, i, fh, dret;
char fDone, junk;

 offCode = 0;
 offData = 0;
 nCDFIX = 0;
 oCDFIX = 0;
 nCCFIX = 0;
 oCCFIX = 0;
 nDDFIX = 0;
 oDDFIX = 0;
 nDCFIX = 0;
 oDCFIX = 0;

 pfhRet = 0; / default to 0 */

 /* Mode Read, Stream type */
 erc = OpenFile(pFileName, cbFileName, 0, 1, &fh);

 if (!erc) { /* File opened OK */

 fDone = 0;
 while ((!erc) && (!fDone)) {
 tag.id = 0;
 erc = ReadBytes (fh, &tag, 5, &dret);

 switch (tag.id) {
 case IDTAG:
 erc = ReadBytes (fh, &filetype, 1, &dret);
 if ((filetype < 1) || (filetype > 3))
 erc = ErcBadRunFile;
 break;
 case SEGTAG:
 erc = ReadBytes (fh, &sStack, 4, &dret);
 if (!erc) erc = ReadBytes (fh, &sCode, 4, &dret);
 if (!erc) erc = ReadBytes (fh, &sData, 4, &dret);
 break;
 case DOFFTAG:
 erc = ReadBytes (fh, &offData, 4, &dret);

MMURTL V1.0 Page 415 of 667

 break;
 case COFFTAG:
 erc = ReadBytes (fh, &offCode, 4, &dret);
 break;
 case STRTTAG:
 erc = ReadBytes (fh, &pStart, 4, &dret);
 break;
 case CODETAG:
 erc = GetFileLFA(fh, &oCode);
 if (!erc)
 erc = SetFileLFA(fh, oCode+tag.len); /* skip it */
 break;
 case DATATAG:
 erc = GetFileLFA(fh, &oData);
 if (!erc)
 erc = SetFileLFA(fh, oData+tag.len); /* skip it */
 break;
 case CDFIXTAG:
 erc = GetFileLFA(fh, &oCDFIX);
 nCDFIX = tag.len/4;
 if (!erc)
 erc = SetFileLFA(fh, oCDFIX+tag.len); /* skip it */
 break;
 case CCFIXTAG:
 erc = GetFileLFA(fh, &oCCFIX);
 nCCFIX = tag.len/4;
 if (!erc)
 erc = SetFileLFA(fh, oCCFIX+tag.len); /* skip it */
 break;
 case DDFIXTAG:
 erc = GetFileLFA(fh, &oDDFIX);
 nDDFIX = tag.len/4;
 if (!erc)
 erc = SetFileLFA(fh, oDDFIX+tag.len); /* skip it */
 break;
 case DCFIXTAG:
 erc = GetFileLFA(fh, &oDCFIX);
 nDCFIX = tag.len/4;
 if (!erc)
 erc = SetFileLFA(fh, oDCFIX+tag.len); /* skip it */
 break;
 case ENDTAG:
 fDone = TRUE;
 break;
 default:
 erc = GetFileLFA(fh, &i);
 if (tag.len > 1024)
 erc = ErcBadRunFile;
 if (!erc)
 erc = SetFileLFA(fh, i+tag.len); /* skip it */
 if (erc)
 erc = ErcBadRunFile;
 break;
 }

 }
 if (erc)

MMURTL V1.0 Page 416 of 667

 CloseFile(fh);
 }
 if (!erc)
 *pfhRet = fh;
if (erc)
 xprintf("Erc from GetRunFile in JobC: %d\r\n", erc);

 return (erc);
}

/**/
/*********** PUBLIC CALLS FOR JOB MANAGEMENT ************/
/**/

/**/
long far _SetExitJob(char *pRunFile, long dcbRunFile)
{
long JobNum;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if (dcbRunFile > 79)
 return (ErcBadJobParam);
 else if (!dcbRunFile)
 pTmpJCB->JcbExitRF[0] = 0;
 else {
 CopyData(pRunFile, &pTmpJCB->JcbExitRF[1], dcbRunFile);
 pTmpJCB->JcbExitRF[0] = dcbRunFile;
 }
 return(0);
}

/**/
long far _GetExitJob(char *pRunRet, long *pdcbRunRet)
{
long JobNum, i;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 i = pTmpJCB->JcbExitRF[0];
 if (i)
 CopyData(&pTmpJCB->JcbExitRF[1], pRunRet, i);
 *pdcbRunRet = i;
 return(0);
}

/**/
long far _SetPath(char *pPath, long dcbPath)
{
long JobNum;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if (dcbPath > 69)
 return (ErcBadJobParam);
 else if (!dcbPath)
 pTmpJCB->sbPath[0] = 0;

MMURTL V1.0 Page 417 of 667

 else {
 CopyData(pPath, &pTmpJCB->sbPath[1], dcbPath);
 pTmpJCB->sbPath[0] = dcbPath;
 }
 return(0);
}

/**/
long far _GetPath(long JobNum, char *pPathRet, long *pdcbPathRet)
{
long i, erc;

 erc = GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to JobNum */
 if (!erc) {
 i = pTmpJCB->sbPath[0];
 if (i)
 CopyData(&pTmpJCB->sbPath[1], pPathRet, i);
 *pdcbPathRet = i;
 }
 return(erc);
}
/**/
long far _SetCmdLine(char *pCmd, long dcbCmd)
{
long JobNum;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if (dcbCmd > 79)
 return (ErcBadJobParam);
 else if (!dcbCmd)
 pTmpJCB->JcbCmdLine[0] = 0;
 else {
 CopyData(pCmd, &pTmpJCB->JcbCmdLine[1], dcbCmd);
 pTmpJCB->JcbCmdLine[0] = dcbCmd;
 }
 return(0);
}

/**/
long far _GetCmdLine(char *pCmdRet, long *pdcbCmdRet)
{
long JobNum, i;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 i = pTmpJCB->JcbCmdLine[0];
 if (i)
 CopyData(&pTmpJCB->JcbCmdLine[1], pCmdRet, i);
 *pdcbCmdRet = i;
 return(0);
}

/**/
long far _SetUserName(char *pUser, long dcbUser)
{

MMURTL V1.0 Page 418 of 667

long JobNum;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if (dcbUser > 29)
 return (ErcBadJobParam);
 else if (!dcbUser)
 pTmpJCB->sbUserName[0] = 0;
 else {
 CopyData(pUser, &pTmpJCB->sbUserName[1], dcbUser);
 pTmpJCB->sbUserName[0] = dcbUser;
 }
 return(0);
}

/**/
long far _GetUserName(char *pUserRet, long *pdcbUserRet)
{
long JobNum, i;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 i = pTmpJCB->sbUserName[0];
 if (i)
 CopyData(&pTmpJCB->sbUserName[1], pUserRet, i);
 *pdcbUserRet = i;
 return(0);
}

/**/
long far _SetSysIn(char *pName, long dcbName)
{
long JobNum;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if ((dcbName > 49) || (!dcbName))
 return (ErcBadJobParam);
 else {
 CopyData(pName, &pTmpJCB->JcbSysIn[1], dcbName);
 pTmpJCB->JcbSysIn[0] = dcbName;
 }
 return(0);
}

/**/
long far _GetSysIn(char *pFileRet, long *pdcbFileRet)
{
long JobNum, i;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 i = pTmpJCB->JcbSysIn[0];
 if (i)
 CopyData(&pTmpJCB->JcbSysIn[1], pFileRet, i);
 *pdcbFileRet = i;
 return(0);

MMURTL V1.0 Page 419 of 667

}

/**/
long far _SetSysOut(char *pName, long dcbName)
{
long JobNum;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if ((dcbName > 49) || (!dcbName))
 return (ErcBadJobParam);
 else {
 CopyData(pName, &pTmpJCB->JcbSysOut[1], dcbName);
 pTmpJCB->JcbSysOut[0] = dcbName;
 }
 return(0);
}

/**/
long far _GetSysOut(char *pFileRet, long *pdcbFileRet)
{
long JobNum, i;

 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 i = pTmpJCB->JcbSysOut[0];
 if (i)
 CopyData(&pTmpJCB->JcbSysOut[1], pFileRet, i);
 *pdcbFileRet = i;
 return(0);
}

/**/
long far _SetJobName(char *pName, long dcbName)
{
long JobNum;
 GetJobNum(&JobNum);
 GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to current Job */
 if (dcbName > 13)
 dcbName = 13;
 if (dcbName)
 CopyData(pName, &pTmpJCB->sbJobName[1], dcbName);
 pTmpJCB->sbJobName[0] = dcbName;
 return(0);
}

/***
 This creates and loads a new Job from a RUN file.
 This returns ErcOK and new job number if loaded OK
 else an error is returned.
***/

long far _LoadNewJob(char *pFileName, long cbFileName, long *pJobNumRet)
{
long erc, i, fh, dret, nPages;
unsigned long *pPD, *pPT, *pVid, *pOSPD;
long *pFix;

MMURTL V1.0 Page 420 of 667

U32 PhyAdd;

 erc = GetRunFile(pFileName, cbFileName, &fh);

 if (!erc) {

 /* We set these to zero so we can tell if they have
 been allocated in case we fail so we know what to deallocate
 */

 JobNum = 0;
 pNewJCB = 0;
 pPD = 0;
 pPT = 0;
 pVid = 0;

 erc = AllocJCB(&JobNum, &pNewJCB);

 /* Alloc OS memory pages required for new job */

 if (!erc)
 erc = AllocOSPage(3, &pPD); /* Job’s PD, PT * pVirtVid */

 pPT = pPD + 4096; /* 1 page later */
 pVid = pPD + 8192; /* 2 pages later */

 if (!erc) {
 FillData(pPT, 4096, 0); /* Zero user PT */
 FillData(pVid, 4096, 0); /* Zero user video */

 GetpJCB(1, &pTmpJCB); /* Get OS pJCB */
 pOSPD = pTmpJCB->pJcbPD; /* Pointer to OS PD */

 GetPhyAdd(1, pPT, &PhyAdd); /* Get Phy Add for new PT */

 PhyAdd |= MEMUSERD; /* Set user code bits in PDE */

 pOSPD[256] = PhyAdd; /* Make User PDE in OS PD */
 pOSPD[768] = pPT; /* Shadow Linear Address of PT */

 /*
 xprintf("pOSPD : %08x\r\n", pOSPD);
 xprintf("pUserPD: %08x\r\n", pPD);
 xprintf("pUserPT: %08x\r\n", pPT);
 xprintf("PhyAdd : %08x\r\n", PhyAdd);
 ReadKbd(&KeyCodeE, 1);
 */

 /* Now we can allocate User Job Memory */
 /* Allocate user memory for Stack Code and Data */
 /* This is STILL done in the OS PD */

 nPages = sStack/4096;
 if (sStack%4096) nPages++;
 erc = AllocPage(nPages, &pStack);
 sStack = nPages * 4096; /* set to whole pages */

MMURTL V1.0 Page 421 of 667

 nPages = sCode/4096;
 if (sCode%4096) nPages++;
 if (!erc)
 erc = AllocPage(nPages, &pCode);

 nPages = sData/4096;
 if (sData%4096) nPages++;
 if (!erc)
 erc = AllocPage(nPages, &pData);

 /* Right now, the OS PD looks exacly like we want
 the User PD to look. We will now copy the entire
 OS PD into the User’s New PD.
 */

 CopyData(pOSPD, pPD, 4096); /* Copy OS PD to User PD */

 /* All Job memory is now allocated, so let’s LOAD IT! */

 if (!erc)
 erc = SetFileLFA(fh, oCode);
 if (!erc)
 erc = ReadBytes (fh, pCode, sCode, &dret);

 if (!erc)
 erc = SetFileLFA(fh, oData);
 if (!erc)
 erc = ReadBytes (fh, pData, sData, &dret);

 /* Now that we have read in the code and data we
 apply fixups to these segments from the runfile
 */

 if (!erc) {

 if (nCDFIX) {
 erc = SetFileLFA(fh, oCDFIX); /* back to fixups */
 while ((nCDFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pCode + i; /* Where in CSeg */
 *pFix = *pFix - offData + pData;
 }
 }

 if (nCCFIX) {
 erc = SetFileLFA(fh, oCCFIX); /* back to fixups */
 while ((nCCFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pCode + i; /* Where in CSeg */
 *pFix = *pFix - offCode + pCode;
 }
 }

 if (nDCFIX) {
 erc = SetFileLFA(fh, oDCFIX); /* back to fixups */
 while ((nDCFIX--) && (!erc)) {

MMURTL V1.0 Page 422 of 667

 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pData + i; /* Where in DSeg */
 *pFix = *pFix - offCode + pCode;
 }
 }

 if (nDDFIX) {
 erc = SetFileLFA(fh, oDDFIX); /* back to fixups */
 while ((nDDFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pData + i; /* Where in DSeg */
 *pFix = *pFix - offData + pData;
 }
 }

 }

 /* Clean the OS PD of User memory */

 FillData(&pOSPD[256], 1024, 0); /* Clean OS PD of User PDEs */
 FillData(&pOSPD[768], 1024, 0); /* Clean OS PD of User Shadow */

 /* Now we fill in the rest of the User’s JCB */

 pNewJCB->pJcbPD = pPD; /* Lin Add of PD */
 pNewJCB->pJcbStack = pStack; /* Add of Stack */
 pNewJCB->sJcbStack = sStack; /* Size of Code */
 pNewJCB->pJcbCode = pCode; /* Add of Code */
 pNewJCB->sJcbCode = sCode; /* Size of Code */
 pNewJCB->pJcbData = pData; /* Add of Code */
 pNewJCB->sJcbData = sData; /* Size of Code */

 pNewJCB->sbUserName[0] = 0; /* Zero UserName */
 pNewJCB->sbPath[0] = 0; /* No Default path */
 pNewJCB->JcbExitRF[0] = 0; /* No Exit Run File */
 pNewJCB->JcbCmdLine[0] = 0; /* No Cmd Line */

 CopyData("KBD", &pNewJCB->JcbSysIn[1], 3);
 pNewJCB->JcbSysIn[0] = 3; /* Size */

 CopyData("VID", &pNewJCB->JcbSysOut[1], 3);
 pNewJCB->JcbSysOut[0] = 3; /* Size */

 pNewJCB->pVidMem = pVid; /* Default to Virt Vid */
 pNewJCB->pVirtVid = pVid; /* Virtual Video memory */
 pNewJCB->CrntX = 0; /* Vid X Position */
 pNewJCB->CrntY = 0; /* Vid Y Position */
 pNewJCB->nCols = 80; /* Columns */
 pNewJCB->nLines = 25; /* Lines */

 pNewJCB->VidMode = 0; /* 80x25 VGA Color Text */
 pNewJCB->fCursOn = 1; /* Cursor On */
 pNewJCB->fCursType = 0; /* UnderLine */

 /* Finally, we crank up the new task and schedule it for
 execution!

MMURTL V1.0 Page 423 of 667

 */
 if (!erc)
 erc = AllocExch(&i);

 if (!erc)
 erc = NewTask(JobNum, 0x18, 25, 0, i,
 pStack+sStack-4,
 pStart+pCode-offCode);
 if (!erc)
 SetExchOwner(i, pNewJCB); /* Exch now belongs to new JCB */
 }

 CloseFile(fh);
 } /* read run file OK */

 if (!erc)
 *pJobNumRet = JobNum;

 return(erc);
}

/***
 This loads a job into an existing PD and JCB. This is
 called by Chain() and may also be called by ExitJob()
 if an ExitJob was specified in the current JCB.
 The PD, pVid & first PT still exist in OS memory.
 (CleanPD left the first PT for us). ExitJob and Chain
 are responsible for opening and validating the runfile
 and setting up the run file variables.
***/

static long LoadJob(char *pJCB, long fh)
{
long erc, i, dret, nPages;
long *pFix;

 pNewJCB = pJCB;

 /* Allocate user memory for Stack, Code and Data */
 /* This is done in the context of the USER PD */

 nPages = sStack/4096;
 if (sStack%4096) nPages++;
 erc = AllocPage(nPages, &pStack);
 sStack = nPages * 4096; /* set to whole pages */

 nPages = sCode/4096;
 if (sCode%4096) nPages++;
 if (!erc)
 erc = AllocPage(nPages, &pCode);

 nPages = sData/4096;
 if (sData%4096) nPages++;

 erc = AllocPage(nPages, &pData);

 /* All Job memory is now allocated, so let’s LOAD IT! */

MMURTL V1.0 Page 424 of 667

 if (!erc)
 erc = SetFileLFA(fh, oCode);
 if (!erc)
 erc = ReadBytes (fh, pCode, sCode, &dret);

 if (!erc)
 erc = SetFileLFA(fh, oData);
 if (!erc)
 erc = ReadBytes (fh, pData, sData, &dret);

 /* Now that we have read in the code and data we
 apply fixups to these segments from the runfile
 */

 if (!erc) {
 if (nCDFIX) {
 erc = SetFileLFA(fh, oCDFIX); /* back to fixups */
 while ((nCDFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pCode + i; /* Where in CSeg */
 *pFix = *pFix - offData + pData;
 }
 }

 if (nCCFIX) {
 erc = SetFileLFA(fh, oCCFIX); /* back to fixups */
 while ((nCCFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pCode + i; /* Where in CSeg */
 *pFix = *pFix - offCode + pCode;
 }
 }

 if (nDCFIX) {
 erc = SetFileLFA(fh, oDCFIX); /* back to fixups */
 while ((nDCFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pData + i; /* Where in DSeg */
 *pFix = *pFix - offCode + pCode;
 }
 }

 if (nDDFIX) {
 erc = SetFileLFA(fh, oDDFIX); /* back to fixups */
 while ((nDDFIX--) && (!erc)) {
 erc = ReadBytes (fh, &i, 4, &dret);
 pFix = pData + i; /* Where in DSeg */
 *pFix = *pFix - offData + pData;
 }
 }

 /* Now we fill in the rest of the User’s JCB */
 pNewJCB->pJcbStack = pStack; /* Add of Stack */
 pNewJCB->sJcbStack = sStack; /* Size of Code */
 pNewJCB->pJcbCode = pCode; /* Add of Code */
 pNewJCB->sJcbCode = sCode; /* Size of Code */

MMURTL V1.0 Page 425 of 667

 pNewJCB->pJcbData = pData; /* Add of Code */
 pNewJCB->sJcbData = sData; /* Size of Code */

 }
 CloseFile(fh);
 return(erc);
}

/**
 This is started as new task in the context of a
 job that is being killed off. This is done to allow
 memory access and also reuse the code for ExitJob
 in the monitor. This task, it’s exchange, and TSS
 will be reclaimed by the monitor along with the
 JCB and all OS memory pages for the PD,PT and video.
**/

void _KillTask(void)
{

 GetJobNum(&JobNumE);
 GetpJCB(JobNumE, &pTmpJCB); /* Get pJCB to this Job */

 /* Clean the PD of all user memory leaving OS memory to be
 deallocated by the caller (monitor or whoever).
 */

 pPDE = pTmpJCB->pJcbPD;
 CleanUserPD(pPDE);

 GetTSSExch(&ExchE);

 ercE = 0;
 while(!ercE) /* clear the exchange */
 ercE = CheckMsg(ExchE, BogusMsg);

 ISendMsg(KillExch, ExchE, ErcOpCancel);
 SetPriority(31);
 WaitMsg(ExchE, BogusMsg);

 /* He’s History! */
}

/**
 This called from one job to kill another job or
 service. This cleans up ALL resources that the
 job had allocated.
 This is used to kill run-away jobs, or terminate a
 job just for the fun ot it.
 It results in a violent death for the job specified.
 This must never be called from a task within the job
 to be killed. A job may terminate itself with ExitJob().
**/

long far _KillJob(long JobNum)

MMURTL V1.0 Page 426 of 667

{
long erc;
 /* Make sure it’s not the Monitor, Debugger or the current job. */

 GetJobNum(&JobNumE);
 if ((JobNum == JobNumE) ||
 (JobNum == 1) ||
 (JobNum == 2))

 return(ErcBadJobNum);

 erc = GetpJCB(JobNum, &pTmpJCB); /* Get pJCB to the Job */
 if (erc)
 return(erc);

 pTmpJCB->ExitError = ErcOpCancel; /* Operator said DIE! */

 /* Remove ALL tasks for this job that are at the ReadyQue.
 The task we are in does not belong to the job we are
 killing so we can remove them all.
 */

 RemoveRdyJob(pTmpJCB); /* It always returns ErcOk */

 /* Deallocate ALL exchanges for this job */

 ercE = 0;
 iE = 0;
 while (ercE != ErcOutOfRange)
 {
 ercE = GetExchOwner(iE, &pExchJCBE);
 if ((!ercE) && (pExchJCBE == pTmpJCB))
 DeAllocExch(iE);
 iE++;
 }
 ercE = 0; /* Clear the error */

 /* Now that the user can’t make anymore requests,
 We send "Abort" messages to all services.
 This closes all files that were opened by the Job
 and frees up any other resources held for this
 job by any service.

 We will allocate one exchange for the job
 that is being killed so we can use it for SendAbort
 and also as the exchange number we send to the
 KillExch in the monitor which will kill of the JCB
 completely (he also switches video and keyboard
 if needed).
 */

 erc = AllocExch(&ExchE); /* Get an Exch */
 SetExchOwner(ExchE, pTmpJCB); /* make him the owner */
 SendAbort(JobNum, ExchE); /* Notify all services */

 /*JobNum, CodeSeg, Priority, fDebug, Exch, ESP, EIP */
 erc = NewTask(JobNum, 0x08, 3, 0, ExchE, &TmpStack[127], &_KillTask);

MMURTL V1.0 Page 427 of 667

 return(erc);

 /* He’s History! */
}

/**
 This called from Exit() in C or directly from a user
 job or service. This cleans up ALL resources that the
 job had allocated.
 This also checks for an exit run file to load if
 one is specified. If no exit run file is specified
 we just kill the JCB entirely and if video and
 keyboard are assigned we assign them to the Monitor.
**/

void far _ExitJob(long dError)
{
/* NO LOCAL VARIABLES BECAUSE WE SWITCH STACKS!! */

 GetJobNum(&JobNumE);
 GetpJCB(JobNumE, &pCrntJCB); /* Get pJCB to current Job */
 pCrntJCB->ExitError = dError;

 /* Remove ALL tasks for this job that are at the ReadyQue.
 The task we are in won’t be removed because its RUNNING!
 */

 RemoveRdyJob(pCrntJCB); /* It always returns ErcOk */

 /* Deallocate all exchanges for this job except the one belonging
 to current TSS! The Dealloc Exchange call will invalidate
 all TSSs found at exchanges belonging to this user, and
 will also free up RQBs and Link Blocks. The job will not be
 able to initiate requests or send messages after this unless
 it is done with the TSSExchange because it will get a kernel
 error (invalid exchange).
 */

 /* Find out what our TSS exchange is so
 we don’t deallocate it to! */

 GetTSSExch(&ExchE);

 ercE = 0;
 iE = 0;
 while (ercE != ErcOutOfRange) {
 ercE = GetExchOwner(iE, &pExchJCBE);
 if ((!ercE) && (iE != ExchE) && (pExchJCBE == pCrntJCB))
 DeAllocExch(iE);
 iE++;
 }

 /* Now that the user can’t make anymore requests,
 Send Abort messages to all services.
 This closes all files that were opened by the Job
 and frees up any other resources held for this
 job by any service.

MMURTL V1.0 Page 428 of 667

 */

 SendAbort(JobNumE, ExchE);
 ercE = 0; /* Clear the error */
 while(!ercE) /* clear the exchange */
 ercE = CheckMsg(ExchE, BogusMsg);
 ercE = 0; /* Clear the error */

 /* We must now switch to a temporary stack so we can
 clean out the user PD (we are on his stack right now!).
 */

#asm
 MOV EAX, OFFSET _TmpStack
 ADD EAX, 508
 MOV ESP, EAX
 MOV EBP, EAX
#endasm

 /* Clean the PD of all user memory leaving OS memory for next
 job if there is one.
 */

 pPDE = pCrntJCB->pJcbPD;
 CleanUserPD(pPDE);

 /* Look for Exit Run file to load if any exists. If no exit run
 file, we deallocate the PD and JCB then return to JOB 1. */

 GetExitJob(aFileE, &cbFileE); /* Exit Run File!! */

 if (!cbFileE)
 ercE = ErcNoExitJob;

 if (!ercE)
 ercE = GetRunFile(aFileE, cbFileE, &job_fhE);

 if (!ercE)
 ercE = LoadJob(pCrntJCB, job_fhE);

 if (!ercE) {

 pStart = pStart+pCode-offCode;

 /* Now we RETURN to new job’s address after we put him
 on his new stack. */

#asm
 MOV EAX, _pStack
 MOV EBX, _sStack
 ADD EAX, EBX
 SUB EAX, 4
 MOV ESP, EAX
 MOV EBP, EAX
 PUSH 18h
 MOV EAX, _pStart
 PUSH EAX

MMURTL V1.0 Page 429 of 667

 RETF ;We are history!
#endasm

 }

 if (ercE) { /* something failed or we don’t have an ExitRF */

 /* In case there is no job to run or a fatal error has happened
 we send a message (ISendMsg) to the monitor status
 task with our TSSExch and the Error. Then he will WIPE US OUT!
 We use ISend (vice send) so he can’t run before we get to
 the exchange otherwise we will be placed back on the readyQueue!
 */

 ISendMsg(KillExch, ExchE, ercE);
 SetPriority(31);
 WaitMsg(ExchE, BogusMsg);

 /* We are NO MORE */
 }
}

/**
 This is called to execute a program without changing
 the ExitJob. This is so you can run program B from
 program A and return to program A when program B is
 done. This runs Job B in the "context" of Job A
 which means Job B inherits the JCB and PD of job A
 so it can use things like the command line and
 path that were set up by A.
 Information can be passed to Job B by calling
 SetCmdLine (if Job B reads it), and also by
 setting the ExitError value in the parameter.
 Chain will only return to you if there was an
 error loading the Job. In other words, if Chain
 fails in a critial section we try to load the
 ExitJob and pass it the error.
**/

long far _Chain(char *pFileName, long cbFileName, long dExitError)
{
/* NO LOCAL VARIABLES BECAUSE WE SWITCH STACKS!! */

 CopyData(pFileName, aFileE, cbFileName);
 cbFileE = cbFileName;

 ercE = GetRunFile(pFileName, cbFileName, &job_fhE);
 if (ercE)
 {
 CloseFile(job_fhE); /* if it had a handle at all */
 return(ercE);
 }

 CloseFile(job_fhE); /* we will open it again after SendAbort */

 GetJobNum(&JobNumE);
 GetpJCB(JobNumE, &pCrntJCB); /* Get pJCB to current Job */

MMURTL V1.0 Page 430 of 667

 pCrntJCB->ExitError = dExitError;

 /* Remove ALL tasks for this job that are at the ReadyQue.
 The task we are in won’t be removed because its RUNNING!
 */

 RemoveRdyJob(pCrntJCB); /* It always returns ErcOk */

 /* Deallocate all exchanges for this job except the one belonging
 to current TSS! The Dealloc Exchange call will invalidate
 all TSSs found at exchanges belonging to this user, and
 will also free up RQBs and Link Blocks. The job will not be
 able to initiate requests or send messages after this unless
 it is done with the TSSExchange because it will get a kernel
 error (invalid exchange).
 */

 /* Find out what our TSS exchange is so
 we don’t deallocate it to! */

 GetTSSExch(&ExchE);

 ercE = 0;
 iE = 0;
 while (ercE != ErcOutOfRange) {
 ercE = GetExchOwner(iE, &pExchJCBE);
 if ((!ercE) && (iE != ExchE) && (pExchJCBE == pCrntJCB))
 DeAllocExch(iE);
 iE++;
 }

 /* Now that the user can’t make anymore requests,
 Send Abort messages to all services.
 This closes all files that were opened by the Job
 and frees up any other resources held for this
 job by any services.
 */

 SendAbort(JobNumE, ExchE);

 ercE = 0; /* Clear the error */
 while(!ercE) /* clear the exchange of abort responses*/
 ercE = CheckMsg(ExchE, BogusMsg);
 ercE = 0; /* Clear the error */

 /* We must now switch to a temporary stack so we can
 clean out the user PD (we are on his stack right now!).
 */

#asm
 MOV EAX, OFFSET _TmpStack
 ADD EAX, 508
 MOV ESP, EAX
 MOV EBP, EAX
#endasm

 /* Clean the PD of all user memory leaving OS memory for next

MMURTL V1.0 Page 431 of 667

 job if there is one.
 */

 pPDE = pCrntJCB->pJcbPD;
 CleanUserPD(pPDE);

 /* Try to load the Chain file. Don’t bother checking error
 cause it was valid if we got here!
 */

 GetRunFile(aFileE, cbFileE, &job_fhE); /* it was valid before!*/
 ercE = LoadJob(pCrntJCB, job_fhE);

 if (ercE) {
 /* We have errored in a critical part of Chain (LoadJob).
 The original user’s job is destroyed, and we can’t run the
 chain file (bummer).
 The only thing left to do is Look for Exit Run file to load
 if any exists. If no exit run file, we kill this guy
 and return to the monitor if he had the screen. */

 GetExitJob(aFileE, &cbFileE); /* Exit Run File!! */

 if (!cbFileE)
 ercE = ErcNoExitJob;

 if (!ercE)
 ercE = GetRunFile(aFileE, cbFileE, &job_fhE);

 if (!ercE)
 ercE = LoadJob(pCrntJCB, job_fhE);
 }

 if (!ercE) { /* No error */

 pStart = pStart+pCode-offCode;

 /* Now we RETURN to new job’s address after we put him
 on his new stack. */

#asm
 MOV EAX, _pStack
 MOV EBX, _sStack
 ADD EAX, EBX
 SUB EAX, 4
 MOV ESP, EAX
 MOV EBP, EAX
 PUSH 18h
 MOV EAX, _pStart
 PUSH EAX
 RETF ;We are history!
#endasm
 }

 if (ercE) { /* Something failed loading the job (Chain or Exit) */

 /* In case there is no job to run or a fatal error has happened

MMURTL V1.0 Page 432 of 667

 we send a message (ISendMsg) to the monitor status
 task with our TSSExch and the Error. Then he will WIPE US OUT!
 We use ISend (vice send) so he can’t run before we get to
 the exchange otherwise we will be placed back on the readyQueue!
 */

 ISendMsg(KillExch, ExchE, ercE); /* ISend clears ints! */
#asm
 STI
#endasm
 SetPriority(31);
 WaitMsg(ExchE, BogusMsg);

 /* We are NO MORE */

 }
}

/*********************** End of Module *****************/

MMURTL V1.0 Page 433 of 667

Chapter 23, Debugger Code

Introduction

The debugger initially began as a crude memory dumper built into the operating system. It has
grown substantially, but is still very immature. While writing the operating system, small pieces
of the debugger have been added as they were needed.

The debugger is a separate task, but it is not entered directly from the breakpoint address as an
interrupt task. Breakpoints, which are all debug exceptions, are set up to execute a interrupt
procedure that does some rather tricky manipulation of the debugger task state segment (TSS).
The two major things that are changed are the pointer to the JCB and the CR3 register in the
debugger’s TSS. They are made to match those of the interrupted task. This allows the debugger
to operate in the memory context of the task that was interrupted.

Debugger Interrupt Procedure

This code excerpt is taken from the file EXCEPT.ASM which contains handlers for all system
exceptions. You will note that even though the two exception procedures are the same, I have left
them as individual procedures. I did this because on occasion I had to modify one individually,
and ended up duplicating them several times after combining them. See listing 23.1.

Listing 23.1 - Exception Handlers for Entering Debugger

;===================== Debugger Single Step (Int 1) ======================

PUBLIC IntDbgSS:

 POP dbgOldEIP ; Get EIP of offender for debugger
 POP dbgOldCS ;
 POP dbgOldEFlgs ;
 JMP EnterDebug ;Enter debugger

;===================== Debugger Entry (Int 3) ===========================

PUBLIC IntDebug:

 POP dbgOldEIP ; Get EIP of offender for debugger
 POP dbgOldCS ; Get CS
 POP dbgOldEFlgs ; Get Flags
 JMP EnterDebug ;Enter debugger

;EnterDebug
;
; This piece of code sets up to enter the debugger. If we get here,
; one of the exceptions has activated and has done a little work based
; on which exception is was, then it jumped here to enter the debugger.

MMURTL V1.0 Page 434 of 667

; This code effectively replaces the interrupted task with the debugger
; task (without going through the kernel). First we copy the Page Dir
; entry from the current job into the debuggers job, then copy the CR3
; register from the current TSS into the debugger’s TSS. This makes the
; debugger operate in the current tasks memory space. All of the debugger’s
; code and data are in OS protected pages (which are shared with all tasks),
; so this is OK to do even if the offending task referenced a bogus address.
; Next, we save the current pRunTSS and place the debugger’s TSS in
; pRunTSS, then jump to the debugger’s selector. This switches tasks.
;
EnterDebug:
 PUSH EAX ;we MUST save caller’s registers
 PUSH EBX ; and restore them before the
 PUSH EDX ; task switch into the debugger

 MOV EAX, pRunTSS ;pRunTSS -> EAX
 MOV EBX, [EAX+TSS_CR3] ;current CR3 -> EBX
 MOV EDX, OFFSET DbgTSS ;pDebuggerTSS -> EDX
 MOV [EDX+TSS_CR3], EBX ;CR3 -> DebuggerTSS

 MOV EAX, [EAX+TSS_pJCB] ;pCrntJCB -> EAX
 MOV EDX, [EDX+TSS_pJCB] ;pDebuggerJCB -> EDX
 MOV EBX, [EAX+JcbPD] ;CrntJob Page Dir -> EBX
 MOV [EDX+JcbPD], EBX ;Page Dir -> Debugger JCB

 MOV EAX, pRunTSS ;Save the current pRunTSS
 MOV DbgpTSSSave, EAX
 MOV EAX, OFFSET DbgTSS ;Install Debugger’s as current
 MOV pRunTSS, EAX ;Set Dbgr as running task

 MOV BX, [EAX+Tid]
 MOV TSS_Sel, BX ;Set up debugger selector

 POP EDX ;make his registers right!
 POP EBX
 POP EAX

 JMP FWORD PTR [TSS] ;Switch tasks to debugger

 ;When the debugger exits, we come here

 PUSH dbgOldEFlgs ;Put the stack back the way it was
 PUSH dbgOldCS ;
 PUSH dbgOldEIP ;
 IRETD ;Go back to the caller

Debugger Source Listing

Listing 23.2 presents the debugger code in it’s entirety, with the exception of the disassembler.
You’ll see much of it is display "grunt work."
The debugger also has it’s own read-keyboard call in the keyboard service to allow debugging of
portions of the keyboard code.

MMURTL V1.0 Page 435 of 667

Listing 23.2 – Debugger Data and Code

.DATA
.INCLUDE MOSEDF.INC
.INCLUDE TSS.INC
.INCLUDE RQB.INC
.INCLUDE JOB.INC

.ALIGN DWORD

;External near Variables

EXTRN rgTmrBlks DD
EXTRN pJCBs DD
EXTRN RdyQ DD
EXTRN rgPAM DB

;debugger variables and buffers

PUBLIC DbgpTSSSave DD 0 ;TO save the TSS we interrupted
PUBLIC dbgFAULT DD 0FFh ;0FFh is NO FAULT
PUBLIC dbgFltErc DD 0
PUBLIC dbgOldEIP DD 0
PUBLIC dbgOldCS DD 0
PUBLIC dbgOldEflgs DD 0

DbgVidSave DD 0 ;To save interrupted video user
dbgBuf DB ’00000000’ ;General use buffers
dbgBuf2 DB ’0000000000’

.ALIGN DWORD
cbBufLen2 DD 0 ;Active bytes in buf2
dbgKeyCode DD 0 ;For ReadDbgKbd
NextEIP DD 0 ;For Disassem display (next ins to be executed)
dbgGPdd1 DD 0 ;General purpose DDs (used all over)
dbgGPdd2 DD 0 ;
dbgGPdd3 DD 0 ;
dbgGPdd4 DD 0 ;
dbgGPdd5 DD 0 ;
dbgGPdd6 DD 0 ;flag 1 = Msg, 0 = Exch

dbgNextAdd DD 0 ;Address we are setting as next
dbgCrntAdd DD 0 ;Address of instructions we are displaying
dbgDumpAdd DD 0 ;Address we are dumping

dbgX DD 0 ;For line and column display coordination
dbgY DD 0

dbgBPAdd DD 0 ;Crnt Breakpoint Linear addresses

dbgfDumpD DB 0 ;Boolean- are we dumping DWORDS?
fDbgInit DB 0 ;Has Dbg Video been initialized?

dbgCRLF DB 0Dh, 0Ah ;CR LF for Dump etc...
dbgChar DB 0

MMURTL V1.0 Page 436 of 667

dbgMenu DB ’SStep’,0B3h,’SetBP’,0B3h,’ClrBP’,0B3h,’CS:EIP ’
 DB ’Exchs’,0B3h,’Tasks’,0B3h,’ ’,0B3h,’CrntAddr’
 DB ’DumpB’,0B3h,’DumpD’,0B3h,’ ’,0B3h,’AddInfo ’
dbgSpace DB ’ ’
dbgCont DB ’ENTER to continue, ESC to quit.’
dbgClear DB ’ ’ ;40 bytes
dbgAsterisk DB 42

; 0123456789012345678901234567890123456789012345678901234
dbgExchMsg DB ’Exch Owner dMsgLo dMsgHi Task’

; 0123456789012345678901234567890123456789012345678901234
dbgTaskMsg DB ’Task# Job pJCB pTSS Priority ’

;For Debugger entry conditions
dbgFltMsg DB ’FATAL Processor Exception/Fault: ’
sdbgFltMsg DD $-dbgFltMsg

 ;Register display text

dbgTxt00 DB 0B3h,’TSS: ’
dbgTxt01 DB 0B3h,’EAX: ’
dbgTxt02 DB 0B3h,’EBX: ’
dbgTxt03 DB 0B3h,’ECX: ’
dbgTxt04 DB 0B3h,’EDX: ’
dbgTxt05 DB 0B3h,’ESI: ’
dbgTxt06 DB 0B3h,’EDI: ’
dbgTxt07 DB 0B3h,’EBP: ’
dbgTxt08 DB 0B3h,’ SS: ’
dbgTxt09 DB 0B3h,’ESP: ’
dbgTxt10 DB 0B3h,’ CS: ’
dbgTxt11 DB 0B3h,’EIP: ’
dbgTxt12 DB 0B3h,’ DS: ’
dbgTxt13 DB 0B3h,’ ES: ’
dbgTxt14 DB 0B3h,’ FS: ’
dbgTxt15 DB 0B3h,’ GS: ’
dbgTxt16 DB 0B3h,’EFL: ’
dbgTxt17 DB 0B3h,’CR0: ’
dbgTxt18 DB 0B3h,’CR2: ’
dbgTxt19 DB 0B3h,’CR3: ’
dbgTxt20 DB 0B3h,’Erc: ’

dbgTxtAddr DB ’Linear address: ’

 ;For Important Address Info Display

dbgM0 DB ’IDT: ’
dbgM1 DB ’GDT: ’
dbgM2 DB ’RQBs: ’
dbgM3 DB ’TSS1: ’
dbgM4 DB ’TSS3: ’
dbgM5 DB ’LBs: ’
dbgM6 DB ’RdyQ: ’
dbgM7 DB ’JCBs: ’
dbgM8 DB ’SVCs: ’
dbgM9 DB ’Exch: ’

MMURTL V1.0 Page 437 of 667

dbgPA DB ’PAM: ’
dbgMB DB ’aTmr: ’

;==================== End Data, Begin Code ==========================

.CODE

EXTRN DDtoHex NEAR
EXTRN HexToDD NEAR
EXTRN _disassemble NEAR
EXTRN ReadDbgKbd NEAR

PUBLIC DbgTask:

 MOV EAX, OFFSET DbgVidSave ;Save number of vid we interrupted
 PUSH EAX
 CALL FWORD PTR _GetVidOwner

 STI

 PUSH 2
 CALL FWORD PTR _SetVidOwner ;Dbgr is Job 2

 CMP fDbgInit, 0
 JNE DbgInitDone
 CALL FWORD PTR _ClrScr
 MOV fDbgInit, 1

DbgInitDone:

 MOV EAX, DbgpTSSSave

 ;When a fault or debug exception occurs, the values of
 ;the Instruction Pointer, Code Seg, and flags are not the
 ;way they were when the exception fired off becuase of the
 ;interrupt procedure they enterred to get to the debugger.
 ;We make them the same by putting the values we got from
 ;the stack (entering the debugger) into the caller’s TSS.
 ;
 MOV EBX,dbgOldEflgs ;Store correct flags
 MOV [EAX+TSS_EFlags],EBX ;EAX still has DbgpTSSSave
 MOV EBX,dbgOldCS ;Store correct CS
 MOV [EAX+TSS_CS],BX
 MOV EBX,dbgOldEIP ;Store correct EIP
 MOV [EAX+TSS_EIP],EBX
 ;
 ;NOTE: The "book" says the TF flag is reset by the processor
 ; when the handler is entered. This only applies if
 ; the handler is a procedure (NOT a task). The debugger
 ; is always entered as a procedure, (we chanage the tasks)
 ; so we shouldn’t have to reset it. But we do...
 ; I guess I’m not reading it right or ROD SERLING LIVES!
 ;
 MOV EBX,[EAX+TSS_EFlags] ;Reset TF in case single steping
 AND EBX,0FFFFFEFFh
 MOV [EAX+TSS_EFlags],EBX

MMURTL V1.0 Page 438 of 667

 ;We set the FAULT variable based on which interrupt
 ;procedure was entered.

 CMP DWORD PTR dbgFAULT,0FFh ;Was the dbgr entered on a FAULT?
 JE dbg000 ;NO
 ;
 ;NOTE: Must eventually add SS/ESP for a change in CPL on faults!!!
 ;REF - See page 3-4 System Software Writer’s Guide

 XOR EAX, EAX
 PUSH EAX ;Display fault message and
 PUSH EAX ; and number at 0 ,0
 CALL FWORD PTR _SetXY

 LEA EAX,dbgFltMsg
 PUSH EAX
 PUSH sdbgFltMsg
 PUSH 40h ;Color Black on RED
 CALL FWORD PTR _TTYOut

 MOV EAX,dbgFAULT
 PUSH EAX
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 LEA EAX,dbgBuf
 PUSH EAX
 PUSH 8
 PUSH 70h
 CALL FWORD PTR _TTYOut
 MOV DWORD PTR dbgFAULT, 0FFh ;reset fault indicator

 LEA EAX,dbgCRLF
 PUSH EAX
 PUSH 2
 PUSH 07h ;Color White on black
 CALL FWORD PTR _TTYOut
 XOR EAX, EAX
 MOV dbgX, EAX ;Reset X & Y to 0,1
 INC EAX
 MOV dbgY, EAX

;===
dbg000:
 CALL DbgRegVid ;Display BackLink’s Register values
 CALL dbgDispMenu ;Display menu
 PUSH dbgX ;Back to where we were
 PUSH dbgY
 CALL FWORD PTR _SetXY

 ;Display Instruction at CS:EIP
 MOV EBX,DbgpTSSSave ;Get USER pUserTSS
 MOV EAX, [EBX+TSS_EIP]
 MOV dbgCrntAdd, EAX
 CALL dbgShowBP
 PUSH EAX

MMURTL V1.0 Page 439 of 667

 CALL _disassemble ;This puts the instruction on the line
 MOV NextEIP, EAX
 CALL dbgCheckScroll ;Fall through to keyboard loop

;===
 ;Now we read the keyboard
dbg00:
 MOV EAX, OFFSET dbgKeyCode
 PUSH EAX
 CALL ReadDbgKbd ;
 MOV EAX, dbgKeyCode
 AND EAX, 0FFh ;Lop off key status bytes

 CMP EAX, 1Bh ;ESCAPE (Exit)
 JE dbgExit

 CMP EAX, 0Fh ;Single Step (F1)
 JNE dbg02
 MOV EBX,DbgpTSSSave ;Get USER pUserTSS
 MOV ECX,[EBX+TSS_EFlags] ;
 OR ECX,00000100h ;Set TF in flags for single step
 MOV [EBX+TSS_EFlags],ECX
 JMP dbgExit
dbg02:
 CMP EAX, 10h ;Set BP (Current Address - F2)
 JNE dbg03
 MOV EBX, dbgCrntAdd ;Address displayed
 MOV dbgBPAdd, EBX ;Save it so we know where BP is
 MOV DR0, EBX ;Move into BreakPoint Reg 0
 XOR EAX, EAX
 MOV DR6, EAX
 MOV EAX, 00000002h ;BP0 Set global
 MOV DR7, EAX
 JMP dbg00 ;
dbg03:
 CMP EAX, 11h ;Clear BP (Current Address - F3)
 JNE dbg04
 XOR EAX, EAX
 MOV dbgBPAdd, EAX ;Clear BP saved address
 MOV DR7, EAX
 JMP dbg00 ;
dbg04:
 CMP EAX, 12h ;Return to CS:EIP (F4)
 JNE dbg05
 MOV EBX,DbgpTSSSave ;Get USER pUserTSS
 MOV EAX, [EBX+TSS_EIP]
 MOV dbgCrntAdd, EAX
 CALL dbgShowBP
 PUSH EAX
 CALL _disassemble ;This puts the instruction on the line
 MOV NextEIP, EAX
 CALL dbgCheckScroll ;See if we need to scroll up
 JMP dbg00 ;
dbg05:
 CMP EAX, 13h ;Display Exchanges (F5)
 JNE dbg06
 CALL dbgDispExchs

MMURTL V1.0 Page 440 of 667

 JMP dbg000 ;Full display
dbg06:
 CMP EAX, 14h ;Task array display (F6)
 JNE dbg07
 CALL dbgDispTasks
 JMP dbg000 ;
dbg07:
 CMP EAX, 15h ;Not used yet
 JNE dbg08
 JMP dbg00 ;
dbg08:
 CMP AL, 16h ;Set Disassembly Address (F8)
 JNE dbg09
 CALL dbgSetAddr ;Sets NextEIP
 PUSH dbgX ;Back to where we were
 PUSH dbgY
 CALL FWORD PTR _SetXY
 MOV EAX, NextEIP
 MOV dbgCrntAdd, EAX
 CALL dbgShowBP
 PUSH EAX
 CALL _disassemble ;This puts the instruction on the line
 MOV NextEIP, EAX
 CALL dbgCheckScroll ;See if we need to scroll up
 JMP dbg00 ;
dbg09:
 CMP AL, 17h ;Memory Dump Bytes (F9)
 JNE dbg10
 MOV BL, 00
 MOV dbgfDumpD, BL
 CALL dbgDump ;
 JMP dbg000
dbg10:
 CMP AL, 18h ;Memory Dump DWORDS (F10)
 JNE dbg12
 MOV BL, 0FFh
 MOV dbgfDumpD, BL
 CALL dbgDump ;
 JMP dbg000
dbg12:
 CMP AL, 01Ah ;Info Address dump (F12)
 JNE dbg13
 CALL DbgInfo ;
 JMP dbg00

dbg13: CMP AL, 02h ;Display next Instruction (Down Arrow)
 JNE dbg14
 MOV EAX, NextEIP
 MOV dbgCrntAdd, EAX
 CALL dbgShowBP
 PUSH EAX
 CALL _disassemble ;This puts the instruction on the line
 MOV NextEIP, EAX
 CALL dbgCheckScroll ;See if we need to scroll up
 JMP dbg00

dbg14:

MMURTL V1.0 Page 441 of 667

 JMP dbg00 ;GO back for another key

DbgExit:

 LEA EAX,dbgX ;Query XY
 PUSH EAX
 LEA EAX,dbgY
 PUSH EAX
 CALL FWORD PTR _GetXY

 PUSH DbgVidSave
 CALL FWORD PTR _SetVidOwner ;Change screens back

 MOV EAX, DbgpTSSSave ;Return saved pRunTSS
 MOV pRunTSS, EAX
 MOV BX, [EAX+Tid]
 MOV TSS_Sel, BX ;Set up caller’s TSS selector

 JMP FWORD PTR [TSS]

 ;Next time we enter the debugger task it will be here!
 JMP DbgTask ;Back to begining

;==

dbgShowBP:
 ;This compares the current breakpoint the address
 ;we are about to display. If they are the same,
 ;we put up an asterisk to indicate it’s the breakpoint
 ;EAX must be preserved

 MOV EBX, dbgCrntAdd ;Address displayed
 MOV ECX, dbgBPAdd ;BP Address
 CMP EBX, ECX
 JZ dbgShowBP1
 RETN
dbgShowBP1:
 PUSH EAX ;Save EAX across call
 PUSH OFFSET dbgAsterisk ;3 params to TTYOut
 PUSH 01h
 PUSH 47h ;Reverse Vid WHITE on RED
 CALL FWORD PTR _TTYOut
 POP EAX
 RETN

;==
;This sets up and calls to display all of the regsiter
;information on the right side of the debugger video display

DbgRegVid:
 MOV EBX,DbgpTSSSave ;EBX MUST be DbgpTSSSave
 MOV ECX,00 ;TSS Display
 MOV ESI,OFFSET DbgTxt00
 XOR EAX,EAX
 MOV AX,[EBX+TSSNum] ;Number of this TSS
 CALL DispRegs

MMURTL V1.0 Page 442 of 667

 MOV ECX,01 ;EAX Display
 MOV ESI,OFFSET DbgTxt01
 MOV EAX,[EBX+TSS_EAX]
 CALL DispRegs

 MOV ECX,02 ;EBX Display
 MOV ESI,OFFSET DbgTxt02
 MOV EAX,[EBX+TSS_EBX]
 CALL DispRegs

 MOV ECX,03 ;ECX Display
 MOV ESI,OFFSET DbgTxt03
 MOV EAX,[EBX+TSS_ECX]
 CALL DispRegs

 MOV ECX,04 ;EDX Display
 MOV ESI,OFFSET DbgTxt04
 MOV EAX,[EBX+TSS_EDX]
 CALL DispRegs

 MOV ECX,05 ;ESI Display
 MOV ESI,OFFSET DbgTxt05
 MOV EAX,[EBX+TSS_ESI]
 CALL DispRegs

 MOV ECX,06 ;EDI Display
 MOV ESI,OFFSET DbgTxt06
 MOV EAX,[EBX+TSS_EDI]
 CALL DispRegs

 MOV ECX,07 ;EBP Display
 MOV ESI,OFFSET DbgTxt07
 MOV EAX,[EBX+TSS_EBP]
 CALL DispRegs

 MOV ECX,08 ;SS Display
 MOV ESI,OFFSET DbgTxt08
 XOR EAX,EAX
 MOV AX,[EBX+TSS_SS]
 CALL DispRegs

 MOV ECX,09 ;ESP Display
 MOV ESI,OFFSET DbgTxt09
 MOV EAX,[EBX+TSS_ESP]
 CALL DispRegs

 MOV ECX,10 ;CS Display
 MOV ESI,OFFSET DbgTxt10
 XOR EAX,EAX
 MOV AX,[EBX+TSS_CS]
 CALL DispRegs

 MOV ECX,11 ;EIP Display
 MOV ESI,OFFSET DbgTxt11
 MOV EAX,[EBX+TSS_EIP]
 CALL DispRegs
 MOV ECX,12 ;DS Display

MMURTL V1.0 Page 443 of 667

 MOV ESI,OFFSET DbgTxt12
 XOR EAX,EAX
 MOV AX,[EBX+TSS_DS]
 CALL DispRegs
 MOV ECX,13 ;ES Display
 MOV ESI,OFFSET DbgTxt13
 XOR EAX,EAX
 MOV AX,[EBX+TSS_ES]
 CALL DispRegs
 MOV ECX,14 ;FS Display
 MOV ESI,OFFSET DbgTxt14
 XOR EAX,EAX
 MOV AX,[EBX+TSS_FS]
 CALL DispRegs
 MOV ECX,15 ;GS Display
 MOV ESI,OFFSET DbgTxt15
 XOR EAX,EAX
 MOV AX,[EBX+TSS_GS]
 CALL DispRegs
 MOV ECX,16 ;EFlags Display
 MOV ESI,OFFSET DbgTxt16
 MOV EAX,[EBX+TSS_EFlags]
 CALL DispRegs
 MOV ECX,17 ;CR0 Display
 MOV ESI,OFFSET DbgTxt17
 MOV EAX,CR0
 CALL DispRegs
 MOV ECX,18 ;CR2 Display
 MOV ESI,OFFSET DbgTxt18
 MOV EAX,CR2
 CALL DispRegs
 MOV ECX,19 ;CR3 Display
 MOV ESI,OFFSET DbgTxt19
 MOV EAX,CR3
 CALL DispRegs
 MOV ECX,20 ;Fault Error Code Display
 MOV ESI,OFFSET DbgTxt20
 MOV EAX,dbgFltErc
 CALL DispRegs
 RETN
;==
;
; This is for Debugger Register display
; Call with: EAX loaded with value to display (from TSS reg)
; ECX loaded with number of text line to display on
; ESI loaded with EA of text line to display
; We save all registers cause the vid calls don’t

DispRegs:
 PUSHAD

 PUSH EAX ;Save number to display

 PUSH 66
 PUSH ECX
 CALL FWORD PTR _SetXY

MMURTL V1.0 Page 444 of 667

 PUSH ESI
 PUSH 05h
 PUSH 07h
 CALL FWORD PTR _TTYOut

 POP EAX ;Get number back for display

 PUSH EAX
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH OFFSET dbgBuf
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _TTYOut
 POPAD
 RETN
;==
; This displays the debugger function key menu

dbgDispMenu:
 PUSH 0 ;Display Debugger FKey Menu
 PUSH 24
 CALL FWORD PTR _SetXY

 LEA EAX,dbgMenu
 PUSH EAX
 PUSH 78
 PUSH 70h
 CALL FWORD PTR _TTYOut

 PUSH 25
 PUSH 24
 CALL FWORD PTR _SetXY

 LEA EAX,dbgSpace
 PUSH EAX
 PUSH 1
 PUSH 07h
 CALL FWORD PTR _TTYOut

 PUSH 51
 PUSH 24
 CALL FWORD PTR _SetXY

 LEA EAX,dbgSpace
 PUSH EAX
 PUSH 1
 PUSH 07h
 CALL FWORD PTR _TTYOut

 RETN
;===========================
;Allows the user to pick the currently displayed address

dbgSetAddr:
 PUSH 0 ;Goto Query Line

MMURTL V1.0 Page 445 of 667

 PUSH 23 ;
 CALL FWORD PTR _SetXY

 LEA EAX, dbgTxtAddr
 PUSH EAX
 PUSH 16
 PUSH 07h
 CALL FWORD PTR _TTYOut
 CMP EAX, 0
 JNE DumpDone

 LEA EAX, DbgBuf2 ;
 PUSH EAX ;pEdString
 PUSH cbBufLen2 ;Crnt size
 PUSH 8 ;Max size
 LEA EAX, cbBufLen2 ;
 PUSH EAX ;ptr to size returned
 LEA EAX, dbgChar ;
 PUSH EAX ;ptr to char returned
 PUSH 70h ;Black On White
 CALL FWORD PTR _EditLine ;Ignore error if any

 MOV AL, dbgChar ;did they exit with CR?
 CMP AL, 0Dh
 JNE dbgSetAddrDone

 LEA EAX, dbgBuf2 ;Convert String to DD
 PUSH EAX ;ptr to string
 LEA EAX, dbgNextAdd
 PUSH EAX ;ptr to destination DD
 PUSH cbBufLen2 ;length of string
 CALL HexToDD ;dbgDumpAdd has address to dump!
 CMP EAX, 0
 JNE dbgSetAddrDone

 MOV EAX, dbgNextAdd
 MOV NextEIP, EAX
dbgSetAddrDone:
 CALL dbgClearQuery
 RETN ;Go home...
;===========================
;Queries user for address then dumps data to screen

dbgDump:
 PUSH 0 ;Goto Query Line
 PUSH 23 ;
 CALL FWORD PTR _SetXY

 LEA EAX, dbgTxtAddr
 PUSH EAX
 PUSH 16
 PUSH 07h
 CALL FWORD PTR _TTYOut
 CMP EAX, 0
 JNE DumpDone

 LEA EAX, DbgBuf2 ;

MMURTL V1.0 Page 446 of 667

 PUSH EAX ;pEdString
 PUSH cbBufLen2 ;Crnt size
 PUSH 8 ;Max size
 LEA EAX, cbBufLen2 ;
 PUSH EAX ;ptr to size returned
 LEA EAX, dbgChar ;
 PUSH EAX ;ptr to char returned
 PUSH 70h ;Black On White
 CALL FWORD PTR _EditLine ;Ignore error if any

 MOV AL, dbgChar ;did they exit with CR?
 CMP AL, 0Dh
 JE dbgDoDump
 CALL dbgClearQuery
 RETN ;Go home...

dbgDoDump:
 LEA EAX, dbgBuf2 ;Convert String to DD
 PUSH EAX ;ptr to string
 LEA EAX, dbgDumpAdd
 PUSH EAX ;ptr to destination DD
 PUSH cbBufLen2 ;length of string
 CALL HexToDD ;dbgDumpAdd has address to dump!
 CMP EAX, 0
 JNE DumpDone

 CALL FWORD PTR _ClrScr

dbgDump00:
 MOV DWORD PTR dbgGPdd1, 24 ;line counter begins at 24
dbgDump01:
 MOV DWORD PTR dbgGPdd3, 4 ;number of quads per line
 PUSH dbgDumpAdd ;convert address to text
 LEA EAX, dbgBuf
 PUSH EAX
 CALL DDtoHex

 LEA EAX, dbgBuf
 PUSH EAX
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _TTYOut
 CMP EAX, 0
 JNE DumpDone
dbgDump02:
 MOV DWORD PTR dbgGPdd2, 6 ;byte offset begins at 6
 LEA EAX, dbgSpace
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut
 CMP EAX, 0
 JNE DumpDone
 MOV EBX, dbgDumpAdd ;get dump address
 MOV EAX, [EBX] ;Get what it’s pointing to
 PUSH EAX ;make it a DD Text
 LEA EAX, dbgBuf

MMURTL V1.0 Page 447 of 667

 PUSH EAX
 CALL DDtoHex
 MOV AL, dbgfDumpD ;Dumping DWORDS
 CMP AL, 0
 JE DumpB ;NO - go to display bytes

 LEA EAX, dbgBuf ;Yes display Quad
 PUSH EAX
 PUSH 8
 PUSH 07
 CALL FWORD PTR _TTYOut
 JMP DumpDin

 dumpB:
 LEA EAX, dbgBuf ;Display First byte
 ADD EAX, dbgGPdd2
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut ;ignore error

 LEA EAX, dbgSpace ;Display 1 spaces
 PUSH EAX
 PUSH 1
 PUSH 07h
 CALL FWORD PTR _TTYOut
 DEC dbgGPdd2 ;point to second 2 bytes
 DEC dbgGPdd2

 LEA EAX, dbgBuf ;display 2st byte
 ADD EAX, dbgGPdd2
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut ;ignore error

 LEA EAX, dbgSpace ; display 1 space
 PUSH EAX
 PUSH 1
 PUSH 07h
 CALL FWORD PTR _TTYOut

 DEC dbgGPdd2
 DEC dbgGPdd2

 LEA EAX, dbgBuf ;display 3rd byte
 ADD EAX, dbgGPdd2
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut ;ignore error

 LEA EAX, dbgSpace ;a space
 PUSH EAX
 PUSH 1
 PUSH 07h
 CALL FWORD PTR _TTYOut

MMURTL V1.0 Page 448 of 667

 DEC dbgGPdd2
 DEC dbgGPdd2

 LEA EAX, dbgBuf ;display 4th byte
 ADD EAX, dbgGPdd2
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut ;ignore error
DumpDin:
 INC dbgDumpAdd
 INC dbgDumpAdd
 INC dbgDumpAdd
 INC dbgDumpAdd
 DEC dbgGPdd3 ;done with 4 quads??
 JNZ dbgDump02 ;NO - go back for next 4 bytes

 LEA EAX, dbgSpace ;Yes - Display 2 spaces
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut

 LEA EAX,dbgX ;Query XY
 PUSH EAX
 LEA EAX,dbgY
 PUSH EAX
 CALL FWORD PTR _GetXY

 PUSH dbgX ;Put 16 TEXT chars on right
 PUSH dbgY
 MOV EAX, dbgDumpAdd
 SUB EAX, 16
 PUSH EAX
 PUSH 16
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;ignore error

 LEA EAX, dbgCRLF ;Do CR/LF
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut
 ;
 DEC dbgGPdd1 ;23lines yet??
 JNZ dbgDump01 ;NO
 ;
 LEA EAX, dbgCont ;"Continue" Text
 PUSH EAX
 PUSH 31 ;size of "cont text"
 PUSH 07h
 CALL FWORD PTR _TTYOut
dbgDump03:
 MOV EAX, OFFSET dbgKeyCode
 PUSH EAX
 CALL ReadDbgKbd
 MOV EAX, dbgKeyCode

MMURTL V1.0 Page 449 of 667

 AND EAX, 0FFh ;Lop off key status bytes
 CMP EAX, 0
 JE dbgDump03
 CMP EAX, 1Bh ;Escape (Quit??)
 JE DumpDone

 LEA EAX, dbgCRLF ;Do CR/LF
 PUSH EAX
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut
 JMP dbgDump00

 ;
 DumpDone:
 CALL FWORD PTR _ClrScr
 MOV DWORD PTR dbgX, 0
 MOV DWORD PTR dbgY, 0
 RETN
;===========================

;Displays exchanges that are allocated along with
;messages or tasks that may be wiating at them

dbgDispExchs:

 MOV DWORD PTR dbgGPdd2, 0 ;Exch# we are on
dbgDE00:
 CALL FWORD PTR _ClrScr
 PUSH 0 ;Col
 PUSH 0 ;Line for labels
 PUSH OFFSET dbgExchMsg ;
 PUSH 54 ;Length of message
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;
 MOV DWORD PTR dbgGPdd1, 1 ;line we are one

 ;First we do the exchange on the current line
dbgDE01:
 PUSH dbgGPdd2 ;Convert Exch number for display
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH 0 ;Col
 PUSH dbgGPdd1 ;Line we are one
 PUSH OFFSET dbgBuf ;ExchNum
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 ;Then we do the Exch Owner (Job Number) next to it

 MOV EAX, dbgGPdd2 ; Exch number
 MOV EDX, sEXCH ; Compute offset of Exch in rgExch
 MUL EDX ;
 MOV EDX,prgExch ; Add offset of rgExch => EAX
 ADD EAX,EDX ; EAX now pts to Exch

MMURTL V1.0 Page 450 of 667

 MOV dbgGPdd3, EAX ; pExch into save variable
 MOV EBX, [EAX+Owner] ; pJCB of Owner into EBX
 XOR EAX, EAX ; Clear for use as JobNum
 OR EBX, EBX ; pNIL? (No owner if so)
 JZ dbgDE03
 MOV EAX, [EBX+JobNum] ;
dbgDE03:
 PUSH EAX ;Convert Job Number
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH 10 ;Col
 PUSH dbgGPdd1 ;Line
 PUSH OFFSET dbgBuf ;
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 MOV dbgGPdd5, 0 ;Set pNextMsg to 0

 ;See if there is a first message

 MOV EAX, dbgGPdd3 ;pExch -> EAX
 MOV EBX, [EAX+EHead] ;pMsg -> EBX
 OR EBX, EBX ;Is is NIL (no msg or task)?
 JZ dbgDE13 ;Yes. Go to next Exch

 MOV EBX, [EAX+fEMsg] ;MsgFlag -> EBX
 OR EBX, EBX ;Is is 1 (a message)?
 JZ dbgDE05 ;No, Go check for tasks
 MOV EBX, [EAX+EHead] ;pMsg -> EBX

 ;Display Messages
dbgDE04:
 MOV DWORD PTR dbgGPdd6, 0 ;Flag to indicate we are doing messages
 MOV EAX, [EBX+NextLB] ;For next msg in chain (if it exists)
 MOV dbgGPdd5, EAX ;Save for loop
 MOV EAX, [EBX+DataHi] ;Get dMsg1
 MOV EDX, [EBX+DataLo] ;Get dMsg2
 PUSH EDX ;Save dMsg2

 PUSH EAX ;Convert dMsg1
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH 20 ;Col
 PUSH dbgGPdd1 ;Line
 PUSH OFFSET dbgBuf ;
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 POP EDX ;Get dMsg2 back

 ;Could have left it on stack, but would be confusing later...
 ;"simplicity of maintenance is as important as simplicity of design"

MMURTL V1.0 Page 451 of 667

 PUSH EDX ;Convert dMsg2
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH 30 ;Col
 PUSH dbgGPdd1 ;Line
 PUSH OFFSET dbgBuf ;
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;
 JMP dbgDE07 ;Next line please

 ;See if there are tasks waiting
dbgDE05:
 MOV DWORD PTR dbgGPdd6, 1 ;Flag to indicate we are doing tasks
 MOV DWORD PTR dbgGPdd5, 0 ;Clear pNextTask
 MOV EAX, dbgGPdd3 ;pExch -> EAX
 MOV EBX, [EAX+EHead] ;pTSS -> EBX
 OR EBX, EBX ;Is is 0 (no TSS)?
 JZ dbgDE07 ;
dbgDE06:
 MOV EAX, [EBX+NextTSS]
 MOV dbgGPdd5, EAX ;Save ptr to next task if it exists
 XOR EAX, EAX
 MOV AX, [EBX+TSSNum] ;Get Number of Task at exch

 PUSH EAX ;Convert Task Number
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH 50 ;Col
 PUSH dbgGPdd1 ;Line
 PUSH OFFSET dbgBuf ;
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

dbgDE07:
 INC dbgGPdd1 ;Next line
 CMP DWORD PTR dbgGPdd1, 23 ;23 lines yet?
 JB dbgDE09 ;No
 ;
dbgDE08:
 PUSH 0 ;Col
 PUSH 24 ;Line
 PUSH OFFSET dbgCont ;
 PUSH 31 ;length of Cont string
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 MOV EAX, OFFSET dbgKeyCode
 PUSH EAX
 CALL ReadDbgKbd
 MOV EAX, dbgKeyCode
 AND EAX, 0FFh ;Lop off key status bytes
 CMP EAX, 1Bh ;Escape (Quit??)
 JE dbgDEDone

MMURTL V1.0 Page 452 of 667

 CMP DWORD PTR dbgGPdd2, nDynEXCH ; Number of dynamic exchanges
 JAE dbgDEDone ; All Exchs displayed

 CALL FWORD PTR _ClrScr ;
 PUSH 0 ;Col
 PUSH 0 ;Line for labels
 PUSH OFFSET dbgExchMsg ;
 PUSH 54 ;Length of message
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;
 MOV DWORD PTR dbgGPdd1, 1 ;line. We are on line 1 again

dbgDE09:
 MOV EBX, dbgGPdd5 ;Set up to loop for next msg/task
 XOR EBX, EBX ;Another pointer in the link?
 JZ dbgDE13 ;No
 MOV EAX, dbgGPdd6 ;
 OR EAX, EAX ;NonZero if we are doing tasks
 JNZ dbgDE06 ;Tasks
 JMP dbgDE04 ;Messages
dbgDE13:
 INC dbgGPdd2 ; Exch number
 CMP DWORD PTR dbgGPdd2, nDynEXCH ; Number of dynamic exchanges
 JAE dbgDE08 ; Go back for prompt (to pause)
 JMP dbgDE01 ; Back to display new exch num
dbgDEDone:
 CALL FWORD PTR _ClrScr
 MOV DWORD PTR dbgX, 0
 MOV DWORD PTR dbgY, 0
 RETN

;===========================
;Displays Tasks that are active along with
;pertinent address info about them

dbgDispTasks:
 MOV DWORD PTR dbgGPdd2, 1 ;Task# we are on
dbgDT00:
 CALL FWORD PTR _ClrScr
 PUSH 0 ;Col
 PUSH 0 ;Line for labels
 PUSH OFFSET dbgTaskMsg ;
 PUSH 54 ;Length of message
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;
 MOV DWORD PTR dbgGPdd1, 1 ;line we are one

 ;First we get pTSS and see if it is valid
 ;If so, we get all the data BEFORE we display it
 ;If not, we increment TSS number and go back
 ;for the next one
dbgDT01:
 ;We get pJCB out of TSS and get JobNum from JCB

 MOV EAX, dbgGPdd2 ; Task number
 CMP EAX, 1 ; Is this TSS 1 (Static memory)

MMURTL V1.0 Page 453 of 667

 JNE dbgDT02
 MOV EBX, OFFSET MonTSS ;
 JMP SHORT dbgDT04
dbgDT02:
 CMP EAX, 2 ; Is this TSS 2 (Static memory)
 JNE dbgDT03
 MOV EBX, OFFSET DbgTSS ;
 JMP SHORT dbgDT04
dbgDT03:
 MOV EBX, pDynTSSs
 DEC EAX ;Make TSS Num offset in dynamic array
 DEC EAX ;of TSSs
 DEC EAX
 MOV ECX, 512
 MUL ECX
 ADD EBX, EAX ;EBX points to TSS!
dbgDT04:
 ;EBX has pTSS of interest
 MOV dbgGPdd5, EBX ;Save pTSS for display
 XOR ECX, ECX ;
 MOV CL, [EBX+Priority] ;Priotity of this task
 MOV dbgGPdd6, ECX
 MOV EAX, [EBX+TSS_pJCB] ;EAX has pJCB
 OR EAX, EAX ;NON zero means it’s valid
 JNZ dbgDT05
 MOV EAX, dbgGPdd2 ;Not used, go for next Task number
 INC EAX
 CMP EAX, nTSS ;
 JE dbgDT06
 MOV dbgGPdd2, EAX
 JMP SHORT dbgDT01 ;back for next one
dbgDT05:
 ;EAX now pJCB
 MOV dbgGPdd4, EAX ;Save pJCB for display
 MOV EBX, [EAX] ;Job number is first DD in JCB
 MOV dbgGPdd3, EBX

 PUSH dbgGPdd2 ;Convert TSS number for display
 PUSH OFFSET dbgBuf
 CALL DDtoHex
 PUSH 0 ;Col
 PUSH dbgGPdd1 ;Line we are one
 PUSH OFFSET dbgBuf ;TaskNum
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 PUSH dbgGPdd3 ;Convert and display Job number
 PUSH OFFSET dbgBuf ;
 CALL DDtoHex
 PUSH 10 ;Col
 PUSH dbgGPdd1 ;Line we are one
 PUSH OFFSET dbgBuf ;
 PUSH 8 ;Size
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

MMURTL V1.0 Page 454 of 667

 PUSH dbgGPdd4 ;Convert and display pJCB
 PUSH OFFSET dbgBuf ;
 CALL DDtoHex
 PUSH 20 ;Col
 PUSH dbgGPdd1 ;Line we are one
 PUSH OFFSET dbgBuf ;
 PUSH 8 ;Size
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 PUSH dbgGPdd5 ;Convert and display pTSS
 PUSH OFFSET dbgBuf ;
 CALL DDtoHex
 PUSH 30 ;Col
 PUSH dbgGPdd1 ;Line we are one
 PUSH OFFSET dbgBuf ;
 PUSH 8 ;Size
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 PUSH dbgGPdd6 ;Convert and display Priority
 PUSH OFFSET dbgBuf ;
 CALL DDtoHex
 PUSH 40 ;Col
 PUSH dbgGPdd1 ;Line we are one
 PUSH OFFSET dbgBuf ;
 PUSH 8 ;Size
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 MOV EAX, dbgGPdd2 ;go for next Task number
 INC EAX
 CMP EAX, nTSS ;
 JE dbgDT06
 MOV dbgGPdd2, EAX ;Save it for the top

 INC dbgGPdd1 ;Next line
 CMP DWORD PTR dbgGPdd1, 23 ;23 lines yet?
 JAE dbgDT06 ;Yes, continue prompt
 JMP dbgDT01 ;No, go back for next
dbgDT06:
 PUSH 0 ;Col
 PUSH 24 ;Line
 PUSH OFFSET dbgCont ;
 PUSH 31 ;length of Cont string
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;

 MOV EAX, OFFSET dbgKeyCode
 PUSH EAX
 CALL ReadDbgKbd
 MOV EAX, dbgKeyCode
 AND EAX, 0FFh ;Lop off key status bytes
 CMP EAX, 1Bh ;Escape (Quit??)
 JE dbgDTDone
 JMP dbgDT00 ;Back for next screen
dbgDTDone:

MMURTL V1.0 Page 455 of 667

 CALL FWORD PTR _ClrScr
 MOV DWORD PTR dbgX, 0
 MOV DWORD PTR dbgY, 0
 RETN
;==
; This is for Debugger Address Info display
; Call with:
; EAX loaded with address to display (Linear Address)
; ESI loaded with EA of text line to display
; We save all registers cause the vid calls don’t
;===
DispAddr:
 PUSHAD
 PUSH EAX ;Save number to display

 PUSH ESI ;ptr to line
 PUSH 06h ;Length of line
 PUSH 07h ;Vid Attribute
 CALL FWORD PTR _TTYOut ;Do it

 POP EAX ;Get number back for display
 PUSH EAX
 PUSH OFFSET dbgBuf
 CALL DDtoHex

 PUSH OFFSET dbgBuf
 PUSH 8
 PUSH 07h
 CALL FWORD PTR _TTYOut

 PUSH OFFSET dbgCRLF
 PUSH 2
 PUSH 07h
 CALL FWORD PTR _TTYOut

 CALL dbgCheckScroll
 POPAD
 RETN
;===
;DbgInfo - Displays important linear address for the OS
DbgInfo:
 MOV ESI,OFFSET DbgM0 ;IDT
 LEA EAX, IDT
 CALL DispAddr
 MOV ESI,OFFSET DbgM1 ;GDT
 LEA EAX, GDT
 CALL DispAddr
 MOV ESI,OFFSET DbgM2 ;RQBs
 MOV EAX, pRQBs
 CALL DispAddr
 MOV ESI,OFFSET DbgM3 ;MonTSS
 MOV EAX, OFFSET MonTSS
 CALL DispAddr
 MOV ESI,OFFSET DbgM4 ;pTSS3
 MOV EAX, pDynTSSs
 CALL DispAddr
 MOV ESI,OFFSET DbgM5 ;LBs

MMURTL V1.0 Page 456 of 667

 LEA EAX, rgLBs
 CALL DispAddr
 MOV ESI,OFFSET DbgM6 ;RdyQ
 LEA EAX, RdyQ
 CALL DispAddr
 MOV ESI,OFFSET DbgM7 ;JCBs
 MOV EAX, pJCBs
 CALL DispAddr
 MOV ESI,OFFSET DbgM8 ;SVCs
 LEA EAX, rgSVC
 CALL DispAddr
 MOV ESI,OFFSET DbgM9 ;Exchs
 MOV EAX, prgExch
 CALL DispAddr
 MOV ESI,OFFSET DbgPA ;PAM (Page Allocation map)
 LEA EAX, rgPAM
 CALL DispAddr
 MOV ESI,OFFSET DbgMB ;Timer Blocks
 LEA EAX, rgTmrBlks
 CALL DispAddr
 RETN
;===
;All of the debugger text is displayed in a window
;between colums 0 and 66, and line 0 to 24. The other
;areas are resrved for the menu, query line,
;and the register display.
;This checks to see if the cursor is on line 23.
;If so, we scroll up the text area by one line.

dbgCheckScroll:
 LEA EAX,dbgX ;Query XY (See what line and Col)
 PUSH EAX
 LEA EAX,dbgY
 PUSH EAX
 CALL FWORD PTR _GetXY
 CMP DWORD PTR dbgY, 23 ;Are we at bottom (just above menu)??
 JB dbgNoScroll ;No, go back for next key

 PUSH 0 ;Yes, Scroll test area (Col 0-64, Line 0-24)
 PUSH 0
 PUSH 66 ;Columns 0-65
 PUSH 24 ;Lines 0-23
 PUSH 1 ;fUp (1)
 CALL FWORD PTR _ScrollVid

 PUSH 0 ;Got to Column 0, Line 22
 PUSH 22
 CALL FWORD PTR _SetXY
dbgNoScroll:
 RETN
;
;===
;Clear the query line (Line 23, 40 chars)
dbgClearQuery:
 PUSH 0 ;Col 0, Line 23
 PUSH 23
 PUSH OFFSET dbgClear

MMURTL V1.0 Page 457 of 667

 PUSH 40
 PUSH 07h
 CALL FWORD PTR _PutVidChars ;ignore error
 RETN
;===================== module end ======================

MMURTL V1.0 Page 458 of 667

Chapter 24, Selected Device Driver Code

Introduction

This chapter contains the source code for two MMURTL device drivers. Comments, in addition
to those in the code itself, precede sections of the code to explain the purpose of an entire
section. The code comments should suffice for the detailed explanations of otherwise confusing
code.

The two device drivers are for the IDE disk drives and the RS232 asynchronous communications
device (UARTS).

Unlike large portions of the rest of the MMURTL code, many device drivers are written in C.
Even some of the ISRs are done in C, though I would rather have done them in assembler. Time
was the deciding factor.

IDE Disk Device Driver

The IDE (Integrated Drive Electronics) device driver was actually one of the easiest drivers to
write. All of the hardware commands are well documented, and they are also fairly compatible
with the MFM hard disk controllers. They were designed that way. In fact, this device driver
should work with MFM drives, but I haven’t owned any for a couple of years and can’t find any
to test it. If you have MFM drives, you’re on your own, but I think you’re OK.

One of the things you’ll note is that I don’t depend on CMOS RAM locations to provide the hard
disk drive geometry. I found so many variations in the different ROMs that I gave up and
actually read the disk itself to find out. This seems to be the best, and maybe the only dependable
way to do it.

You will find these little #define statements at the top of almost every C source file I have. They
simply save some typing and help my brain realize what is signed and unsigned. You’ll see that I
sometimes slip back to the long-hand notation (e.g., unsigned long int), but I try not to. You
may also notice that almost everything in MMURTL is unsigned anyway. This eliminates a lot of
confusion for me.

The CM32 C compiler requires ANSI prototypes for functions. All of the operating system calls
are prototyped here. There are no include files, so you don’t have to go digging to see what I’m
doing. I feel this is the best way to try to pass information to someone in a source file, otherwise
I would have just included the standard MMURTL header files. See listing 24.1.

MMURTL V1.0 Page 459 of 667

Listing 24.1 - IDE Device Driver Data (Defines and Externs)

#define U32 unsigned long
#define S32 long
#define U16 unsigned int
#define S16 int
#define U8 unsigned char
#define S8 char

/* MMURTL OS PROTOTYPES */

extern far AllocExch(U32 *pExchRet);
extern far U32 InitDevDr(U32 dDevNum,
 S8 *pDCBs,
 U32 nDevices,
 U32 dfReplace);

extern far U32 UnMaskIRQ(U32 IRQNum);
extern far U32 MaskIRQ(U32 IRQNum);
extern far U32 SetIRQVector(U32 IRQNum, S8 *pIRQ);
extern far U32 EndOfIRQ(U32 IRQNum);
extern far U32 SendMsg(U32 Exch, U32 msg1, U32 msg2);
extern far U32 ISendMsg(U32 Exch, U32 msg1, U32 msg2);
extern far U32 WaitMsg(U32 Exch, U32 *pMsgRet);
extern far U32 CheckMsg(U32 Exch, U32 *pMsgRet);
extern far U32 Alarm(U32 Exch, U32 count);
extern far U32 KillAlarm(U32 Exch);
extern far U32 Sleep(U32 count);
extern far void MicroDelay(U32 us15count);
extern far void OutByte(U8 Byte, U16 wPort);
extern far void OutWord(U16 Word, U16 wPort);
extern far U8 InByte(U16 wPort);
extern far U16 InWord(U16 wPort);
extern far U8 ReadCMOS(U16 Address);
extern far void CopyData(U8 *pSource, U8 *pDestination, U32 dBytes);
extern far InWords(U32 dPort, U8 *pDataIn, U32 dBytes);
extern far OutWords(U32 dPort, U8 *pDataOut, U32 dBytes);

While writing the operating system, I needed a method to get data to the screen. The monitor has
a function that works very similar to printf in C. It’s called xprintf(). Any section of the operating
system code included at build time can use this function for displaying troubleshooting
information. You must simply keep in mind that it writes to the video screen for the job that
called the device driver. See listing 24.2.

Listing 24.2 - Continuation of IDE Driver Data (protos and defines)

/* Near External for troubleshooting */

extern long xprintf(char *fmt, ...);

MMURTL V1.0 Page 460 of 667

/* LOCAL PROTOTYPES */

U32 hdisk_setup(void);
static void interrupt hdisk_isr(void); /* The HD interrupt function */
static U32 hd_format_track(U32 dLBA, U32 dnBlocks);
static void hd_reset(void);
static U32 send_command(U8 parm);
static U32 hd_wait (void);
static U32 check_busy(void);
static U32 hd_seek(U32 dLBA);
static U32 hd_recal(U8 drive);
static U32 hd_write(U32 dLBA, U32 dnBlocks, U8 *pDataOut);
static U32 hd_read(U32 dLBA, U32 dnBlocks, U8 *pDataIn);
static U32 hd_status(U8 LastCmd);
static U32 setupseek(U32 dLBA, U32 nBlks);
static U32 hd_init(U8 drive);
static U32 ReadSector(U32 Cylinder, U32 HdSect, U8 *pDataRet);

/* The following 3 calls are required in every MMURTL device driver */

static U32 hddev_op(U32 dDevice,
 U32 dOpNum,
 U32 dLBA,
 U32 dnBlocks,
 U8 *pData);

static U32 hddev_stat(U32 dDevice,
 S8 * pStatRet,
 U32 dStatusMax,
 U32 *pdSatusRet);

static U32 hddev_init(U32 dDevNum,
 S8 *pInitData,
 U32 sdInitData);

/* LOCAL DEFINITIONS */

#define ok 0

/* Error Codes to return */

#define ErcNoMsg 20
#define ErcNotInstalled 504

#define ErcBadBlock 651
#define ErcAddrMark 652
#define ErcBadECC 653
#define ErcSectNotFound 654
#define ErcNoDrive0 655
#define ErcNotSupported 656
#define ErcBadHDC 658
#define ErcBadSeek 659
#define ErcHDCTimeOut 660
#define ErcOverRun 661
#define ErcBadLBA 662
#define ErcInvalidDrive 663

MMURTL V1.0 Page 461 of 667

#define ErcBadOp 664
#define ErcBadRecal 665
#define ErcSendHDC 666
#define ErcNotReady 667
#define ErcBadCmd 668
#define ErcNeedsInit 669
#define ErcTooManyBlks 670 /* The controller can only do 128 max */
#define ErcZeroBlks 671 /* 0 Blocks not allowed for this cmd */
#define ErcWriteFault 672 /* WriteFault bit set... bummer */

#define ErcMissHDDInt 675

#define ErcHDDMsgBogus 676
#define ErcHDDIntMsg 677
#define ErcHDDAlarmMsg 678

/* Commands accepted by this HD driver */

#define CmdNull 0
#define CmdRead 1
#define CmdWrite 2
#define CmdVerify 3
#define CmdFmtBlk 4
#define CmdFmtTrk 5
#define CmdSeekTrk 6
#define CmdSetMedia 7 /* Not used unless mountable */
#define CmdResetHdw 8 /* Used to reset controller hardware */

/* CmdReadSect is the only device specific call in the IDE/MFM hard
 disk device driver. This allows you to read ONE sector
 specified by Cylinder, head and Sector number.
 Cylinder is HiWord of dLBA in DeviceOp call,
 Head is LoWord of dLBA in DeviceOp call, and
 Sector number is LowWord in dnBlocks.
*/

#define CmdReadSect 256 /* only device specific call in HDD */

/* HDC port definitions */

#define HD_PORT 0x1f0

/* When writing to the port+X (where X =):
 0 - write data (1F0h - 16 bit)
 1 - pre-comp (1F1h)
 2 - sector count (1F2h)
 3 - sector number (1F3h)
 4 - low cyl (1F4h)
 5 - high cyl (1F5h)
 6 - size/drive/head (1F6h)
 7 - command register (1F7h)

When reading from the port+X (where X =):
 0 - read data (1F0h - 16 bit)
 1 - error register (1F1h)
 2 - sector count (1F2h)
 3 - sector number (1F3h)

MMURTL V1.0 Page 462 of 667

 4 - low cyl (1F4h)
 5 - high cyl (1F5h)
 6 - size/drive/head (1F6h)
 7 - status register (1F7h)
*/

#define HD_REG_PORT 0x3f6

/* This is a byte wide write only control port
 that allows reset and defines some special
 characteristics of the hard drives.
 Bit Desc
 0 Not used
 1 Not used
 2 Reset Bit - Set, wait 50us, then Reset
 3 Mucho Heads Flag. Set = More than 8 heads
 4 Not used
 5 Not used
 6 Disable retries
 7 Disable retries (same as six, either one set)
*/

/* HDC Status Register Bit Masks (1F7h) */

#define BUSY 0x80 /* busy.. can’t talk now! */
#define READY 0x40 /* Drive Ready */
#define WRITE_FAULT 0x20 /* Bad news */
#define SEEKOK 0x10 /* Seek Complete */
#define DATA_REQ 0x08 /* Sector buffer needs servicing */
#define CORRECTED 0x04 /* ECC corrected data was read */
#define REV_INDEX 0x02 /* Set once each disk revolution */
#define ERROR 0x01 /* data address mark not found */

/* HDC Error Register Bit Masks (1F1h) */

#define BAD_SECTOR 0x80 /* bad block */
#define BAD_ECC 0x40 /* bad data ecc */
#define BAD_IDMARK 0x10 /* id not found */
#define BAD_CMD 0x04 /* aborted command */
#define BAD_SEEK 0x02 /* trk 0 not found on recalibrate, or bad seek */
#define BAD_ADDRESS 0x01 /* data address mark not found */

/* HDC internal command bytes (HDC_Cmd[7]) */

#define HDC_RECAL 0x10 /* 0001 0000 */
#define HDC_READ 0x20 /* 0010 0000 */
#define HDC_READ_LONG 0x22 /* 0010 0010 */
#define HDC_WRITE 0x30 /* 0011 0000 */
#define HDC_WRITE_LONG 0x32 /* 0011 0010 */
#define HDC_VERIFY 0x40 /* 0100 0000 */
#define HDC_FORMAT 0x50 /* 0101 0000 */
#define HDC_SEEK 0x70 /* 0111 0000 */
#define HDC_DIAG 0x90 /* 1001 0000 */
#define HDC_SET_PARAMS 0x91 /* 1001 0001 */

MMURTL V1.0 Page 463 of 667

You may notice that I don’t initialize any variables in structures because that would place them in
a different place in the data segment. If I did one member, I would have to do them all to ensure
they would be contiguous. The operating system requires the DCB and status record field to be
contiguous in memory. See listing 24.3.

Listing 24.3 - Continuation of IDE Driver Data (data structures)

/* L O C A L D A T A */

static U8 hd_Cmd[8]; /* For all 8 command bytes */

static U8 fDataReq; /* Flag to indicate is fDataRequest is active */
static U8 statbyte; /* From HDC status register last time it was read
*/

static U8 hd_control; /* Current control byte value */
static U8 hd_command; /* Current Command */
static U8 hd_drive; /* Current Physical Drive, 0 or 1 */
static U8 hd_head; /* Calculated from LBA - which head */
static U8 hd_nsectors; /* Calculated from LBA - n sectors to read/write */
static U8 hd_sector; /* Calculated from LBA - Starting sector */

/* Current type drive 0 & 1 found in CMOS or Set by caller. */
/* Current number of heads, cylinders, and sectors set by caller */

static U8 hd0_type;
static U8 hd0_heads;
static U8 hd0_secpertrk;
static U16 hd0_cyls;

static U8 hd1_type;
static U8 hd1_heads;
static U8 hd1_secpertrk;
static U16 hd1_cyls;

#define sStatus 64

static struct statstruct
 {
 U32 erc;
 U32 blocks_done;
 U32 BlocksMax;
 U8 fNewMedia;
 U8 type_now; /* current fdisk_table for drive selected */
 U8 resvd0[2]; /* padding for DWord align */
 U32 nCyl; /* total physical cylinders */
 U32 nHead; /* total heads on device */
 U32 nSectors; /* Sectors per track */
 U32 nBPS; /* Number of bytes per sect. 32 bytes out to here.*/

 U32 LastRecalErc0;
 U32 LastSeekErc0;

MMURTL V1.0 Page 464 of 667

 U8 LastStatByte0;
 U8 LastErcByte0;
 U8 fIntOnReset; /* Interrupt was received on HDC_RESET */
 U8 filler0;

 U32 LastRecalErc1;
 U32 LastSeekErc1;
 U8 LastStatByte1;
 U8 LastErcByte1;
 U8 ResetStatByte; /* Status Byte immediately after RESET */
 U8 filler1;

 U32 resvd1[2]; /* out to 64 bytes */
 };

static struct statstruct hdstatus;
static struct statstruct HDStatTmp;

static struct dcbtype
{
 S8 Name[12];
 S8 sbName;
 S8 type;
 S16 nBPB;
 U32 last_erc;
 U32 nBlocks;
 S8 *pDevOp;
 S8 *pDevInit;
 S8 *pDevSt;
 U8 fDevReent;
 U8 fSingleUser;
 S16 wJob;
 U32 OS1;
 U32 OS2;
 U32 OS3;
 U32 OS4;
 U32 OS5;
 U32 OS6;
 };

static struct dcbtype hdcb[2]; /* two HD device control blocks */

/* Exch and msgs space for HD ISR */

static U32 hd_exch;

static U32 hd_msg;
static U32 hd_msg2;

static long HDDInt;

The hdisk_setup() function is called from the monitor to initialize the driver. In a loadable
driver, this would be the main() section of the C source file. See listing 24.4.

MMURTL V1.0 Page 465 of 667

Listing 24.4 - IDE Device Driver Code (Initialization)

U32 hdisk_setup(void)
{
U32 erc;

 /* first we set up the 2 DCBs in anticipation of calling InitDevDr */

 hdcb[0].Name[0] = ’H’;
 hdcb[0].Name[1] = ’D’;
 hdcb[0].Name[2] = ’0’;
 hdcb[0].sbName = 3;
 hdcb[0].type = 1; /* Random */
 hdcb[0].nBPB = 512;
 hdcb[0].nBlocks = 524288; /* largest disk handled - 2Gb disks*/
 hdcb[0].pDevOp = &hddev_op;
 hdcb[0].pDevInit = &hddev_init;
 hdcb[0].pDevSt = &hddev_stat;

 hdcb[1].Name[0] = ’H’;
 hdcb[1].Name[1] = ’D’;
 hdcb[1].Name[2] = ’1’;
 hdcb[1].sbName = 3;
 hdcb[1].type = 1; /* Random */
 hdcb[1].nBPB = 512;
 hdcb[1].nBlocks = 524288; /* largest device handled - 2Gb disks*/
 hdcb[1].pDevOp = &hddev_op;
 hdcb[1].pDevInit = &hddev_init;
 hdcb[1].pDevSt = &hddev_stat;

/* These are defaulted to non zero values to
 ensure we don’t get a divide by zero during initial calculations
 on the first read.
*/

 hd0_type = ReadCMOS(0x19); /* read this but don’t use it */
 hd0_heads = 16; /* Max */
 hd0_secpertrk = 17; /* most common */
 hd0_cyls = 1024; /* Max */

 hd1_type = ReadCMOS(0x1A);
 hd1_heads = 16;
 hd1_secpertrk = 17;
 hd1_cyls = 1024;

 erc = AllocExch(&hd_exch); /* Exhange for HD Task to use */

 SetIRQVector(14, &hdisk_isr);
 UnMaskIRQ(14);

/* Documentation lists the fixed disk types at CMOS 11h and 12h,
 and also shows them at 19h and 1Ah. We don’t actually read them
 because they are not dependable. They vary from BIOS to BIOS.
 We have to make this sucker work the hard way.
*/

MMURTL V1.0 Page 466 of 667

/* Reset the HDC - hd_reset resets the controller (which controlls
 both drives). We have to do it once, then try both physical drives.
 If the second drive is not there, some controllers will lock-up
 (the el-cheapos). In this case we have to reset it again so it
 will work. It seems like a lot of work, but to make it function
 with the widest range of IDE and MFM controllers this is the
 only way I have found that works.
*/

 hd_reset(); /* no error is returned */

/* Now we attempt to select and recal both drives.
 The driver MUST be able to recal the first physical drive
 or the Driver won’t inititalize.
*/

 erc = hd_recal(0); /* try to recal */
 if (erc)
 { /* try one more time! */
 hd_reset();
 erc = hd_recal(0); /* try to recal */
 if (erc)
 {
 hdcb[0].last_erc = erc;
 hd0_type = 0; /* Must not be a valid drive */
 return(ErcNoDrive0);
 }
 }

 /* if we got here, drive 0 looks OK and the controller is
 functioning. Now we try drive 1 if type > 0.
 */

 if (hd1_type)
 {
 erc = hd_recal(1); /* try to recal if CMOS says it’s there */
 if (erc)
 {
 hdcb[1].last_erc = erc;
 hd1_type = 0; /* Guess it’s not a valid drive */

 if (!erc)

 /* We must redo drive 0 cause some cheap controllers lockup
 on us if drive 1 is not there. They SHOULD simply return
 a Bad Command bit set in the Error register, but they don’t. */

 hd_reset();
 erc = hd_recal(0); /* recal drive 0 */
 hdcb[0].last_erc = erc;
 }
 }

 return(erc = InitDevDr(12, &hdcb, 2, 1));

}

MMURTL V1.0 Page 467 of 667

/**
 Reset the HD controller. This should only be called by
 DeviceInit or hdisk_setup. This resets the controller
 and reloads parameters for both drives (if present) and
 attempts to recal them.
***/

static void hd_reset(void)
{
U32 i;
 UnMaskIRQ(14); /* enable the IRQ */
 OutByte(4, HD_REG_PORT); /* reset the controller */
 MicroDelay(4); /* Delay 60us */

 /* bit 3 of HD_REG must be 1 for access to heads 8-15 */
 /* Clear "MUCHO" heads bit, and clear the reset bit */

 OutByte(hd_control & 0x0f, HD_REG_PORT);

 Sleep(20); /* 200ms - seems some controllers are SLOW!! */
 i = CheckMsg(hd_exch, &hd_msg); /* Eat Int if one came back */

 hdstatus.ResetStatByte = statbyte; /* The ISR gets statbyte */

 if (i) hdstatus.fIntOnReset = 1;
 else hdstatus.fIntOnReset = 0;

}

/***
 The ISR is VERY simple. It just waits for an interrupt, gets
 the single status byte from the controller (which clears the
 interrupt condition) then sends an empty message to the
 exchange where the HD Driver task will be waiting.
 This tells the HD task currently running that it’s got
 some status to act on!
**/
static void interrupt hdisk_isr(void)
{
 statbyte = InByte(HD_PORT+7);
 HDDInt = 1;
 ISendMsg(hd_exch, 0xfffffff0, 0xfffffff0);
 EndOfIRQ(14);
}

/***
 This checks the HDC controller to see if it’s busy so we can
 send it commands or read the rest of the registers.
 We will wait up to 3 seconds then error out.
 The caller should call check_busy and check the error.
 If it’s 0 then the controller became ready in less than
 3 seconds. ErcNotReady will be returned otherwise.
 It leaves the status byte in the global statbyte.
**/

static U32 check_busy(void)

MMURTL V1.0 Page 468 of 667

{
S16 count;

 count = 0;
 while (count++ < 60)
 {
 statbyte = InByte(HD_PORT+7);
 if ((statbyte & BUSY) == 0) return(ok);
 Sleep(5); /* 50ms shots */
 }
 return(ErcNotReady); /* controller out to lunch! */
}

/***
 This sends the SetParams command to the controller to set
 up the drive geometry (nHeads, nSectors, etc.).
**/

static U32 hd_init(U8 drive)
{
U32 erc;
 /* set max heads, sectors and cylinders */
 if (drive == 0)
 { /* Drive 0 */
 hd_Cmd[2] = hd0_secpertrk; /* sector count */
 hd_Cmd[6] = (drive << 4) | ((hd0_heads-1) & 0x0f) | 0xa0; /* hds & drv */
 }
 else
 { /* Drive 1 */
 hd_Cmd[2] = hd1_secpertrk; /* sector count */
 hd_Cmd[6] = (drive << 4) | ((hd1_heads-1) & 0x0f) | 0xa0; /* hds & drv */
 }
 hd_Cmd[1] = 0;
 hd_Cmd[3] = 0;
 hd_Cmd[4] = 0; /* cyl = 0 for init */
 hd_Cmd[5] = 0; /* cyl = 0 for init */

 erc = send_command(HDC_SET_PARAMS); /* Send the command */
 erc = hd_wait(); /* wait for interrupt */
 if (!erc)
 erc = hd_status(HDC_SET_PARAMS);
 return(erc);
}

The hd_wait() function has a good example of using the Alarm() function. You expect the hard
disk controller to come back in a short period of time by sending us a message from the ISR. We
also set the Alarm() function so we get a message at that exchange, even if the controller goes
into Never-Never land. See listing 24.5.

Listing 24.5 - Continuation of IDE Driver Code (code)

MMURTL V1.0 Page 469 of 667

/**
Wait for the hardware interrupt to occur.
Time-out and return if no interrupt.
**/

static U32 hd_wait(void)
{
U32 erc;

 /* Set alarm for 3 seconds */

 HDDInt = 0;
 KillAlarm(hd_exch); /* kill any pending alarm */

 erc = Alarm(hd_exch, 300); /* Set it up again */
 if (erc)
 return(erc); /* bad problem */

 erc = WaitMsg(hd_exch, &hd_msg);

 KillAlarm(hd_exch);

 if (hd_msg != 0xfffffff0)
 { /* HD interrupt sends fffffff0 */
 if (HDDInt)
 return(ErcMissHDDInt);
 else
 return(ErcHDCTimeOut); /* Alarm sends 0xffffffff */
 }
 else
 {
 KillAlarm(hd_exch);
 return(ok);
 }
}

/**
 Recalibrate the drive.
***/

static U32 hd_recal(U8 drive)
{
U32 erc;

 hd_Cmd[6] = (drive << 4) | (hd_head & 0x0f) | 0xa0;
 erc = send_command(HDC_RECAL);
 if (!erc)
 erc = hd_wait(); /* wait for interrupt */
 if (!erc)
 erc = hd_status(HDC_RECAL);
 if (drive)
 hdstatus.LastRecalErc1 = erc;
 else
 hdstatus.LastRecalErc0 = erc;
 return(erc);
}

MMURTL V1.0 Page 470 of 667

/**
 Send the command to the controller.
 Clear the Echange of any left over
 alarm or int messages before we
 send a command.
***/

static U32 send_command(U8 Cmd)
{
U32 erc, msg[2];

 while (CheckMsg(hd_exch, &msg) == 0); /* Empty it */

 /* bit 3 of HD_REG must be 1 for access to heads 8-15 */
 if (hd_head > 7)
 {
 hd_control |= 0x08;
 OutByte(hd_control, HD_REG_PORT); /* set bit for head > 7 */
 hd_control &= 0xf7;
 }
 erc = check_busy();
 if (!erc) OutByte(hd_Cmd[1], HD_PORT+1);
 if (!erc) erc = check_busy();
 if (!erc) OutByte(hd_Cmd[2], HD_PORT+2);
 if (!erc) erc = check_busy();
 if (!erc) OutByte(hd_Cmd[3], HD_PORT+3);
 if (!erc) erc = check_busy();
 if (!erc) OutByte(hd_Cmd[4], HD_PORT+4);
 if (!erc) erc = check_busy();
 if (!erc) OutByte(hd_Cmd[5], HD_PORT+5);
 if (!erc) erc = check_busy();
 if (!erc) OutByte(hd_Cmd[6], HD_PORT+6);
 if (!erc) erc = check_busy();
 if (!erc) OutByte(Cmd, HD_PORT+7);
 return(erc);
}

/***
 This sets up the cylinder, head and sector variables for all
 commands that require them (read, write, verify, format, seek).
 nBlks ca NOT be greater than the hardware can handle. For
 IDE/MFM controllers this is 128 sectors.
 The caculated values are placed in the proper command byte
 in anticipation of the command being sent.
***/

static U32 setupseek(U32 dLBA, U32 nBlks)
{
 U32 j;
 U16 cyl;

 if (nBlks > 256) return ErcTooManyBlks;
 if (nBlks == 0) return ErcZeroBlks;

 hd_nsectors = nBlks;
 if (hd_nsectors == 256) hd_nsectors = 0; /* 0==256 for controller */

MMURTL V1.0 Page 471 of 667

 if (hd_drive == 0)
 { /* drive 0 */

 cyl = dLBA / (hd0_heads * hd0_secpertrk);
 j = dLBA % (hd0_heads * hd0_secpertrk); /* remainder */

 /* we now know what cylinder, calculate head and sector */

 hd_head = j / hd0_secpertrk;
 hd_sector = j % hd0_secpertrk + 1; /* sector number start at 1 !!! */

 }
 else
 { /* drive 1 */

 cyl = dLBA / (hd1_heads * hd1_secpertrk);
 j = dLBA % (hd1_heads * hd1_secpertrk); /* remainder */

 /* We now know what cylinder. Calculate head and sector */

 hd_head = j / hd1_secpertrk;
 hd_sector = j % hd1_secpertrk + 1; /* sector number start at 1 !!! */
 }

 hd_Cmd[2] = nBlks; /* How many sectors */
 hd_Cmd[3] = hd_sector; /* Which sector to start on */
 hd_Cmd[4] = cyl & 0xff; /* cylinder lobyte */
 hd_Cmd[5] = (cyl >> 8) & 0xff; /* cylinder hibyte */
 hd_Cmd[6] = (hd_drive << 4) | (hd_head & 0x0f) | 0xa0;

 return ok;
}

/***
 Move the head to the selected track (cylinder).
***/

static U32 hd_seek(U32 dLBA)
{
U32 erc;

 erc = setupseek(dLBA, 1); /* sets up for implied seek */
 if (!erc) erc = send_command(HDC_SEEK); /* Not implied anymore... */
 if (!erc) erc = hd_wait(); /* wait for interrupt */
 if (!erc) erc = hd_status(HDC_SEEK);
 hdstatus.LastSeekErc0 = erc;
 return(erc);
}

/***
 Called to read status and errors from the controller
 after an interrupt generated by a command we sent.
 The error checking is based on the command that we sent.
 This is done because certain bits in the status and error

MMURTL V1.0 Page 472 of 667

 registers are actually not errors, but simply indicate
 status or indicate an action we must take next.
 ZERO returned indicates no errors for the command status
 we are checking.
***/

static U32 hd_status(U8 LastCmd)
{
U32 erc;
U8 statbyte, errbyte;

 /* We shouldn’t see the controller busy. After all,
 he interrupted us with status.
 */

 erc = check_busy(); /* puts status byte into global StatByte */
 if (!erc)
 statbyte = InByte(HD_PORT+7);
 else return(erc);

 if (hd_drive)
 hdstatus.LastStatByte1 = statbyte;
 else
 hdstatus.LastStatByte0 = statbyte;

 if ((statbyte & ERROR) == 0)
 { /* Error bit not set in status reg */
 erc = ok; /* default */

 switch (LastCmd)
 {
 case HDC_READ:
 case HDC_READ_LONG:
 case HDC_WRITE:
 case HDC_WRITE_LONG:
 case HDC_SEEK:
 case HDC_RECAL:
 if (statbyte & WRITE_FAULT) erc = ErcWriteFault;
 else
 if ((statbyte & SEEKOK) == 0) erc = ErcBadSeek;
 break;
 case HDC_SET_PARAMS:
 case HDC_VERIFY:
 case HDC_FORMAT:
 case HDC_DIAG:
 break;
 default:
 break;
 }
 return(erc);
 }
 else
 {
 erc = check_busy();
 if (!erc)
 errbyte = InByte(HD_PORT+1);
 else return(erc);

MMURTL V1.0 Page 473 of 667

 if (hd_drive)
 hdstatus.LastErcByte1 = errbyte;
 else
 hdstatus.LastErcByte0 = errbyte;

 if (errbyte & BAD_ADDRESS) erc = ErcAddrMark;
 else if (errbyte & BAD_SEEK) erc = ErcBadSeek;
 else if (errbyte & BAD_CMD) erc = ErcBadCmd;
 else if (errbyte & BAD_IDMARK) erc = ErcSectNotFound;
 else if (errbyte & BAD_ECC) erc = ErcBadECC;
 else if (errbyte & BAD_SECTOR) erc = ErcBadBlock;
 else erc = ErcBadHDC; /* no error bits found but should have been! */
 }
 return erc;
}

/***
 This is called for the DeviceOp code Read.
 This reads 1 or more whole sectors from the calculated values
 in hd_head, hd_sector, and hd_cyl
***/

static U32 hd_read(U32 dLBA, U32 dnBlocks, U8 *pDataRet)
{
U32 erc, nleft, nBPS;

 nBPS = hdcb[hd_drive].nBPB; /* From nBytesPerBlock in DCB */
 nleft = dnBlocks;
 erc = setupseek(dLBA, dnBlocks); /* sets up for implied seek */
 if (!erc) erc = send_command(HDC_READ);

 while ((nleft) && (!erc))
 {
 erc = hd_wait(); /* wait for interrupt */
 if (!erc)
 erc = hd_status(HDC_READ);
 if (!erc) /* && (statbyte & DATA_REQ)) */
 {
 InWords(HD_PORT, pDataRet, nBPS);
 pDataRet+=nBPS;
 --nleft;
 }
 }
 return(erc);
}

/***
 This is called for the DeviceOp code Write.
 This writes 1 or more whole sectors from the calculated values
 in hd_head, hd_sector, and hd_cyl
***/

static U32 hd_write(U32 dLBA, U32 dnBlocks, U8 *pDataOut)
{
U32 erc, nSoFar, nBPS;

MMURTL V1.0 Page 474 of 667

 nBPS = hdcb[hd_drive].nBPB; /* From n BytesPerBlock in DCB */
 nSoFar = 0;
 erc = setupseek(dLBA, dnBlocks); /* sets up for implied seek */
 erc = send_command(HDC_WRITE);
 erc = check_busy(); /* No INT occurs for first sector of write */

 if ((!erc) && (statbyte & DATA_REQ))
 {
 OutWords(HD_PORT, pDataOut, nBPS);
 pDataOut+=nBPS;
 nSoFar++;
 }

 while ((nSoFar < dnBlocks) && (erc==ok))
 {
 erc = hd_wait(); /* wait for interrupt */
 if (erc==ok) erc = hd_status(HDC_WRITE);
 if ((erc==ok) && (statbyte & DATA_REQ))
 {
 OutWords(HD_PORT, pDataOut, nBPS);
 pDataOut+=nBPS;
 nSoFar++;
 }
 }
 if (!erc) erc = hd_wait(); /* wait for final interrupt */
 if (!erc) erc = hd_status(HDC_WRITE);

 return(erc);
}

/***
 This formats the track beginning at the block address given
 in dLBA. dLBA must always be a multiple of the number of
 sectors per track minus 1 for the disk type.
***/

static U32 hd_format_track(U32 dLBA, U32 dnBlocks)
{
U32 erc;
 erc = setupseek(dLBA, dnBlocks); /* sets up for implied seek */
 erc = send_command(HDC_FORMAT);
 erc = hd_wait(); /* wait for interrupt */
 if (erc==ok)
 erc = hd_status(HDC_FORMAT);
 return(erc);
}

/**
 ReadSector is the only device specific call in the IDE/MFM hard
 disk device driver. This allows you to read ONE sector
 specified by Cylinder, head and Sector number.
 Cylinder is LoWord of dLBA in DeviceOp call,
 Head is LoWord of dnBlocks in DeviceOp call, and
 Sector number is HiWord in dnBlocks.
***/

MMURTL V1.0 Page 475 of 667

static U32 ReadSector(U32 Cylinder, U32 HdSect, U8 *pDataRet)
{
U32 erc;
U16 cyl;

 cyl = Cylinder;
 hd_head = HdSect & 0xffff;
 hd_sector = (HdSect >> 16) & 0xffff;

/* For testing
 xprintf("\r\nCYL %d, HD %d, SEC %d\r\n", cyl, hd_head, hd_sector);
*/

 hd_Cmd[2] = 1; /* How many sectors */
 hd_Cmd[3] = hd_sector; /* Which sector to start on */
 hd_Cmd[4] = cyl & 0xff; /* cylinder lobyte */
 hd_Cmd[5] = (cyl >> 8) & 0xff; /* cylinder hibyte */
 hd_Cmd[6] = (hd_drive << 4) | (hd_head & 0x0f) | 0xa0;

 erc = send_command(HDC_READ);
 erc = hd_wait(); /* wait for interrupt */
 if (!erc) erc = hd_status(HDC_READ);
 if (!erc)
 InWords(HD_PORT, pDataRet, 512);
 return(erc);
}

Chapter 8, “Programming Interfaces,” discussed device driver interfaces; there I provided an
overview of MMURTL's device driver interface. The three calls that all MMURTL device
drivers must provide are next. See listing 24.6.

Listing 24.6 - Continuation of IDE Driver Code (Device Interface)

/**
Called for all device operations. This
assigns physical device from logical number
that outside callers use. For Hard disk,
12=0 and 13=1. This will check to make sure a
drive type is assigned and check to see if
they are going to exceed max logical blocks.
***/

static U32 hddev_op(U32 dDevice,
 U32 dOpNum,
 U32 dLBA,
 U32 dnBlocks,
 U8 *pData)
{
U32 erc;

 hdstatus.blocks_done = 0; /* Reset values in Status record */

MMURTL V1.0 Page 476 of 667

 erc = 0;

 /* Set drive internal drive number */

 if (dDevice == 12)
 hd_drive = 0;
 else
 hd_drive = 1;

 /* Check to see if we have a leftover interrupt message from last
 command. If so then we eat it (and do nothing) */

 CheckMsg(hd_exch, &hd_msg); /* Ignore error */

 if (hd_drive==0)
 {
 if (hd0_type==0)
 erc = ErcInvalidDrive;
 }
 else
 {
 if (hd1_type==0)
 erc = ErcInvalidDrive;
 }

 /* make sure they don’t exceed max blocks */

 if (!erc)
 if (dLBA > hdcb[hd_drive].nBlocks) erc = ErcBadLBA;

 if (!erc)
 {

 switch(dOpNum)
 {
 case(CmdNull):
 erc = ok; /* Null Command */
 break;
 case(CmdRead): /* Read */
 erc = hd_read(dLBA, dnBlocks, pData);
 break;
 case(CmdWrite): /* Write */
 erc = hd_write(dLBA, dnBlocks, pData);
 break;
 case(CmdVerify): /* Verify */
 erc = ErcNotSupported;

 /* hd_verify is not supported in this version of the driver */
 /* erc = hd_verify(dLBA, dnBlocks, pData); */
 break;
 case(CmdSeekTrk): /* Seek Track */
 erc = hd_seek(dLBA);
 break;
 case(CmdFmtTrk): /* Format Track */
 erc = hd_format_track(dLBA, dnBlocks);
 break;
 case(CmdResetHdw): /* Reset Ctrlr */

MMURTL V1.0 Page 477 of 667

 hd_reset();
 erc = 0;
 break;
 case(CmdReadSect): /* Read Sector(s) */
 erc = ReadSector(dLBA, dnBlocks, pData);
 break;
 default:
 erc = ErcBadOp;
 break;
 }
 }
 hdcb[hd_drive].last_erc = erc; /* update DCB erc */
 return(erc);
}

/**
Called for indepth status report on ctrlr
and drive specified. Returns 64 byte block
of data including current drive geometery.
This is called by the PUBLIC call DeviceStat!
***/

static U32 hddev_stat(U32 dDevice,
 S8 * pStatRet,
 U32 dStatusMax,
 U32 *pdStatusRet)
{
U32 i;

 /* Set status for proper device */

 if (dDevice == 12)
 {
 hdstatus.erc = hdcb[0].last_erc;
 hdstatus.type_now = hd0_type;
 hdstatus.nCyl = hd0_cyls;
 hdstatus.nHead = hd0_heads;
 hdstatus.nSectors = hd0_secpertrk;
 hdstatus.nBPS = hdcb[0].nBPB;
 }
 else
 {
 hdstatus.erc = hdcb[1].last_erc;
 hdstatus.type_now = hd1_type;
 hdstatus.nCyl = hd1_cyls;
 hdstatus.nHead = hd1_heads;
 hdstatus.nSectors = hd1_secpertrk;
 hdstatus.nBPS = hdcb[1].nBPB;
 }

 /* Calculate size of status to return. Return no more than asked for! */

 if (dStatusMax <= sStatus) i = dStatusMax;
 else i = sStatus;

 CopyData(&hdstatus, pStatRet, i); /* copy to their status block */

MMURTL V1.0 Page 478 of 667

 pdStatusRet = i; / tell em how much it was */

 return ok;
}

/**
Called to reset the hard disk controller
and set drive parameters. The Initdata
is a copy of the 64 byte status block
that is read from status. The caller
normally reads the block (DeviceStat),
makes changes to certain fields and
calls DeviceInit pointing to the block
for the changes to take effect.
This should ONLY be called once for each HD
to set it’s parameters before it is used
the first time after the driver is loaded,
or after a fatal error is received that
indicates the controller may need to be
reset (multiple timeouts etc.).
The DCB values are updated if this is
successful.
This is called by the PUBLIC call DeviceInit.
***/

static U32 hddev_init(U32 dDevice,
 S8 *pInitData,
 U32 sdInitData)

{
U32 erc, i;

 erc = 0;

 /* Read the init status block in */

 if (sdInitData > sStatus) i = sStatus; /* no more than 64 bytes! */
 else i = sdInitData;

 CopyData(pInitData, &HDStatTmp, i); /* copy in their init data */

 /* Set internal drive number */
 if (dDevice == 12) hd_drive=0;
 else hd_drive = 1;

 if (hd_drive==0)
 {
 hd0_type = HDStatTmp.type_now;
 if (hd0_type)
 {
 hd0_cyls = HDStatTmp.nCyl;
 hd0_heads = HDStatTmp.nHead;
 hd0_secpertrk = HDStatTmp.nSectors;
 }
 else erc = ErcInvalidDrive;
 }
 else

MMURTL V1.0 Page 479 of 667

 {
 hd1_type = HDStatTmp.type_now;
 if (hd1_type)
 {
 hd1_cyls = HDStatTmp.nCyl;
 hd1_heads = HDStatTmp.nHead;
 hd1_secpertrk = HDStatTmp.nSectors;
 }
 else erc = ErcInvalidDrive;
 }

/* If no error, initialize it and recal */

 if (!erc) erc = hd_init(hd_drive);
 if (!erc) erc = hd_recal(hd_drive);

/* If no error, update corresponding DCB values */

 if (!erc)
 {
 hdcb[hd_drive].nBPB = HDStatTmp.nBPS;
 hdcb[hd_drive].last_erc = 0;
 hdcb[hd_drive].nBlocks =
 HDStatTmp.nCyl * HDStatTmp.nSectors * HDStatTmp.nHead;
 }

 hdcb[hd_drive].last_erc = erc; /* update DCB erc */

 return(erc);
}

The RS-232 Asynchronous Device Driver

The RS-232 driver is designed to drive two channels with 8250, 16450, or 16550 UARTs. It
needs more work, such as complete flow control for XON/XOFF and CTS/RTS; but, other than
that, it is a fully functional driver.

You may notice the differences between the IDE driver, which is a block oriented random
device, and this driver, which is a sequential byte-oriented device. They are two different
animals with the same basic interface.

Unlike the IDE disk device driver, a header file is included in the RS232 driver source file. This
header file was also designed to be used by programs that use the driver, as well as by the driver
itself. This same header file is used in the sample communications program in chapter 16,
“MMURTL Sample Software.”

The header file defines certain parameters to functions, as well as explaining all the error or
status codes that the driver will return.

The C structure for the status record is also defined here and will be needed to initialize, as well
as status, the driver. See listing 24.7.

MMURTL V1.0 Page 480 of 667

Listing 24.7 - RS-232.h Header File

#define MIN_BAUD 150L
#define MAX_BAUD 38400L
#define NO_PAR 0
#define EV_PAR 1
#define OD_PAR 2

#define ErcRecvTimeout 800 /* Recv Buffer Empty */
#define ErcXmitTimeout 801 /* Xmit Buffer never Emptied */
#define ErcRcvBufOvr 802 /* Receive buffer overrun */
#define ErcBadPort 803 /* Invalid port on OpenCommC */
#define ErcRcvBufOvr 805 /* Buffer full!!! */
#define ErcNotOpen 807 /* Channel not open... */
#define ErcChannelOpen 809 /* It’s already open... */
#define ErcNotOwner 812 /* It’s opened by someone else... */
#define ErcBadBaud 820 /* 150-38400 */
#define ErcBadParity 821 /* 0, 1 or 2 */
#define ErcBadDataBits 822 /* Must be 5-8 */
#define ErcBadStopBits 823 /* Must be 1 or 2 */
#define ErcBadIOBase 824 /* if 0 */
#define ErcBadCommIRQ 825 /* < 3 */
#define ErcBadInitSize 827 /* At least 40 bytes for this version */

struct statRecC{
 unsigned long commJob; /* Owner of this comms port, 0 for not in use */
 unsigned long LastErc; /* Result of last device operation */
 unsigned long LastTotal; /* Total bytes moved in last operation */
 unsigned long Baudrate; /* Baudrate for this port, 150 - 38400 */
 unsigned char parity; /* Parity for this port, 0=none, 1=even, 2=odd */
 unsigned char databits; /* nDatabits for this port, 5-8 */
 unsigned char stopbits; /* stop bits for this port, 1 or 2 */
 unsigned char IRQNum; /* IRQNum for this channel */
 unsigned long IOBase; /* IO base address for hardware */
 unsigned long XBufSize; /* Size of Xmit buffer */
 unsigned long RBufSize; /* Size of Recv Buffer */
 unsigned long XTimeOut; /* Xmit Timeout in 10ms increments */
 unsigned long RTimeOut; /* Recv Timeout in 10ms increments */
 unsigned long resvd[6]; /* out to 64 bytes */
 };

/* Device Driver interface commands (Op numbers) */

#define CmdReadRec 1 /* Read one or more bytes */
#define CmdWriteRec 2 /* Write one or more bytes */
#define CmdOpenC 10 /* Open Comm Channel */
#define CmdCloseC 11 /* Close Comm Channel */
#define CmdDiscardRcv 12 /* Trash input buffer */
#define CmdSetRTO 13 /* Set Recv timeout 10ms incs in dLBA */
#define CmdSetXTO 14 /* Set Xmit timeout 10ms incs in dLBA */
#define CmdSetDTR 15 /* Set DTR (On) */
#define CmdSetRTS 16 /* Set CTS (On) */
#define CmdReSetDTR 17 /* Set DTR (On) */

MMURTL V1.0 Page 481 of 667

#define CmdReSetRTS 18 /* Set CTS (On) */
#define CmdBreak 19 /* Send BREAK (10ms incs in dLBA) */
#define CmdGetDC 20 /* Returns byte TRUE to pData if CD ON */
#define CmdGetDSR 21 /* Returns byte TRUE to pData if DSR ON */
#define CmdGetCTS 22 /* Returns byte TRUE to pData if CTS ON */
#define CmdGetRI 23 /* Returns byte TRUE to pData if RI ON */
#define CmdReadB 31 /* Recv a single byte */
#define CmdWriteB 32 /* Xmit a single byte */

Once again, you will notice the shorthand for the rather lengthy C-type declarations. Further
down in the file you will notice that commands are defined 1 though 32. The only commands
that are shared with the default command number are reading and writing blocks of data
(command 1 and 2). All other command are specific to this driver. See listing 24.8.

Listing 24.8 - RS-232 Device Driver Code (defines and externs)

#define U32 unsigned long
#define S32 long
#define U16 unsigned int
#define S16 int
#define U8 unsigned char
#define S8 char
#define TRUE 1
#define FALSE 0

#include "RS232.h"

/* MMURTL OS Prototypes */

extern far U32 AllocExch(U32 *pExchRet);

extern far U32 InitDevDr(U32 dDevNum,
 S8 *pDCBs,
 U32 nDevices,
 U32 dfReplace);

extern far U32 AllocOSPage(U32 nPages, U8 **ppMemRet);
extern far U32 DeAllocPage(U8 *pOrigMem, U32 nPages);

extern far U32 UnMaskIRQ(U32 IRQNum);
extern far U32 MaskIRQ(U32 IRQNum);
extern far U32 SetIRQVector(U32 IRQNum, S8 *pIRQ);
extern far U32 EndOfIRQ(U32 IRQNum);
extern far U32 SendMsg(U32 Exch, U32 msg1, U32 msg2);
extern far U32 ISendMsg(U32 Exch, U32 msg1, U32 msg2);
extern far U32 WaitMsg(U32 Exch, S8 *pMsgRet);
extern far U32 CheckMsg(U32 Exch, S8 *pMsgRet);
extern far U32 GetTimerTick(U32 *pTickRet);
extern far U32 Alarm(U32 Exch, U32 count);
extern far U32 KillAlarm(U32 Exch);

MMURTL V1.0 Page 482 of 667

extern far U32 Sleep(U32 count);
extern far void MicroDelay(U32 us15count);
extern far void OutByte(U8 Byte, U16 wPort);
extern far U8 InByte(U16 wPort);
extern far void CopyData(U8 *pSource, U8 *pDestination, U32 dBytes);

extern far long GetJobNum(long *pJobNumRet);

/* local prototypes. These will be called form the device driver interface.
*/

static U32 comdev_stat(U32 dDevice,
 S8 *pStatRet,
 U32 dStatusMax,
 U32 *pdStatusRet);

static S32 comdev_init(U32 dDevice,
 S8 *pInitData,
 U32 sdInitData);

static U32 comdev_op(U32 dDevice,
 U32 dOpNum,
 U32 dLBA,
 U32 dnBlocks,
 U8 *pData);

#define CmdReadRec 1 /* Read one or more bytes */
#define CmdWriteRec 2 /* Write one or more bytes */

#define CmdOpenC 10 /* Open Comm Channel */
#define CmdCloseC 11 /* Close Comm Channel */
#define CmdDiscardRcv 12
#define CmdSetRTO 13
#define CmdSetXTO 14
#define CmdSetDTR 15 /* Set DTR (On) */
#define CmdSetRTS 16 /* Set CTS (On) */
#define CmdReSetDTR 17 /* Set DTR (On) */
#define CmdReSetRTS 18 /* Set CTS (On) */
#define CmdBreak 19
#define CmdGetDC 20
#define CmdGetDSR 21
#define CmdGetCTS 22
#define CmdGetRI 23

#define CmdReadB 31
#define CmdWriteB 32

/* The following definitions are used to identify, set
 and reset signal line condition and functions.
*/

#define CTS 0x10 /* Clear To Send */
#define DSR 0x20 /* Data Set Ready */
#define RI 0x40 /* Ring Indicator */
#define CD 0x80 /* Carrier Detect */

MMURTL V1.0 Page 483 of 667

#define DTR 0x01 /* Data Terminal Ready */
#define RTS 0x02 /* Request To Send */
#define OUT2 0x08 /* Not used */

/* Values from IIR register */

#define MDMSTAT 0x00
#define NOINT 0x01
#define TXEMPTY 0x02
#define RVCDATA 0x04
#define RCVSTAT 0x06

/* For errors returned from Comms calls see COMMDRV.H */

#define SSENDBUF 4096 /* 1 Page Send Buf Default */
#define SRECVBUF 4096 /* 1 Page Recv Buf Default */

static U32 recv_timeout[2] = 1; /* 10ms intervals */
static U32 xmit_timeout[2] = 10; /* 10ms intervals */

/* variables for ISRs */

static U8 f16550[2];
static U8 stat_byte[2];
static U8 mstat_byte[2];
static U8 int_id[2];
static U8 fExpectInt[2];

static U32 recv_error[2]; /* NON-ZERO = an error has occurred */

static U8 *pSendBuf[2]; /* pointers to Xmit bufs */
static U32 head_send[2]; /* Next char to send */
static U32 tail_send[2]; /* Where next char goes in buf */
static U32 cSendBuf[2]; /* Count of bytes in buf */
static U32 sSendBuf[2]; /* Size of buffer (allocated) */

static U8 *pRecvBuf[2]; /* pointers to Recv bufs */
static U32 head_recv[2]; /* Next char from chip */
static U32 tail_recv[2]; /* Next char to read for caller */
static U32 cRecvBuf[2]; /* Count of bytes in buf */
static U32 sRecvBuf[2]; /* Size of buffer (allocated) */

static U8 control_byte[2] = 0;

 /* array of registers from port base for each channel */

static U16 THR[2]; /* Transmitter Holding Register */
static U16 IER[2]; /* Interrupt Enable Register */
static U16 IIR[2]; /* Interrupt Id Register */
static U16 FCR[2]; /* FIFO control for 16550 */
static U16 LCR[2]; /* Line Control Register */
static U16 MCR[2]; /* Modem Control Register */
static U16 LSR[2]; /* Line Status Register */
static U16 MSR[2]; /* Modem Status Register */
static U16 DLAB_LO[2]; /* same address as THR */
static U16 DLAB_HI[2]; /* same address as IER */

MMURTL V1.0 Page 484 of 667

I saw register bits defined like those in listing 24.9 in some documentation while working on an
AM65C30 USART. I liked it so much because it was easy to read in a bit-wise fashion. You can
very easily see the break-out of the bits and follow what is being tested or written throughout the
source code.

Listing 24.9 - RS-232 Device Driver Code Continued (Register bits)

/* Complete description of Register bits follows:

 THR -- TX data, RX data, Divisor Latch LSB

 IER -- Interrupt Enable, Divisor Latch MSB

 7 6 5 4 3 2 1 0
 | | | | | | | _ Data Available
 | | | | | | ___ Xmit Holding Reg Empty
 | | | | | _____ Receiver Line Status
 | | | | _______ Modem Status
 \ _ _ __________ Always 0000

 IIR -- Interrupt Identification Register

 7 6 5 4 3 2 1 0
 | | | | _____________ 0001 = no interrupt
 | | | | 0110 = rcvr status
 | | | | 0100 = rcvd data
 | | | | 0010 = THR empty
 | | | | 0000 = Modem status
 | | | | 1101 = Rcv Fifo Timeout (16550)
 | | | _________ = 0.
 | | ___________ = 0.
 \ _____________ = (16550 only)
 00 = FIFOs disabled
 non-zero = 16550 enabled

 FCR -- FIFO Control Register (16550 only)
 This is a write only port at the same
 address as the IIR on an 8250/16450

 7 6 5 4 3 2 1 0
 | | | | | | | __= 1 = FIFO Enable
 | | | | | | ___ = 1 = Recv FIFO Reset
 | | | | | _____ = 1 = Xmit FIFO Reset
 | | | | _______ = (DMA) 0 = Single char, 1 = Multichar
 | | | _________ = 0.
 | | ___________ = 0.
 _______________ = FIFO Rcv Trigger Level
 00 - 1 char
 01 - 2 chars
 10 - 4 chars

MMURTL V1.0 Page 485 of 667

 11 - 8 chars

 LCR -- Line Control Register

 7 6 5 4 3 2 1 0
 | | | | | | | _ Word Length Select Bit 0.
 | | | | | | ___ Word Length Select Bit 1.
 | | | | | _____ Number Stop Bits (0=1, 1=2)
 | | | | _______ Parity Enable
 | | | _________ Even Parity Select
 | | ___________ Stick Parity
 | _____________ Set Break
 _______________ Divisor Latch Access Bit

 MCR -- Modem Control Register

 7 6 5 4 3 2 1 0
 | | | | | | | _ Data Terminal Ready
 | | | | | | ___ Request to Send
 | | | | | _____ Out 1
 | | | | _______ Out 2 (= 1 to enable ints.)
 | | | _________ Loop
 \ _ ____________ = Always 0

 LSR -- Line Status Register

 7 6 5 4 3 2 1 0
 | | | | | | | _ Data Ready
 | | | | | | ___ Overrun Error
 | | | | | _____ Parity Error
 | | | | _______ Framing Error
 | | | _________ Break interrupt
 | | ___________ Transmitter Holding Reg Empty
 | _____________ Transmitter Shift Reg Empty
 _______________ Recv FIFO Error (16550 Only)

 MSR -- Modem Status Register

 7 6 5 4 3 2 1 0
 | | | | | | | _ Delta Clear to Send
 | | | | | | ___ Delta Data Set Ready
 | | | | | _____ Trailing Edge Ring Indicator
 | | | | _______ Delta Rx Line Signal Detect
 | | | _________ Clear to Send
 | | ___________ Data Set Ready
 | _____________ Ring Indicator
 _______________ Receive Line Signal Detect

*/

The status record for each driver is specific to that particular driver. The members of this
structure are defined in the header file RS232.H. It is documented in the preceding section in this
chapter. See listing 24.10.

MMURTL V1.0 Page 486 of 667

Listing 24.10 - RS-232 Device Driver Code Continued (status record)

/* Record for 64 byte status and init record */
/* This structure is peculiar to the comms driver */

#define sStatus 64
static struct statRecC comstat[2];
static struct statRecC *pCS;

This is the same device control block (DCB) record structure used in all MMURTL device
drivers. Note that there are two of DCB’s. One for each channel, and they are contiguously
defined, as is required by MMURTL. See listing 24.11.

Listing 24.11 - RS-232 Device Driver Code Continued (DCB)

static struct dcbtype
{
 S8 Name[12];
 S8 sbName;
 S8 type;
 S16 nBPB;
 U32 last_erc;
 U32 nBlocks;
 S8 *pDevOp;
 S8 *pDevInit;
 S8 *pDevSt;
 S8 fDevReent;
 S8 fSingleUser;
 S16 wJob;
 U32 OS1;
 U32 OS2;
 U32 OS3;
 U32 OS4;
 U32 OS5;
 U32 OS6;
 };

static struct dcbtype comdcb[2]; /* Two RS-232 ports */

/* THE COMMS INTERRUPT FUNCTION PROTOTYPES */

static void interrupt comISR0(void);
static void interrupt comISR1(void);

Just as with the IDE hard disk device driver, the following initialization routine is called once to
set up the driver. It calls InitDevDr() after it has completed filling out the device control blocks
and setting up the interrupts. This means it's ready for business. See listing 24.12.

MMURTL V1.0 Page 487 of 667

Listing 24.12 - RS-232 Device Driver Code Continued (DCB Init)

/***
 This is called ONCE to initialize the 2 default
 comms channels with the OS device driver interface.
 It sets up defaults for both channels to 9600, 8N1.
***/

U32 coms_setup(void)
{
U32 erc;

 /* first we set up the 2 DCBs in anticipation of calling InitDevDr */

 comdcb[0].Name[0] = ’C’;
 comdcb[0].Name[1] = ’O’;
 comdcb[0].Name[2] = ’M’;
 comdcb[0].Name[2] = ’1’;
 comdcb[0].sbName = 4;
 comdcb[0].type = 2; /* Sequential */
 comdcb[0].nBPB = 1; /* 1 byte per block */
 comdcb[0].nBlocks = 0; /* 0 for Sequential devices */
 comdcb[0].pDevOp = &comdev_op;
 comdcb[0].pDevInit = &comdev_init;
 comdcb[0].pDevSt = &comdev_stat;

 comdcb[1].Name[0] = ’C’;
 comdcb[1].Name[1] = ’O’;
 comdcb[1].Name[2] = ’M’;
 comdcb[1].Name[2] = ’2’;
 comdcb[1].sbName = 4;
 comdcb[1].type = 2; /* Sequential */
 comdcb[1].nBPB = 1; /* 1 byte per block */
 comdcb[1].nBlocks = 0; /* 0 for Sequential devices */
 comdcb[1].pDevOp = &comdev_op;
 comdcb[1].pDevInit = &comdev_init;
 comdcb[1].pDevSt = &comdev_stat;

 /* Set default comms params in stat records */

 comstat[0].Baudrate = 9600;
 comstat[0].parity = 0; /* none */
 comstat[0].databits = 8;
 comstat[0].stopbits = 1;
 comstat[0].XTimeOut = 100;
 comstat[0].RTimeOut = 2;
 comstat[0].IOBase = 0x3F8;
 comstat[0].IRQNum = 4;
 comstat[0].XBufSize = 4096;
 comstat[0].RBufSize = 4096;
 sSendBuf[0] = 4096;
 sRecvBuf[0] = 4096;

 comstat[1].Baudrate = 9600;
 comstat[1].parity = 0; /* none */
 comstat[1].databits = 8;

MMURTL V1.0 Page 488 of 667

 comstat[1].stopbits = 1;
 comstat[1].XTimeOut = 100;
 comstat[1].RTimeOut = 2;
 comstat[1].IOBase = 0x2F8;
 comstat[1].IRQNum = 3;
 comstat[1].XBufSize = 4096;
 comstat[1].RBufSize = 4096;
 sSendBuf[1] = 4096;
 sRecvBuf[1] = 4096;

 MaskIRQ(4);
 MaskIRQ(3);

 SetIRQVector(4, &comISR0); /* COM1 */
 SetIRQVector(3, &comISR1); /* COM2 */

 return(erc = InitDevDr(5, &comdcb, 2, 1));

}

The following function does all of the work for the interrupt service routine functions, one for
each channel. This code must be re-entrant for two channels. If you want to add channels, you
must expand the variable arrays that this works with. Right now, there are two items for each
array. Four channels would be very easy to implement.

I broke my own rule on doing ISRs in assembler. I would have done this in assembler if I had the
time. It would be more efficient. Just the same, I haven’t had any problems with it, even at higher
baud rates. See listing 24.13.

Listing 24.13 - RS-232 Device Driver Code Continued (ISR and code)

/***
 This does the grunt work for each of the two ISRs
 This MUST remain reentrant for two ISRs.
***/

static void handleISR(U32 i) /* i is the device */
{
U8 *pRBuf, *pXBuf;

pRBuf = pRecvBuf[i];
pXBuf = pSendBuf[i];

while (TRUE)
{
 int_id[i] = InByte (IIR[i]); /* Get ID Byte from IIR */
 switch (int_id[i])
 {
 case RCVSTAT:
 stat_byte[i] = InByte(LSR[i]); /* clear error conditions */
 break;

 case RVCDATA:

MMURTL V1.0 Page 489 of 667

 if (cRecvBuf[i] == sRecvBuf[i])
 { /* Overflow!! */
 recv_error[i] = ErcRcvBufOvr; /* Do not put in buf */
 InByte (THR[i]); /* trash the byte */
 }
 else
 {
#asm
 CLI
#endasm
 pRBuf[head_recv[i]] =
 InByte (THR[i]); /* Get the byte */
 ++cRecvBuf[i];
 if (++head_recv[i] == SRECVBUF)
 head_recv[i] = 0;
#asm
 STI
#endasm
 recv_error[i] = 0;
 }
 break;

 case TXEMPTY:
#asm
 CLI
#endasm
 if (cSendBuf[i])
 {
 OutByte(pXBuf[tail_send[i]], THR[i]); /* Send the byte */
 if (++tail_send[i] == sSendBuf[i])
 tail_send[i] = 0;
 --cSendBuf[i];
 fExpectInt[i] = TRUE;
 }
 else
 fExpectInt[i] = FALSE;
#asm
 STI
#endasm
 break;

 case MDMSTAT:
 mstat_byte[i] = InByte (MSR[i]); /* Get Modem Status */
 break;

 case NOINT:
 stat_byte[i] = InByte(LSR[i]); /* clear error conditions */
 default:
 return;
 }
}
}

static void interrupt comISR0(void)
{
; /* ; needed if asm is first in function */

MMURTL V1.0 Page 490 of 667

#asm
 STI
#endasm
 handleISR(0);
 EndOfIRQ(4);
 return;
}

static void interrupt comISR1(void)
{
; /* ; needed if asm is first in function */
#asm
 STI
#endasm
 handleISR(1);
 EndOfIRQ(3);
 return;
}

/**/

static long ReadByteC(U32 device, unsigned char *pByteRet)
{
U32 counter;
U8 *pRBuf;

 pRBuf = pRecvBuf[device];
 if (recv_error[device]) return (recv_error[device]);

 if (cRecvBuf[device])
 {
 *pByteRet = pRBuf[tail_recv[device]];
 if (++tail_recv[device] == sRecvBuf[device])
 tail_recv[device] = 0;
 --cRecvBuf[device];
 return (0);
 }

 counter = comstat[device].RTimeOut; /* set up for timeout */
 while (counter--)
 {
 Sleep(1);
 if (cRecvBuf[device])
 {
 *pByteRet = pRBuf[tail_recv[device]];
 if (++tail_recv[device] == sRecvBuf[device])
 tail_recv[device] = 0;
 --cRecvBuf[device];
 return (0);
 }
 }
 return (ErcRecvTimeout);
}

/**/

MMURTL V1.0 Page 491 of 667

static long ReadRecordC(U32 device,
 unsigned char *pDataRet,
 unsigned int sDataMax,
 unsigned int *pcbRet)
{
int erc, cb;

 erc = 0;
 cb = 0;
 while ((cb < sDataMax) && (!erc))
 {
 erc = ReadByteC(device, pDataRet++);
 if (!erc) ++cb;
 }
 pcbRet = cb; / tell em how many bytes */
 return (erc);
}

/**/
static long WriteByteC(U32 device, unsigned char b)
{

U32 erc, counter;
U8 *pXBuf;

 erc = 0;
 pXBuf = pSendBuf[device];
 counter = comstat[device].XTimeOut; /* set up for timeout */

 while (cSendBuf[device] == sSendBuf[device])
 {
 Sleep(1);
 counter--;
 if (!counter)
 return (ErcXmitTimeout); /* never got sent */
 }

#asm
 CLI
#endasm

 if (!fExpectInt[device])
 { /* Xmit buf empty, send ourself */
 OutByte(b, THR[device]);
 fExpectInt[device] = TRUE;
 }
 else
 {
 pXBuf[head_send[device]] = b;
 if (++head_send[device] == sSendBuf[device])
 head_send[device] = 0;
 ++cSendBuf[device]; /* one more in buf */
 }

MMURTL V1.0 Page 492 of 667

#asm
 STI
#endasm
 return (erc);
}

/**/
static long WriteRecordC(U32 device,
 unsigned char *pSendData,
 unsigned int cbSendData)
{
int erc;

 erc = 0;
 while ((cbSendData) && (!erc))
 {
 erc = WriteByteC(device, *pSendData++);
 --cbSendData;
 }
 return (erc);
}

/**/

static long DiscardRecvC(U32 device)
{
U32 saveto, erc;
U8 b;

 saveto = comstat[device].RTimeOut;
 comstat[device].RTimeOut = 1;
 erc = 0;
 while (!erc)
 erc = ReadByteC(device, &b);
 comstat[device].RTimeOut = saveto;
 return (0);
}

/**
 This sets comms params prior to opening, or
 while a channel is in use.
**/

static U32 SetParams(U32 device)

{
U32 divisor, speed;
U8 c, parity, bits, stop_bit, temp;

 parity = comstat[device].parity;
 bits = comstat[device].databits;
 stop_bit = comstat[device].stopbits;
 speed = comstat[device].Baudrate;

MMURTL V1.0 Page 493 of 667

 /* Set up baud rate */

 divisor = 115200/speed;

#asm
 CLI
#endasm
 c=InByte (LCR[device]);
 OutByte ((c | 0x80), LCR[device]);
 OutByte ((divisor & 0x00ff), DLAB_LO[device]);
 OutByte (((divisor>>8) & 0x00ff), DLAB_HI[device]);
 OutByte (c, LCR[device]);
#asm
 STI
#endasm

 /* set coms params */

 temp = bits - 5;
 temp |= ((stop_bit == 1) ? 0x00 : 0x04);

 switch (parity)
 {
 case NO_PAR : temp |= 0x00; break;
 case OD_PAR : temp |= 0x08; break;
 case EV_PAR : temp |= 0x18; break;
 }

#asm
 CLI
#endasm
 OutByte (temp, LCR[device]);
#asm
 STI
#endasm

 return (0);
}

/**
 This allocates buffers, sets up the ISR
 and IRQ values and open the channel for use.
***/

static U32 OpenCommC(U32 device)

{
U32 erc;
U16 port_base;
U8 c;

 if (comstat[device].commJob)
 return(ErcChannelOpen);

 GetJobNum(&comstat[device].commJob);

MMURTL V1.0 Page 494 of 667

 erc = AllocOSPage(comstat[device].XBufSize/4096,
 &pSendBuf[device]);

 if (!erc)
 {
 erc = AllocOSPage(comstat[device].RBufSize/4096,
 &pRecvBuf[device]);

 if (erc) /* get rid of Xmit buf if we can’t recv */
 DeAllocPage(pSendBuf[device],
 comstat[device].XBufSize/4096);
 }

 if (erc)
 {
 comstat[device].commJob = 0;
 return (erc);
 }

 port_base = comstat[device].IOBase;

 /* Set up buffer variables for this port */

 cSendBuf[device] = 0;
 head_send[device] = 0;
 tail_send[device] = 0;

 cRecvBuf[device] = 0;
 head_recv[device] = 0;
 tail_recv[device] = 0;
 recv_error[device] = 0;

 THR[device] = port_base;
 IER[device] = port_base + 1;
 IIR[device] = port_base + 2;
 FCR[device] = port_base + 2;
 LCR[device] = port_base + 3;
 MCR[device] = port_base + 4;
 LSR[device] = port_base + 5;
 MSR[device] = port_base + 6;
 DLAB_HI[device] = port_base + 1;
 DLAB_LO[device] = port_base;

 InByte(THR[device]); /* reset any pending ints on chip */
 InByte(LSR[device]);

#asm
 CLI
#endasm
 control_byte[device] = RTS | DTR | OUT2;
 OutByte(control_byte[device], MCR[device]); /* Mod Ctrl Reg */
 OutByte(0x0F, IER[device]); /* Int Enable Reg */

 /* See if we have a 16550 and set it up if we do!! */

MMURTL V1.0 Page 495 of 667

 OutByte(0x03, FCR[device]);
 c = InByte(IIR[device]);
 if (c & 0xC0) /* we have a 16550 and it’s set to go! */
 f16550[device] = 1;
 else
 f16550[device] = 0; /* 8250 or 16450 */

#asm
 STI
#endasm

 SetParams(device);

 UnMaskIRQ(comstat[device].IRQNum);
 return (0);
}

/**
 This closes the port, sets the owner to 0
 and deallocates the buffers.
**/

static int CloseCommC (U32 device)
{
U32 erc;

 MaskIRQ(comstat[device].IRQNum);
 OutByte(0, MCR[device]);
 OutByte(0, IER[device]);
 erc = DeAllocPage(pSendBuf[device],
 comstat[device].XBufSize/4096);
 erc = DeAllocPage(pRecvBuf[device],
 comstat[device].RBufSize/4096);
 comstat[device].commJob = 0;
 return (erc);
}

Just like in the IDE hard disk driver (and all other drivers in MMURTL), three functions provide
the interface from the outside. They are the last functions defined in this file. Their offsets (entry
points) have been defined in the device control block for each of the two devices. This was done
prior to calling InitDevDr().

This driver is re-entrant, and therefore all data must be associated with the particular comms port
you are addressing. See listing 24.14.

Listing 24.14 - RS-232 Device Driver Code Continued (Interface)

/**
Called for all device operations. This
assigns physical device from logical number
that outside callers use. For RS-232, 5=0
and 6=1.

MMURTL V1.0 Page 496 of 667

***/

static U32 comdev_op(U32 dDevice,
 U32 dOpNum,
 U32 dLBA,
 U32 dnBlocks,
 U8 *pData)
{
U32 erc;
U32 Job, device;
U8 c;

/* Set internal drive number */
/* 5 RS-232 1 COM1 (OS built-in) */
/* 6 RS-232 2 COM2 (OS built-in) */

 if (dDevice == 5)
 device = 0;
 else
 device = 1;

 GetJobNum(&Job);

 if ((!comstat[device].commJob) && (dOpNum != CmdOpenC))
 return(ErcNotOpen);

 if (comstat[device].commJob)
 {
 if ((comstat[device].commJob != Job) &&
 (Job != 1))
 return(ErcNotOwner);
 }

 erc = 0; /* default error */

 switch(dOpNum)
 {

 case(0):
 break; /* Null Command */
 case CmdReadB:
 erc = ReadByteC(device, pData);
 break;
 case CmdWriteB:
 erc = WriteByteC(device, *pData);
 break;
 case CmdReadRec:
 erc = ReadRecordC(device, pData, dnBlocks,
 &comstat[device].LastTotal);
 break;
 case CmdWriteRec:
 erc = WriteRecordC(device, pData, dnBlocks);
 break;
 case CmdSetRTO:
 comstat[device].RTimeOut = dLBA; /* 10ms intervals */
 break;
 case CmdSetXTO:

MMURTL V1.0 Page 497 of 667

 comstat[device].XTimeOut = dLBA; /* 10ms intervals */
 break;
 case CmdOpenC:
 erc = OpenCommC(device);
 break;
 case CmdCloseC:
 erc = CloseCommC(device);
 break;
 case CmdDiscardRcv:
 erc = DiscardRecvC(device);
 break;
 case CmdSetDTR:
 control_byte[device] |= DTR;
 OutByte(control_byte[device], LCR[device]);
 break;
 case CmdSetRTS:
 control_byte[device] |= RTS;
 OutByte(control_byte[device], MCR[device]);
 break;
 case CmdReSetDTR:
 control_byte[device] &= ~DTR;
 OutByte(control_byte[device], LCR[device]);
 case CmdReSetRTS:
 control_byte[device] &= ~RTS;
 OutByte(control_byte[device], MCR[device]);
 break;
 case CmdBreak:
 c = InByte(LCR[device]);
 OutByte((c | 0x40), LCR[device]);
 Sleep(dLBA);
 OutByte(c, LCR[device]);
 break;
 case CmdGetDC:
 *pData = mstat_byte[device] & CD;
 break;
 case CmdGetDSR:
 *pData = mstat_byte[device] & DSR;
 break;
 case CmdGetCTS:
 *pData = mstat_byte[device] & CTS;
 break;
 case CmdGetRI:
 *pData = mstat_byte[device] & RI;
 break;
 default:
 break;
 }

 comstat[device].LastErc = erc;
 return(erc);
}

/**
Called for status report on coms channel.
Returns 64 byte block for channel specified.
This is called by the PUBLIC call DeviceStat

MMURTL V1.0 Page 498 of 667

***/

static U32 comdev_stat(U32 dDevice,
 S8 *pStatRet,
 U32 dStatusMax,
 U32 *pdStatusRet)
{
U32 i, device;

 /* Set internal device number */
 if (dDevice == 5)
 device = 0;
 else device = 1;

 if (dStatusMax > 64)
 i = 64;
 else
 i = dStatusMax;

 if (!device)
 {
 CopyData(&comstat[0], pStatRet, i); /* copy the status data */
 }
 else
 {
 CopyData(&comstat[1], pStatRet, i); /* copy the status data */
 }

 pdStatusRet = dStatusMax; / give em the size returned */

 return(0);
}

/**
Called to set parameters for the comms
channels prior to opening or while in use.
If an invalid value is passed in, all params
remain the same as before.
Some comms channel params may not be changed
while the channel is in use.
This is called by the PUBLIC call DeviceInit.
***/

static S32 comdev_init(U32 dDevice,
 S8 *pInitData,
 U32 sdInitData)

{
U32 erc, Xbufsize, Rbufsize, device;
U32 speed, XTO, RTO;
U16 port_base;
U8 parity, bits, stop_bit, IRQNUM;

 if (dDevice == 5)
 device = 0; /* Set internal device number */
 else
 device = 1;

MMURTL V1.0 Page 499 of 667

 if (sdInitData < 40)
 return(ErcBadInitSize);

 pCS = pInitData;

 /* Get the callers new params */

 speed = pCS->Baudrate; /* Non Volatile */
 parity = pCS->parity; /* Non Volatile */
 bits = pCS->databits; /* Non Volatile */
 stop_bit = pCS->stopbits; /* Non Volatile */
 XTO = pCS->XTimeOut; /* Non Volatile */
 RTO = pCS->RTimeOut; /* Non Volatile */

 port_base = pCS->IOBase;
 Xbufsize = pCS->XBufSize;
 Rbufsize = pCS->RBufSize;
 IRQNUM = pCS->IRQNum;

 /* Non Volatile params can be set whether or not the
 channel is open. Do these first and return errors. */

 if ((speed > MAX_BAUD) || (speed < MIN_BAUD))
 return (ErcBadBaud);

 if ((parity < NO_PAR) || (parity > OD_PAR))
 return (ErcBadParity);

 if ((bits < 5) || (bits > 8))
 return (ErcBadDataBits);

 if ((stop_bit < 1) || (stop_bit > 2))
 return (ErcBadStopBits);

 if (!XTO) XTO = 1;
 if (!RTO) RTO = 1;

 comstat[device].Baudrate = speed;
 comstat[device].parity = parity;
 comstat[device].databits = bits;
 comstat[device].stopbits = stop_bit;
 comstat[device].XTimeOut = XTO;
 comstat[device].RTimeOut = RTO;

 /* If we got here, the params are OK. Now we check
 to see if the channel is open and call SetParams
 if so. The channel is open if the JobNumber
 in the commstat record is NON-ZERO.
 */

 if (comstat[device].commJob)
 { /* Channel Open! */
 SetParams(device);
 }

 /* Channel is not open so we check and set rest of params */

MMURTL V1.0 Page 500 of 667

 else
 {

 if (!port_base)
 return (ErcBadIOBase);
 if (IRQNUM < 3)
 return (ErcBadCommIRQ);

 /* We now round up buffer sizes to whole pages */

 Xbufsize = Xbufsize/4096 * 4096;
 if (Xbufsize % 4096) Xbufsize+=4096; /* another page */

 Rbufsize = Rbufsize/4096 * 4096;
 if (Rbufsize % 4096) Rbufsize+=4096; /* another page */

 comstat[device].IOBase = port_base;
 comstat[device].IRQNum = IRQNUM;
 comstat[device].XBufSize = Xbufsize;
 comstat[device].RBufSize = Rbufsize;

 /* Local copies so we don’t work from a structure in ISR */

 sSendBuf[device] = Xbufsize; /* Size of buffer (allocated) */
 sRecvBuf[device] = Rbufsize; /* Size of buffer (allocated) */

 erc = 0;
 }

 return(erc);
}

MMURTL V1.0 Page 501 of 667

Chapter 25, Keyboard Source Code

Introduction

The keyboard code is probably one of the most complicated source files, second only to the file
system. This is because it has a little bit of everything in it. It contains an interrupt service
routine, multilevel lookup tables, a complete system service with an additional task, and several
hardware handling calls.

Even though the keyboard is technically a device, it does not use the standard MMURTL device
driver interface. There are several reasons for this. The first is that it was one of the very first
devices coded on the system. The second reason is that it is only an input device and is always
shared among applications. Another reason is that the keyboard I/O ports, which actually go to
an 8042 (or equivalent) microprocessor, are used for a wide variety of things. This is a device
found on almost all system boards on PC-AT ISA-compatible platforms.

Keyboard Data

The data portion of the file is much larger than for most of the files in MMURTL. It has several
look-up tables used to translate scan codes from what was supposed to be a standardized system.

The systems are not as standardized as I once thought. Some of them support all of the modes for
the IBM PC-AT, and some of them only support two out of three. I stuck with the most common
scan code set, which was the original scan set 2 for the PC-AT. I have the original PC-AT
documentation and PS-2 documentation. Some of the ISA machines support PS-2 scan sets, but
only the original scan set 2 was supported on all of the systems I tested. Hence, I use it to support
the widest array of machines possible.

There are three tables that provide the translation. The first provides the initial translation from
the raw scan codes; the second is for the scan codes that are preceded by the E0 hex escape
sequence; and the third is for shifted keystrokes. See listing 25.1.

Listing 25.1 - Keyboard Data and Tables

.DATA ;Begin Keyboard Data

.INCLUDE MOSEDF.INC

.INCLUDE RQB.INC

.INCLUDE TSS.INC

.ALIGN DWORD

EXTRN ddVidOwner DD

;The keyboard service is designed to return the complete status
;of the keyboard shift, control, alt, and lock keys as well as
;the key in the buffer that the state applies to.
;

MMURTL V1.0 Page 502 of 667

;This is done by using two buffers. The first is a "RAW" key buffer
;that holds keys from the interrupt service routine which contains
;all raw keystrokes including shift keys going up and down.
;This information is needed to build coherent keystroke information
; for an application. This buffer is 32 bytes long.
;
;The second buffer is 256 bytes and contains the translated information
;in the form of DWords (a 4 byte quantity times 64). This DWord contains the
;following information:
;
;Low byte (bits 0-7) Partially translated application keystroke
;Next byte (bits 8-15) Shift State (Ctrl, Shift, Alt)
;Next byte (bits 16-23) Lock State (CAPS, Num, Scroll)
;Hi Byte (bits 24-31) Key Source (Bit 1 Set = Key From Numeric Pad)
;
KBDSvcName DB ’KEYBOARD’

KbdMainExch DD 0 ;Used by the Kbd Process
KbdHoldExch DD 0 ;Used for requestors that don’t own the keyboard
KbdGlobExch DD 0 ;Used to hold Global CTRL-ALT requests
KbdWaitExch DD 0 ;Used for Kbd Wait-For-Key requests
KbdTempExch DD 0 ;Used to rifle thru requests

dGlobalKey DD 0 ;Global Key Found, else 0

KbdMsgBuf1L DD 0 ;Message buffers for Kbd Service
KbdMsgBuf1H DD 0

KbdMsgBuf2L DD 0
KbdMsgBuf2H DD 0

KbdOwner DD 1 ;Current owner of Kbd (Mon is default)
KbdAbortJob DD 0 ;Job that is aborting
KbdCancelJob DD 0 ;Job that is cancelling global request

rgbKbdBuf DB 20h DUP (0) ;32 byte RAW buffer
dKbdCnt DD 0
pKbdIn DD OFFSET rgbKbdBuf ;ptr to next char going in
pKbdOut DD OFFSET rgbKbdBuf ;ptr to next char going out
;
bKbdMode DB 0 ;ZERO for Cooked, 1 for RAW
fKBDInitDone DB 0 ;Set true when KBD Service is up and running
;
KbdState DB 0 ;(See State Masks below)
KbdLock DB 0 ;(See Lock Masks below)
;
rgdKBBuf DD 40h DUP (0) ;64 Dwords for translated key buffer
dKBCnt DD 0
pKBIn DD OFFSET rgdKBBuf ;ptr to codes comming in
pKBOut DD OFFSET rgdKBBuf ;ptr to codes going out
;
; These "masks" are for keyboard states that change with special keys:
; They are BIT OFFSETS and NOT MASKS for logical operations!!!!!

CtrlLeftBit EQU 0
CtrlRiteBit EQU 1
ShftLeftBit EQU 2

MMURTL V1.0 Page 503 of 667

ShftRiteBit EQU 3
AltLeftBit EQU 4
AltRiteBit EQU 5
;
; Mask to tell if one of the 3 states exist (Ctrl, Shift, Alt)
CtrlDownMask EQU 00000011b
ShftDownMask EQU 00001100b
AltDownMask EQU 00110000b
;
; BIT OFFSETS
CpLockBit EQU 2
NmLockBit EQU 1
ScLockBit EQU 0
; MASKS
CpLockMask DB 00000100b
NmLockMask DB 00000010b
ScLockMask DB 00000001b

;
; The following special keys are processed by the Keyboard Task and handled
; as follows:
; NUMLOCK - Lights NumLock LED and processes keys accordingly
; SHIFT - Sets shift flag and processes keys accordingly
; CTRL - Sets Ctrl flag
; CAPSLOCK - Lights CapsLock LED and processes keys accordingly
; ALT - Sets Alt flag.
; SCRLLOCK - Lights ScrollLock LED and flag
;
; This table is used to translate all active editing keys from
; the raw value provided by the hardware.
;
; SHIFT
; Value
KbdTable DB 0; 00
DB 01Bh ; Esc 01
DB 031h ; 1 02 21h !
DB 032h ; 2 03 40h @
DB 033h ; 3 04 23h #
DB 034h ; 4 05 24h $
DB 035h ; 5 06 25h %
DB 036h ; 6 07 5Eh ^
DB 037h ; 7 08 26h &
DB 038h ; 8 09 2Ah *
DB 039h ; 9 0A 28h (
DB 030h ; 0 0B 29h)
DB 02Dh ; - 0C 5Fh _
DB 03Dh ; = 0D 2Bh +
DB 008h ; BkSpc 0E
DB 009h ; TAB 0F
DB 071h ; q 10 51h
DB 077h ; w 11 57h
DB 065h ; e 12 45h
DB 072h ; r 13 52h
DB 074h ; t 14 54h
DB 079h ; y 15 59h
DB 075h ; u 16 55h
DB 069h ; i 17 49h

MMURTL V1.0 Page 504 of 667

DB 06Fh ; o 18 4Fh
DB 070h ; p 19 50h
DB 05Bh ; [1A 7Bh
DB 05Dh ;] 1B 7Dh
DB 00Dh ; CR 1C
DB 0h ; LCtrl 1D Special handling
DB 061h ; a 1E 41h
DB 073h ; s 1F 53h
DB 064h ; d 20 44h
DB 066h ; f 21 46h
DB 067h ; g 22 47h
DB 068h ; h 23 48h
DB 06Ah ; j 24 4Ah
DB 06Bh ; k 25 4Bh
DB 06Ch ; l (L) 26 4Ch
DB 03Bh ; ; 27 3Ah
DB 027h ; ’ 28 22h
DB 060h ; ‘ 29 7Eh
DB 0h ; LfShf 2A Special handling
DB 05Ch ; \ 2B 7Ch
DB 07Ah ; z 2C 5Ah
DB 078h ; x 2D 58h
DB 063h ; c 2E 43h
DB 076h ; v 2F 56h
DB 062h ; b 30 42h
DB 06Eh ; n 31 4Eh
DB 06Dh ; m 32 4Dh
DB 02Ch ; , 33 3Ch
DB 02Eh ; . 34 3Eh
DB 02Fh ; / 35 3Fh
DB 0h ; RtShf 36 Special handling
DB 02Ah ; Num * 37 Num pad
DB 0h ; LAlt 38 Special handling
DB 020h ; Space 39
DB 0h ; CpsLk 3A Special handling
DB 00Fh ; F1 3B
DB 010h ; F2 3C
DB 011h ; F3 3D
DB 012h ; F4 3E
DB 013h ; F5 3F
DB 014h ; F6 40
DB 015h ; F7 41
DB 016h ; F8 42
DB 017h ; F9 43
DB 018h ; F10 44
DB 0h ; NumLk 45 Special handling
DB 0h ; ScrLk 46 Special handling
DB 086h ; Num 7 47 37h Num Home
DB 081h ; Num 8 48 38h Num Up
DB 085h ; Num 9 49 39h Num Pg Up
DB 0ADh ; Num - 4A Num Pad
DB 083h ; Num 4 4B 34h Num Left
DB 09Fh ; Num 5 4C 35h Num (Extra code)
DB 084h ; Num 6 4D 36h Num Right
DB 0ABh ; Num + 4E Num Pad
DB 08Bh ; Num 1 4F 31h Num End
DB 082h ; Num 2 50 32h Num Down

MMURTL V1.0 Page 505 of 667

DB 08Ch ; Num 3 51 33h Num Pg Dn
DB 08Eh ; Num 0 52 30h Num Insert
DB 0FFh ; Num . 53 2Eh Num Del
DB 01Ch ; Pr Scr 54 SYS REQUEST
DB 000h ; 55
DB 000h ; 56
DB 019h ; F11 57
DB 01Ah ; F12 58
DB 000h ; 59
DB 000h ; 5A
DB 000h ; 5B
DB 000h ; 5C
DB 000h ; 5D
DB 000h ; 5E
DB 000h ; 5F ;The following chars are subs from table2
DB 00Eh ; Ins 60 Cursor pad
DB 00Bh ; End 61 Cursor pad
DB 002h ; Down 62 Cursor pad
DB 00Ch ; PgDn 63 Cursor pad
DB 003h ; Left 64 Cursor pad
DB 000h ; 65
DB 004h ; Right 66 Cursor pad
DB 006h ; Home 67 Cursor pad
DB 001h ; Up 68 Cursor pad
DB 005h ; PgUp 69 Cursor pad
DB 07Fh ; Delete 6A Cursor pad
DB 0AFh ; / 6B Num Pad
DB 08Dh ; ENTER 6C Num Pad
DB 0h ; 6D
DB 0h ; 6E
DB 0h ; 6F
DB 0h ; 70
DB 0h ; 71
DB 0h ; 72
DB 0h ; 73
DB 0h ; 74
DB 0h ; 75
DB 0h ; 76
DB 0h ; 77
DB 0h ; 78
DB 0h ; 79
DB 0h ; 7A
DB 0h ; 7B
DB 0h ; 7C
DB 0h ; 7D
DB 0h ; 7E
DB 0h ; 7F
;
;This table does an initial character translation from the characters
;provided by the keyboard. The Kbd translates incoming keystrokes
;from the original scan set 2 for the IBM PC-AT. All PCs are are set to this
;by default. Keys on the 101 keyboard that were common to the numeric
;keypad use a two character escape sequence begining with E0 hex.
;If we see an E0 hex we scan this table and provide the translation
;to another unique character which is looked up in the primary
;table above. This gives us unique single characters for every key!
;

MMURTL V1.0 Page 506 of 667

nKbdTable2 EQU 10
;
;
KbdTable2 DB 052h, 060h ;Insert
 DB 04Fh, 061h ;End
 DB 050h, 062h ;Down
 DB 051h, 063h ;Pg Down
 DB 04Bh, 064h ;Left
 DB 04Dh, 066h ;Rite
 DB 047h, 067h ;Home
 DB 048h, 068h ;Up
 DB 049h, 069h ;Pg Up
 DB 053h, 06Ah ;Delete
 DB 037h, 06Bh ;Num /
 DB 01Ch, 06Ch ;Num ENTER
 DB 038h, 070h ;Right ALT DOWN These are special cause we
 DB 01Dh, 071h ;Right Ctrl DOWN track UP & DOWN!!!
 DB 038h, 0F0h ;Right ALT UP
 DB 01Dh, 0F1h ;Right Ctrl UP

;This table provides shift level values for codes from the primary KbdTable.
;In Shift-ON state ALL keycodes are translated through this table.
;In CAPS LOCK state codes 61h to 7Ah are translated through this table
;In NUM LOCK state only codes with High Bit set are translated
;

KbdTableS DB 0; 00
DB 38h ; 01 Up 8 Numeric pad
DB 32h ; 02 Dn 2 Numeric pad
DB 34h ; 03 Left 4 Numeric pad
DB 36h ; 04 Rite 6 Numeric pad
DB 39h ; 05 PgUp 9 Numeric pad
DB 37h ; 06 Home 7 Numeric pad
DB 07h ; 07
DB 08h ; 08
DB 09h ; 09
DB 0Ah ; 0A
DB 31h ; 0B End 1 Numeric Pad
DB 33h ; 0C PgDn 3 Numeric pad
DB 0Dh ; 0D
DB 30h ; 0E Ins 0 Numeric pad
DB 0Fh ; 0F
DB 10h ; 10
DB 11h ; 11
DB 12h ; 12
DB 13h ; 13
DB 14h ; 14
DB 15h ; 15
DB 16h ; 16
DB 17h ; 17
DB 18h ; 18
DB 18h ; 19
DB 1Ah ; 1A
DB 1Bh ; 1B
DB 1Ch ; 1C
DB 1Dh ; 1D
DB 1Eh ; 1E

MMURTL V1.0 Page 507 of 667

DB 35h ; 1F Blnk 5 Numeric pad
DB 20h ; 20
DB 21h ; 21
DB 22h ; 22
DB 23h ; 23
DB 24h ; 24
DB 25h ; 25
DB 26h ; 26
DB 22h ; 27 ’ "
DB 28h ; 28
DB 29h ; 29
DB 2Ah ; 2A
DB 2Bh ; 2B
DB 3Ch ; 2C , <
DB 5Fh ; 2D - _
DB 3Eh ; 2E . >
DB 3Fh ; 2F / ?
DB 29h ; 30 0)
DB 21h ; 31 1 !
DB 40h ; 32 2 @
DB 23h ; 33 3 #
DB 24h ; 34 4 $
DB 25h ; 35 5 %
DB 5Eh ; 36 6 ^
DB 26h ; 37 7 &
DB 2Ah ; 38 8 *
DB 28h ; 39 9 (
DB 3Ah ; 3A
DB 3Ah ; 3B ; :
DB 3Ch ; 3C
DB 2Bh ; 3D = +
DB 3Eh ; 3E
DB 3Fh ; 3F
DB 40h ; 40
DB 41h ; 41
DB 42h ; 42
DB 43h ; 43
DB 44h ; 44
DB 45h ; 45
DB 46h ; 46
DB 47h ; 47
DB 48h ; 48
DB 49h ; 49
DB 4Ah ; 4A
DB 4Bh ; 4B
DB 4Ch ; 4C
DB 4Dh ; 4D
DB 4Eh ; 4E
DB 4Fh ; 4F
DB 50h ; 50
DB 51h ; 51
DB 52h ; 52
DB 53h ; 53
DB 54h ; 54
DB 55h ; 55
DB 56h ; 56
DB 57h ; 57

MMURTL V1.0 Page 508 of 667

DB 58h ; 58
DB 59h ; 59
DB 5Ah ; 5A
DB 7Bh ; 5B [{
DB 7Ch ; 5C \ |
DB 7Dh ; 5D] }
DB 5Eh ; 5E
DB 5Fh ; 5F
DB 7Eh ; 60 ‘ ~
DB 41h ; 61 a A
DB 42h ; 62 b B
DB 43h ; 63 c C
DB 44h ; 64 d D
DB 45h ; 65 e E
DB 46h ; 66 f F
DB 47h ; 67 g G
DB 48h ; 68 h H
DB 49h ; 69 i I
DB 4Ah ; 6A j J
DB 4Bh ; 6B k K
DB 4Ch ; 6C l L
DB 4Dh ; 6D m M
DB 4Eh ; 6E n N
DB 4Fh ; 6F o O
DB 50h ; 70 p P
DB 51h ; 71 q Q
DB 52h ; 72 r R
DB 53h ; 73 s S
DB 54h ; 74 t T
DB 55h ; 75 u U
DB 56h ; 76 v V
DB 57h ; 77 w W
DB 58h ; 78 x X
DB 59h ; 79 y Y
DB 5Ah ; 7A z Z
DB 7Bh ; 7B
DB 7Ch ; 7C
DB 7Dh ; 7D
DB 7Eh ; 7E
DB 2Eh ; 7F Del . Numeric Pad

KbdScvStack DD 127 DUP(0) ;512 byte stack for KbsSvc
KbdSvcStackTop DD 0

;===
;The following equestes are for the hardware handling code.
;8042 Status Byte, Port Hex 0064 Read
;===

STATUSPORT EQU 64h
COMMANDPORT EQU 64h
DATAPORT EQU 60h

PARITYERROR EQU 10000000b
GENERALTIMEOUT EQU 01000000b
AUXOUTBUFFFULL EQU 00100000b

MMURTL V1.0 Page 509 of 667

INHIBITSWITCH EQU 00010000b
COMMANDDATA EQU 00001000b
SYSTEMFLAG EQU 00000100b
INPUTBUFFFULL EQU 00000010b
OUTPUTBUFFFULL EQU 00000001b

Keyboard Code

The code is divided into several sections. The first section is the ISR; the second is a small
routine that reads scan codes from the raw ISR buffers; the third is the shift translation code,
followed by the keyboard service, and finally all of the support routines.

Keyboard ISR

The keyboard ISR places all raw scan codes into a 32-byte buffer. When a code is placed in the
buffer, a message is sent to the keyboard service to tell it that the raw buffer has something in it.
This uses ISendMsg(), which is used by ISRs to send messages when interrupts are disabled.
See listing 25.2.

Listing 25.2 - Keyboard ISR Code

.CODE
;
;
;ISR for the keyboard. This is vectored to by the processor whenever
;INT 21 fires off. This puts the single byte from the 8042
;KBD processor into the buffer. Short and sweet the way all ISRs
;should be... (most are not this easy though). This also sends
;a message to the KBD Task (using ISend) when the buffer is almost
;full so it will be forced to process some of the raw keys even
;if no keyboard requests are waiting.

PUBLIC IntKeyBrd: ;Key Board (KB) INT 21
 PUSHAD ;Save all registers
 MOV ESI, pKbdIn ;Set up pointer
 XOR EAX,EAX
 IN AL, 60h ;Read byte
 MOV EBX, dKbdCnt ;See if buffer full
 CMP EBX, 20h ;Buffer size
 JE KbdEnd ;Buffer is full - Don’t save it
 MOV BYTE PTR [ESI], AL ;Move into buf
 INC dKbdCnt ;One more in the buf
 INC ESI ;Next byte in
 CMP ESI, OFFSET rgbKbdBuf+20h ;past end yet?
 JB KbdEnd
 MOV ESI, OFFSET rgbKbdBuf ;Back to beginning of buffer

KbdEnd:
 MOV pKbdIn, ESI ;Set up pointer for next time

MMURTL V1.0 Page 510 of 667

 CMP BYTE PTR fKBDInitDone, 0 ;Service isn’t ready for messages yet
 JE KbdExit

 ;ISend a msg to Keyboard task
 MOV EBX, KbdMainExch ;Yes - ISend Message to KbdTask
 PUSH EBX ;exchange to send to
 PUSH 0FFFFFFFFh ;bogus msg
 PUSH 0FFFFFFFFh ;bogus msg
 CALL FWORD PTR _ISendMsg ;tell him to come and get it...

KbdExit:
 PUSH 1
 CALL FWORD PTR _EndOfIRQ
 POPAD
 IRETD

;This gets one byte from the raw Kbd Buffer and returns it in AL
;Zero is returned if no key exists.
;
ReadKBDBuf:
 CLI
 MOV ESI, pKbdOut ;Get ptr to next char to come out
 MOV EAX, dKbdCnt ;See if there are any bytes
 CMP EAX, 0
 JE RdKBDone ;No - Leave 0 in EAX
 DEC dKbdCnt ;Yes - make cnt right
 XOR EAX,EAX
 MOV AL, BYTE PTR [ESI] ;Put byte in AL
 INC ESI
 CMP ESI, OFFSET rgbKbdBuf+20h ;past end yet?
 JB RdKBDone
 MOV ESI, OFFSET rgbKbdBuf ;Back to beginning of buffer

RdKBDone:
 MOV pKbdOut, ESI ;Save ptr to next char to come out
 STI
 RETN

Keyboard Translation

When the keyboard is notified that raw scan codes have been placed in the keyboard buffer, this
routine will be called to translate them and place them in the final 64-key buffer. Some interrupts
may not necessarily result in a key code being sent to the final buffer. For instance, if you press
the shift key then let it go without hitting another key, the result will be no additional key codes
in the final buffer. See listing 25.3.

Listing 25.3 - Keyboard Translation Code

; Reads and processes all bytes from the RAW keyboard buffer
; and places them and their proper state bytes and into the next DWord
; in the translated buffer if it is an edit key.

MMURTL V1.0 Page 511 of 667

XLateRawKBD:
 CALL ReadKbdBuf
 CMP EAX, 0
 JE XLateDone ;No

 MOV BL, bKbdMode ;See if we are RAW... (for testing ONLY)
 CMP BL, 1
 JNE KB001 ;NO - keep going
 JMP XLateDone ;Yes, leave the key in AL

 ;Now we check to see if the byte is 0Eh which tells us
 ;this is a two key code that needs to be translated from
 ;our special table before processing. This turns the
 ;two key code into a single code and sets a state
 ;bit to indicate this.

KB001:
 CMP AL, 0E0h ;Key PREFIX???
 JNE KB006 ;NO...
 MOV ECX, 50 ;Try 50 times to get second char

KB002:
 CALL ReadKbdBuf
 CMP EAX, 0
 JNE KB003 ;We got another char
 LOOP KB002 ;Back to get another char
 JMP XLateDone ;Guess one isn’t comming...

KB003:
 MOV ESI, OFFSET KbdTable2
 MOV ECX, nKbdTable2

KB004:
 CMP BYTE PTR [ESI], AL
 JE KB005
 INC ESI ;Two byte further into table 2
 INC ESI
 DEC ECX
 JNZ KB004 ;Go to next table entry
 JMP KB006

KB005:
 INC ESI ;One byte further over to get Xlate byte
 XOR EAX,EAX
 MOV AL, [ESI] ;Fall thru to check on char...

 ;This next section checks for special keys (shift, alt, etc.)
 ;BL has SHIFT state, CL has LOCK State, AL has byte from buffer.

KB006:
 XOR EBX, EBX
 XOR ECX, ECX
 MOV BL, KbdState ;BL has Shift, Alt, Ctrl states
 MOV CL, KbdLock ;BH has Num, Caps, & Scroll Lock

 CMP AL, 45h ;Key = NumLock ?

MMURTL V1.0 Page 512 of 667

 JNE KB007 ;NO...
 BTC ECX, NmLockBit ;Compliment bit
 JMP KB022

KB007:
 CMP AL, 3Ah ;Caps Lock?
 JNE KB008
 BTC ECX, CpLockBit ;Compliment bit in BH
 JMP KB022

KB008:
 CMP AL, 46h ;Scroll Lock?
 JNE KB009
 BTC ECX, ScLockBit ;Compliment bit in BH
 JMP KB022

KB009:
 CMP AL, 2Ah ;Char Left Shift On?
 JNE KB010
 BTS EBX, ShftLeftBit
 JMP KB021

KB010:
 CMP AL, 36h ;Right Shift On?
 JNE KB011
 BTS EBX, ShftRiteBit
 JMP KB021

KB011:
 CMP AL, 0AAh ;Left Shift Off?
 JNE KB012
 BTR EBX, ShftLeftBit
 JMP KB021

KB012:
 CMP AL, 0B6h ;Right Shift Off?
 JNE KB013
 BTR EBX, ShftRiteBit
 JMP KB021

KB013:
 CMP AL, 1Dh ;Left Ctrl On?
 JNE KB014
 BTS EBX, CtrlLeftBit
 JMP KB021

KB014:
 CMP AL, 71h ;Right Ctrl On?
 JNE KB015
 BTS EBX, CtrlRiteBit
 JMP KB021

KB015:
 CMP AL, 09Dh ;Left Ctrl Off?
 JNE KB016
 BTR EBX, CtrlLeftBit
 JMP KB021

MMURTL V1.0 Page 513 of 667

KB016:
 CMP AL, 0F1h ;Right Ctrl Off?
 JNE KB017
 BTR EBX, CtrlRiteBit
 JMP KB021

KB017:
 CMP AL, 38h ;Left Alt On?
 JNE KB018
 BTS EBX, AltLeftBit
 JMP KB021

KB018:
 CMP AL, 70h ;Right Alt On?
 JNE KB019
 BTS EBX, AltRiteBit
 JMP KB021

KB019:
 CMP AL, 0B8h ;Left Alt Off?
 JNE KB020
 BTR EBX, AltLeftBit
 JMP KB021

KB020:
 CMP AL, 0F0h ;Right Alt Off?
 JNE KB023
 BTR EBX, AltRiteBit

KB021:
 MOV KbdState, BL ;Put Kbd Shift State back
 JMP XLateDone ;

KB022:
 MOV KbdLock, CL ;Put Kbd Lock State back
 CALL SetKbdLEDS ;Set LEDs on keyboard
 JMP XLateRawKBD ;

 ;We jumped here if it wasn’t a key that is specially handled

KB023:
 TEST AL, 80h ;Check for high bit (key-up code)
 JNZ XLateDone ;Go back, else fall through

 OR AL,AL ;Zero not a valid code
 JZ XLateDone ;Go back, else fall through

 ;If we got here, IT’S AN EDIT KEY DOWN!
 ;Now we lookup the code and do a single translation.

 AND EAX, 0FFh ;Chop off any upper bit junk
 MOV ESI, OFFSET KbdTable ;Set up to index table
 MOV DL, BYTE PTR [ESI+EAX] ;Save in DL
 OR AL,AL ;Zero not a valid code
 JZ XLateDone ;Go back, else fall through

MMURTL V1.0 Page 514 of 667

 MOV CL, KbdState ;Get Shift state
 MOV CH, KbdLock ;Get lock state

 ;TO let the user know if the key came from the Numeric
 ;keypad we set the high bits in the first translation
 ;table for these keys. This next piece of code tests for it
 ;and sets the low bit in DH if it its. DH is later moved
 ;into the high byte of the returned key code.

 MOV DH, 0
 TEST DL, 80h ;High bit set?
 MOV DH, 1 ;Indicates key came numeric pad

 ;See if shift key is down and shift all keys it is is

 TEST CL, ShftDownMask ;Either shift key down?
 JZ KB025 ;No, go look for locks
 JMP SHORT KB027 ;Yes, go do the translation

KB025: ;See if key is from Numerc Keypad (high bit will be set)
 TEST DL, 80h ;High bit set?
 JZ KB026 ;No
 AND CH, NmLockMask ;Yes, is NumLock ON
 JZ KB026
 CMP DL, 0ADh ;Do not shift DASH (-) Special Case
 JE KB026
 JMP SHORT KB027 ;Do the shift Xlation

KB026: ;See if Caps Lock is on and if key is between 61h and 7Ah
 ;do the translation

 TEST CH, CpLockMask ;Is CpLock ON
 JZ KB029 ;No
 CMP DL, 61h ;Is key >= ’a’
 JB KB029 ;No
 CMP DL, 7Ah ;Is key <= ’z’
 JA KB029 ;No
 ;Fall through to do the translation

KB027: ;Do the shift translation and leave in DL
 MOV AL, DL ;Put in AL
 AND EAX, 07Fh ;Chop all above 7 bits
 MOV ESI, OFFSET KbdTableS ;Set up to index table
 MOV DL, BYTE PTR [ESI+EAX] ;Save in DL
 ;Fall though to put key in final buffer

 ;Place DL in the LOW byte of the DWord to go into the
 ;final buffer (the data the user will get)
 ;If the high bit is set comming from the primary
 ;translation table, this means the key was from the
 ;numeric keypad so we set the numpad bit in status

KB029:
 MOV AH, DH
 SHL EAX, 8 ;Num Pad indicator
 MOV AL, KbdState ;Get Shift state
 MOV AH, KbdLock ;Get lock state

MMURTL V1.0 Page 515 of 667

 SHL EAX, 8
 AND DL, 7Fh ;Lop of high bit (if there)
 MOV AL, DL

 ;EAX now has the buffered info for the user (Key, Shifts & Locks)
 ;Now we put it in the DWord buffer if it is NOT a GLOBAL.
 ;If global, we put it in dGlobalKey.

 TEST AH, CtrlDownMask ;Either Ctrl Down?
 JZ KB029A ;No
 TEST AH, AltDownMask ;Either Alt Down?
 JZ KB029A ;No

 ;It IS a global key request!
 MOV dGlobalKey, EAX ;Save it
 JMP XLateRawKBD ;Back for more (if there is any)

KB029A:
 MOV EBX, dKBCnt ;See if buffer full
 CMP EBX, 64 ;number of DWords in final buffer
 JE XLateDone ;Buffer is FULL..
 MOV ESI, pKBIn ;Get ptr to next IN to final buffer
 MOV [ESI], EAX ;Move into buf
 INC dKBCnt ;One more DWord in the buf
 ADD ESI, 4
 CMP ESI, OFFSET rgdKBBuf+100h
 JB KB030
 MOV ESI, OFFSET rgdKBBuf ;Reset to buf beginning

KB030:
 MOV pKBIn, ESI ;Save ptr to next in
 JMP XLateRawKBD

XlateDone:
 XOR EAX, EAX
 RETN

Reading the Final Buffer

This routine is called to take a key out of the final buffer if one is available. This buffer
rgdKBBuf holds the 32-bit full encoded key value. See listing 25.4.

Listing 25.4.Read Keyboard Buffer Code

; Returns a keyboard code from FINAL keyboard buffer.
; Returns zero in EAX if buffer is empty.
;
; IN : Nothing
; OUT: EAX has Key or 0 if none
; USED: EAX, ESI
; MODIFIES: dKBCnt, pKBOut
;
ReadKBFinal:

MMURTL V1.0 Page 516 of 667

 MOV EAX, dKBCnt
 CMP EAX, 0
 JE KBFDone ;Nothing final buffer
 DEC dKBCnt ;One more DWord in the buf
 MOV ESI, pKBOut ;ptr to next code out
 MOV EAX, [ESI] ;Put it in EAX
 ADD ESI, 4 ;Next code please...
 CMP ESI, OFFSET rgdKBBuf+100h ;Past end of buff?
 JB KBF02 ;No
 MOV ESI, OFFSET rgdKBBuf ;Yes, Reset to beginning

KBF02:
 MOV pKBOut, ESI ;Update pKBOut

KBFDone:
 RETN

The Keyboard Service

KBDServiceTask is a complete system service. It services five codes including Abort (0). It
handles requests from multiple clients; this means it must hold the requests for those jobs that do
not own the keyboard.

When the keyboard is reassigned to a new job, the requests it was holding must be reevaluated to
see if the new job had an outstanding keyboard request.

This service also accepts messages from the keyboard ISR to indicate that translation of raw
keyboard scan codes must be done. See listing 25.5.

Listing 25.5.Keyboard system service code.

;==

; This is the keyboard Service task. It is an infinite loop
; that services requests from users of the keyboard. It
; calls XLateRawKBD to process raw keyboard buffer data,
; and waits at the KeyBoard Service Main Exchange for users.
; When it gets a request it checks the service code and handles
; it accordingly.

KBDServiceTask:
 CALL XLateRawKBD ;Processes RAW buffer if not empty

 CMP DWORD PTR dGlobalKey, 0
 JE KST01 ;No global key came in

KBDGlobal1:
 PUSH KbdGlobExch
 PUSH OFFSET KbdMsgBuf1L ;Where to return pRqBlk
 CALL FWORD PTR _CheckMsg ;Check to see if RqWaiting
 OR EAX, EAX ;Yes if ZERO

MMURTL V1.0 Page 517 of 667

 JZ KBDGlobal2 ;Rq waiting for global
 MOV DWORD PTR dGlobalKey, 0 ;Wipe out global key (no one wants it)
 JMP KBDServiceTask ;Start over again

KBDGlobal2:
 MOV EBX, KbdMsgBuf1L ;pRqBlk into EBX
 MOV ESI, [EBX+pData1] ;Ptr where to return key
 OR ESI, ESI ;Is it null?? (Bad news if so)
 JNZ KBDGlobal3 ;No, probably good ptr
 PUSH EBX ;Yes, BAD PTR. Push pRqBlk
 PUSH ErcNullPtr ;Push error
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top

KBDGlobal3:
 MOV EDX, dGlobalKey
 MOV [ESI], EDX ;Give em the key!
 PUSH EBX ;Push pRqBlk
 PUSH 0 ;Push NO ERROR
 CALL FWORD PTR _Respond
 JMP KBDGlobal1 ;Go back to see if other want it

KST01:
 CMP DWORD PTR ddVidOwner, 2 ;Debugger has video
 JNE KST01ND ;NOT in Debugger
 PUSH 20
 CALL FWORD PTR _Sleep ;
 CALL XLateRawKBD ;Processes RAW buffer
 JMP KBDServiceTask ;Go back to the top

KST01ND:
 PUSH KbdMainExch ;See if someones "Requesting"
 PUSH OFFSET KbdMsgBuf1L ;
 CALL FWORD PTR _WaitMsg ;Wait for the message

 ;If we got here we got a Request or Msg from ISR
 CMP DWORD PTR KbdMsgBuf1L, 0FFFFFFFFh ;Is it a msg from the KBD
ISR?
 JNE KST02 ;No, jump to handle Request

 ;If we got here, ISR sent msg to us (something in the buffer)

 CALL XLateRawKBD ;Processes RAW buffer

 CMP DWORD PTR dGlobalKey, 0
 JNE KBDGlobal1 ;A global key came in

 PUSH KbdWaitExch ;See if owner is waiting for a key
 PUSH OFFSET KbdMsgBuf1L ;Where to return Request or msg
 CALL FWORD PTR _CheckMsg ;Check to see if another msg came in
 OR EAX, EAX ;Yes if ZERO
 JNZ KBDServiceTask ;No Rq/Msg waiting, Go back to the top
 ;Fall thru to check request
KST02:
 ;If we got here we’ve got a Request from Main or Wait Exch
 MOV EBX, KbdMsgBuf1L ;pRqBlk into EBX
 MOV CX, [EBX+ServiceCode] ;Save in CX

MMURTL V1.0 Page 518 of 667

 CMP CX, 0 ;Job Abort Notify
 JE KSTAbort ;
 CMP CX, 1 ;ReadKbd
 JE KSTRead ;
 CMP CX, 2 ;ReadKbdGlobal
 JE KSTReadGlobal ;
 CMP CX, 3 ;CancelGlobal
 JE KSTCancelGlobal ;
 CMP CX, 4 ;AssignKBD
 JE KSTAssignKbd ;
 PUSH EBX ;HOMEY DON’T SERVICE THAT!
 PUSH ErcBadSvcCode ;Bad service code
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top

;---
KSTRead:
 MOV EAX, [EBX+RqOwnerJob] ;Who’s Request is it?
 CMP EAX, KbdOwner
 JE KSTRead00 ;This guy owns it!
 PUSH EBX ;Not the owner, so send to Hold Exch
 PUSH KbdHoldExch ;
 CALL FWORD PTR _MoveRequest
 JMP KBDServiceTask ;Go back to the top

KSTRead00:
 CALL ReadKBFinal ;Get Code from Buf (Uses EAX, ESI)
 CMP EAX, 0 ;No Key in Final Buffer
 JE KSTRead02 ;Go see if they asked to wait
 MOV ESI, [EBX+pData1] ;Ptr where to return key
 CMP ESI, 0 ;Is it null?? (Bad news if so)
 JNE KSTRead01 ;No, probably good ptr
 PUSH EBX ;Yes, BAD PTR. Push pRqBlk
 PUSH ErcNullPtr ;Push error
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top

KSTRead01:
 MOV [ESI], EAX ;Give them the key code
 PUSH EBX ;RqHandle
 PUSH 0 ;NO Error
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top

KSTRead02:
 CMP DWORD PTR [EBX+dData0], 0
 ;Wait for key? 0 in dData0 = Don’t wait
 JNE KSTRead04 ;Yes
 PUSH EBX
 PUSH ErcNoKeyAvail ;Error Code (No key to give you)
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top

KSTRead04:
 PUSH EBX ;They opted to wait for a key
 PUSH KbdWaitExch ;Send em to the wait exch

MMURTL V1.0 Page 519 of 667

 CALL FWORD PTR _MoveRequest
 JMP KBDServiceTask ;Go back to the top
;--

KSTAbort:
 ;Respond to all requests we are holding for Job in dData0
 ;with Erc with ErcOwnerAbort. Then respond to Abort
 ;request last. Requests can be at the HoldExch, the WaitExch,
 ;or the GlobalKeyExch. We must chack all 3!
 ;Save abort job for comparison

 MOV EAX, [EBX+dData0] ;Get aborting job number
 MOV KbdAbortJob, EAX ;this is aborting job

KSTAbort10: ;Check the WaitExch
 PUSH KbdWaitExch ;See if he was "waiting" for a key
 PUSH OFFSET KbdMsgBuf2L ;Where to return Request
 CALL FWORD PTR _CheckMsg ;
 OR EAX, EAX ;Yes (someones waiting) if ZERO
 JNZ KSTAbort20 ;No more waiters
 MOV EDX, KbdMsgBuf2L ;pRq of holding job into EDX
 MOV EBX, [EDX+RqOwnerJob]
 CMP EBX, KbdAbortJob
 JE KSTAbort11 ;Go to respond with Erc
 PUSH EDX ;Else move Request to MainKbd Exch
 PUSH KbdMainExch ; to be reevaluated
 CALL FWORD PTR _MoveRequest
 JMP KSTAbort10 ;Go back to look for more waiters

KSTAbort11: ;
 PUSH EDX ;Respond to this request
 PUSH ErcOwnerAbort ;cause he’s dead
 CALL FWORD PTR _Respond
 JMP SHORT KSTAbort10

KSTAbort20: ;Check HoldExch for dead job
 PUSH KbdHoldExch ;See if anyone is on hold
 PUSH OFFSET KbdMsgBuf2L ;Where to return Request
 CALL FWORD PTR _CheckMsg ;
 OR EAX, EAX ;Yes (someones holding) if ZERO
 JNZ KSTAbort30 ;No more holders
 MOV EDX, KbdMsgBuf2L ;pRq of holding job into EDX
 MOV EBX, [EDX+RqOwnerJob]
 CMP EBX, KbdAbortJob
 JE KSTAbort21 ;Go to respond with Erc
 PUSH EDX ;Else move Request to MainKbd Exch
 PUSH KbdMainExch ; to be reevaluated. It’s not him.
 CALL FWORD PTR _MoveRequest
 JMP KSTAbort20 ;Go back to look for more holders

KSTAbort21: ;
 PUSH EDX ;Respond to this request
 PUSH ErcOwnerAbort ;cause he’s dead
 CALL FWORD PTR _Respond
 JMP SHORT KSTAbort20 ;Go back to look for more holders

KSTAbort30: ;Check GlobalExch for dead job

MMURTL V1.0 Page 520 of 667

 PUSH KbdGlobExch ;See if anyone is at global
 PUSH OFFSET KbdMsgBuf2L ;Where to return Request
 CALL FWORD PTR _CheckMsg ;
 OR EAX, EAX ;Yes (someones holding) if ZERO
 JNZ KSTAbort40 ;No more holders
 MOV EDX, KbdMsgBuf2L ;pRq of holding job into EDX
 MOV EBX, [EDX+RqOwnerJob]
 CMP EBX, KbdAbortJob
 JE KSTAbort31 ;Go to respond with Erc
 PUSH EDX ;Else move Request to MainKbd Exch
 PUSH KbdMainExch ; to be reevaluated
 CALL FWORD PTR _MoveRequest
 JMP KSTAbort30 ;Go back to look for more globals

KSTAbort31: ;
 PUSH EDX ;Respond to this request
 PUSH ErcOwnerAbort ;cause he’s dead
 CALL FWORD PTR _Respond
 JMP SHORT KSTAbort30

KSTAbort40: ;Respond to original abort Req
 MOV EBX, KbdMsgBuf1L ;pRqBlk of original Abort Request
 PUSH EBX ;
 PUSH 0 ;Error Code (OK)
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top
;--

KSTReadGlobal:
 PUSH EBX ;They want a global key
 PUSH KbdGlobExch ;Send em to the Global exch
 CALL FWORD PTR _MoveRequest
 JMP KBDServiceTask ;Go back to the top
;---
;Assign a new owner for the keyboard. We must check to see
;if the new owner had any keyboard requests on hold.
;We do this by sending al the requests that were on hold
;back to the main exchange to be reevaluated.
;Then we respond to the original request.

KSTAssignKBD:
 ;Change owner of Kbd
 MOV EAX, [EBX+dData0] ;Get new owner
 CMP EAX, KbdOwner
 JNE KSTAssign01 ;New Owner!
 PUSH EBX ;Same owner
 PUSH 0 ;Error Code (OK)
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top

KSTAssign01:
 MOV KbdOwner, EAX ;Set new owner

KSTAssign02: ;Move all waiters to main exch
 PUSH KbdWaitExch ;See if anyone is "waiting" for a key
 PUSH OFFSET KbdMsgBuf2L ;Where to return Request
 CALL FWORD PTR _CheckMsg ;

MMURTL V1.0 Page 521 of 667

 OR EAX, EAX ;Yes (someones waiting) if ZERO
 JNZ KSTAssign03 ;No more waiters
 MOV EDX, KbdMsgBuf2L ;pRq into EDX
 PUSH EDX ;Move Request to MainKbd Exch
 PUSH KbdMainExch ; to be reevaluated
 CALL FWORD PTR _MoveRequest
 JMP KSTAssign02 ;Go back to look for more waiters

KSTAssign03: ;Waiter have been move, Respond to Req
 PUSH KbdHoldExch ;See if anyone is on hold
 PUSH OFFSET KbdMsgBuf2L ;Where to return Request
 CALL FWORD PTR _CheckMsg ;
 OR EAX, EAX ;Yes if ZERO
 JNZ KSTAssign04 ;No more holders
 MOV EDX, KbdMsgBuf2L ;pRq into EDX
 PUSH EDX ;Move Request to MainKbd Exch
 PUSH KbdMainExch ; to be reevaluated
 CALL FWORD PTR _MoveRequest
 JMP KSTAssign03 ;Go back to look for more holders

KSTAssign04: ;Waiter have been move, Respond to Req
 MOV EBX, KbdMsgBuf1L ;pRqBlk of original Assign Request
 PUSH EBX ;
 PUSH 0 ;Error Code (OK)
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top
;---

KSTCancelGlobal:
 ;Rifle thru Global Exch and respond with ErcNoKeyAvail
 ;to those with the same JobNum as dData0
 MOV EAX, [EBX+dData0] ;Save Job that is cancelling global request
 MOV KbdCancelJob, EAX ;

KSTCancel10: ;Check GlobalExch for canceled job
 PUSH KbdGlobExch ;See if anyone is at global
 PUSH OFFSET KbdMsgBuf2L ;Where to return Request
 CALL FWORD PTR _CheckMsg ;
 OR EAX, EAX ;Yes (someones holding) if ZERO
 JNZ KSTCancel20 ;No more globals
 MOV EDX, KbdMsgBuf2L ;pRq of holding job into EDX
 MOV EBX, [EDX+RqOwnerJob]
 CMP EBX, KbdCancelJob
 JE KSTCancel11 ;Go to respond with Erc
 PUSH EDX ;Else move Request to MainKbd Exch
 PUSH KbdMainExch ; to be reevaluated
 CALL FWORD PTR _MoveRequest
 JMP KSTCancel10 ;Go back to look for more globals

KSTCancel11: ;
 PUSH EDX ;Respond to this request
 PUSH ErcNoKeyAvail ;cause he cancelled it!
 CALL FWORD PTR _Respond
 JMP SHORT KSTCancel10 ;Back to check for more

KSTCancel20: ;Respond to original cancel Req
 MOV EBX, KbdMsgBuf1L ;pRqBlk of original Request

MMURTL V1.0 Page 522 of 667

 PUSH EBX ;
 PUSH 0 ;Error Code (OK)
 CALL FWORD PTR _Respond
 JMP KBDServiceTask ;Go back to the top
;===

Keyboard Procedural Interface

When programs don’t need the power of the request interface, such as multiple asynchronous
requests, services can provide a blocking procedural call to make the application’s job easier.

This code actually makes the request for the caller. He doesn’t have to know anything about the
request interface to use this. See listing 25.6.

Listing 25.6 - Code for Blocking Read Keyboard Call

;PUBLIC blocking call to read the keyboard. This uses the
;Default TSS exchange and the stack to make the request to
;the keyboard service for the caller. The request is a standard
;service code one (Wait On Key) request.
;If fWait is NON-ZERO, this will not return without a key unless
;a kernel/fatal error occurs.
;
;The call is fully reentrant (it has to be...).
;
; Procedural interface:
;
; ReadKbd(pKeyCodeRet, fWait): dError
;
; pKeyCodeRet is a pointer to a DWORD where the keycode is returned.
; [EBP+16]
; fWait is NON-ZERO to wait for a key.
; [EBP+12]
;
; Stack Variables:
; Hndl [EBP-4]
;
PUBLIC __ReadKBD:
 PUSH EBP ; Save the Previous FramePtr
 MOV EBP,ESP ; Set up New FramePtr
 SUB ESP, 4 ; Two DWORD local vars

 MOV EAX, OFFSET KBDSvcName ;’KEYBOARD ’
 PUSH EAX

 PUSH 1 ;Service Code (Read Keyboard)

 MOV ECX,pRunTSS ;Get TSS_Exch for our use
 MOV EBX,[ECX+TSS_Exch] ;Exchange (TSS Exch)
 PUSH EBX ;

 LEA EAX, [EBP-4] ;Rq Handle (Local Var)

MMURTL V1.0 Page 523 of 667

 PUSH EAX

 PUSH 0 ;npSend
 MOV EAX, [EBP+16] ;Key Code return (Their Ptr)
 PUSH EAX ;pData1
 PUSH 4 ;Size of key code
 PUSH 0 ;pData2
 PUSH 0 ;cbData2

 XOR EAX, EAX
 CMP DWORD PTR [EBP+12], 0 ;Don’t wait for Key?
 JE ReadKbd1 ;No wait
 MOV EAX, 1 ;Set up to wait!

ReadKbd1:
 PUSH EAX ;Wait value (dData0)
 PUSH 0
 PUSH 0
 CALL FWORD PTR _Request ;make the Request

 ;The request is made. Now we call Wait!

 MOV ECX,pRunTSS ;Get TSS_Exch for our use
 MOV EBX,[ECX+TSS_Exch] ;
 PUSH EBX ;Pass exchange (for WaitMsg)
 ADD ECX,TSS_Msg ;Offset of TSS msg area
 PUSH ECX
 CALL FWORD PTR _WaitMsg ;Wait on it

 ;When we get here the caller should have the key code
 ;HOWEVER, we want to pass any errors back via EAX

 OR EAX, EAX ;Was there a kernel error?
 JNZ ReadKbdEnd ;YES.... bummer
 MOV ECX,pRunTSS ;Get TSS_Msg area so we can get error
 ADD ECX,TSS_Msg ;Offset of TSS msg area
 MOV EBX, [ECX] ;pRqBlk (lets look!!)
 MOV EAX, [ECX+4] ;Service error in second DWord

ReadKbdEnd:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8 ; Rtn to Caller & Remove Params from stack

Debugger Keyboard

The debugger requires a special function to read the keyboard. This allows the debugger to
completely bypass the keyboard system service so it doesn’t have to go through the kernel for
anything. This reads keystrokes directly from the final coded buffer. See listing 25.7.

Listing 25.7 - Debugger Read Keyboard Code

MMURTL V1.0 Page 524 of 667

;==
;Special Call for Debugger so it doesn’t have to pass thru
;the kernel Request mechanism for a keystroke.
;It acts like ReadKbd with fWait set to true.
;It sucks keys directly from the Final Keyboard buffer.
;
; Procedural interface:
;
; ReadDbgKbd(pKeyCodeRet)
;
; pKeyCodeRet is a pointer to a DWORD where the keycode is returned.
; [EBP+8]
;
PUBLIC ReadDbgKBD:
 PUSH EBP ; Save the Previous FramePtr
 MOV EBP,ESP ; Set up New FramePtr

RDKB0:
 CALL ReadKBFinal ;Get Code from Buf (Uses EAX, ESI)
 OR EAX, EAX ;Got a key?? (non zero)
 JNZ RDKB1 ;No. Loop back again
 PUSH 2 ;Sleep for 20 ms
 CALL FWORD PTR _Sleep
 JMP RDKB0 ;Check again

RDKB1:
 MOV ESI, [EBP+8] ;Ptr where to return key
 MOV [ESI], EAX
 XOR EAX, EAX
 MOV ESP,EBP ;
 POP EBP ;
 RETN 4 ; Rtn to Caller & Remove Params from stack

;===

Keyboard Hardware Set Up

InitKBD is called very early in the operating system initialization code to set up the keyboard
hardware.

The 8042 provides hardware interrupts, but we don’t have to call SetIRQVector() because the
keyboard interrupt routines address was known at build time. See listing 25.8.

Listing 25.8 - Code to Initialize the Keyboard Hardware

;This sets the Keyboard Scan Set to #2 with 8042 interpretation ON
;
PUBLIC InitKBD:

 PUSH 1 ;KBD IRQ
 CALL FWORD PTR _MaskIRQ

MMURTL V1.0 Page 525 of 667

 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,0FAh ;Set ALL keys typematic/make/break
 OUT DataPort,AL ;Send Command to KBD (not 8042)

 CALL OutBuffFull ;Eat response
 IN AL, DATAPORT

 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,0F0h ;Set Scan code set
 OUT DataPort,AL ;Send Command to KBD (not 8042)

 CALL OutBuffFull ;Eat response
 IN AL, DATAPORT

 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,02h ;Scan set 2
 OUT DataPort,AL ;Send Command

 CALL OutBuffFull ;Eat response
 IN AL, DATAPORT

 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,060h ;Set up to write 8042 command byte
 OUT COMMANDPORT,AL ;Send Command
 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,45h ;Enable IBM Xlate
 OUT DataPort,AL ;Send Command

 PUSH 1 ;KBD IRQ
 CALL FWORD PTR _UnMaskIRQ

 CALL SetKbdLEDs
 RETN
;===

Keyboard Service Initialization

InitKBDService is called from the monitor to start the keyboard service. The service is a
completely separate task that runs in a loop servicing requests. This will only be called once and
it is called after the keyboard hardware and the keyboard ISR are functional. See listing 25.9.

Listing 25.9 - Keyboard Service Initialization

PUBLIC _InitKBDService:

 ;All initial requests and messages from the ISR come to
 ;this exchange

 MOV EAX, OFFSET KbdMainExch ;Alloc Main Kbd exch for service
 PUSH EAX
 CALL FWORD PTR _AllocExch

MMURTL V1.0 Page 526 of 667

 OR EAX, EAX ;Check for error on AllocExch
 JNZ InitKBDSvcEnd ;YUP, we got bad problems

 ;Requests for ReadkeyBoard (ScvCode #1) that are from jobs
 ;that do NOT currently own the keyboard get sent here using
 ;MoveRequest.

 MOV EAX, OFFSET KbdHoldExch ;Alloc Hold Kbd exch for Kbd service
 PUSH EAX
 CALL FWORD PTR _AllocExch
 OR EAX, EAX ;Check for error on AllocExch
 JNZ InitKBDSvcEnd ;YUP, we got bad problems

 ;Requests for ReadkeyGlobal (SvcCode #3) wait here until we
 ;get a global key from the keyboard.
 ;
 MOV EAX, OFFSET KbdGlobExch ;Alloc Global Wait exch for Kbd service
 PUSH EAX
 CALL FWORD PTR _AllocExch
 OR EAX, EAX ;Check for error on AllocExch
 JNZ InitKBDSvcEnd ;YUP, we got bad problems

 ;Requests for ReadkeyBoard (ScvCode #1) that are from job
 ;that currently owns the keyboard waits here if it wants
 ;to wait for a key.

 MOV EAX, OFFSET KbdWaitExch ;Alloc Hold Kbd exch for Kbd service
 PUSH EAX
 CALL FWORD PTR _AllocExch
 OR EAX, EAX ;Check for error on AllocExch
 JNZ InitKBDSvcEnd ;YUP, we got bad problems

 ;Used to "rifle" thru RqBlks waiting at an exchange.

 MOV EAX, OFFSET KbdTempExch ;Alloc Tmp exch for Kbd service
 PUSH EAX
 CALL FWORD PTR _AllocExch
 OR EAX, EAX ;Check for error on AllocExch
 JNZ InitKBDSvcEnd ;YUP, we got bad problems

 ;Spawn the Keyboard Service task

 MOV EAX, OFFSET KBDServiceTask
 PUSH EAX
 PUSH 7 ;Priority
 PUSH 0 ;fDebug
 MOV EAX, OFFSET KbdSvcStackTop
 PUSH EAX
 PUSH 1 ;OS Job task
 CALL FWORD PTR _SpawnTask
 OR EAX, EAX ;Check for error on AllocExch
 JNZ InitKBDSvcEnd ;YUP, we got bad problems

 MOV EAX, OFFSET KBDSvcName
 PUSH EAX
 PUSH KbdMainExch
 CALL FWORD PTR _RegisterSvc

MMURTL V1.0 Page 527 of 667

InitKBDSvcEnd:
 MOV BYTE PTR fKBDInitDone, 1 ;We’re UP!
 RETN
;
;===
;This tells the 8042 Controller to Disable the Keyboard device.
;===

KbdDisable:
 PUSH EAX
 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,0ADh ;Set Command to "Write the 8042 Command Byte"
 OUT COMMANDPORT,AL ;Send Command
 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 POP EAX
 RETN

Hardware Helpers

The rest of the routines are used for various hardware functions, such as reading or writing the
8042 or keyboard data ports, as well as setting the keyboard LED’s to the proper state. See listing
25.10.

Listing 25.10 - Low-level Keyboard Control Code

;===
; This tells the 8042 Controller to Enable the Keyboard Device.
;===

KbdEnable:
 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,0AEh ;Set Command to "Write the 8042 Command Byte"
 OUT COMMANDPORT,AL ;Send Command
 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 RETN
;===
; Waits until the 8042 Input Buffer is EMPTY
;===

InBuffEmpty:
 PUSH EAX
 PUSH ECX
 MOV ECX,2FFFFh ;check 128k times
IBE:
 JMP IBE1
IBE1:
 JMP IBE2
IBE2:
 IN AL,STATUSPORT ;Read Status Byte into AL
 TEST AL,INPUTBUFFFULL ;Test The Input Buffer Full Bit

MMURTL V1.0 Page 528 of 667

 LOOPNZ IBE
 POP ECX
 POP EAX
 RETN
;===
; Waits until the 8042 Output Buffer is FULL so we can read it
;===
; Before calling this makes sure that the Keyboard interrupts have been
; masked so the keyboard interrupt doesn’t eat the byte you’re
; looking for!!
;
OutBuffFull:
 PUSH EAX
 PUSH ECX
 MOV ECX,2FFFFh
OBF:
 JMP OBF1:
OBF1:
 JMP OBF2:
OBF2:
 IN AL,STATUSPORT ;Read Status Byte into AL
 TEST AL,OUTPUTBUFFFULL ;Test The Output Buffer Full Bit
 LOOPZ OBF
 POP ECX
 POP EAX
 RETN

;===
; This sets the indicators on the keyboard based on data in KbdState
;===
SetKbdLEDs:
 PUSH EAX

 PUSH 1 ;KBD IRQ
 CALL FWORD PTR _MaskIRQ

 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,0EDh ;Set/Reset Status Indicators
 OUT DATAPORT,AL ;Send KBD Command

 CALL OutBuffFull ;Eat response
 IN AL, DATAPORT

 CALL InBuffEmpty ;Wait for Input Buffer to Empty
 MOV AL,KbdLock ;Get Current Lock Status Byte
 AND AL,00000111b ;Mask all but low order 3 bits
 OUT DATAPORT,AL ;Send KBD Command

 CALL OutBuffFull ;Eat response
 IN AL, DATAPORT

 PUSH 1 ;KBD IRQ
 CALL FWORD PTR _UnMaskIRQ
 POP EAX
 RETN

MMURTL V1.0 Page 529 of 667

Chapter 26, Video Code

Introduction

The code presented in this chapter implements a VGA text-based video driver. This driver does
not use the standard MMURTL device driver interface. The reason it doesn’t use the interface is
that it was one of the first things written for the operating system. All of my earliest testing
depended on being able to see results from test programs.

Virtual Video Concept

In a multitasking operating system that supports text-based video, more than one application at a
time may need to write to or read data from it's video screen buffer. This would not be possible if
all of the programs running wrote to the real video screen buffer. In VGA Text mode, which is
the default setup in BIOS on machines that have VGA monitors, there are actually eight buffers
available. You could use those and switch between them, but doing so would limit you to eight
active programs.

To allow as many programs as possible, you allocate a page of system memory (4096 bytes) for
each job (program) as a virtual video buffer. This solved another problem for the future. If I
want to add a graphical user interface, text-based programs will still run and can be displayed in
a window directly from each job's buffer if needed.

The video status for each job is kept in its job control block (JCB). The status includes screen
coordinates, video screen size, video mode, a pointer to the job's virtual buffer, and also a pointer
to the current active buffer.

When a new task is assigned to the video screen, the contents of it virtual buffer are copied to the
real screen buffer, and the pointer to the current active buffer is changed to point to the real video
screen buffer. The reverse occurs for the old job (the one that was using the real screen). The
real buffer is copied into it's virtual buffers, and its active pointer is changed back to it's own
buffer.

VGA Text Video

Many books have been written about how to control standard VGA video hardware, and it seems
to be fairly standardized as well. I am not going to go into great detail on how it works for two
reasons. First, I'm not a video "guru," and second, I let the BIOS code in the machine set up the
standard VGA text mode. You may want to do this differently in your system. If so, the shelves
of your local bookstore are filled with brain dumps from people that have much more knowledge
than I. You'll find implementing this code was really a simplicity issue with me.

MMURTL V1.0 Page 530 of 667

I control the registers that deal with cursor positioning and which video buffer I used. I only use
one. These registers are defined in the data section of the code listing later in this chapter.

The Video Code

 You will notice that all of this code is in assembler (as is most of MMURTL). When I first
started testing MMURTL, assembler was all I could work with, and I needed to see things. You
can only work “blind” for so long.

A very important point to bring out is that this code is completely re-entrant, with the exception
of the those calls that actually manipulate video hardware. Only one program on the system
should act as a video and keyboard manager (such as the MMURTL Monitor).

The first item in the source file (which is the way all of the MMURTL source files are set up) is
the data declarations and INCLUDE files which define certain constant values. These include
constants for the video hardware. The code in Listing 26.1 presents the initial items in the source
file.

Listing 26.1.Video constants and data

.DATA
.INCLUDE MOSEDF.INC
.INCLUDE JOB.INC

;Video Equates and Types
;
CRTCPort1 EQU 03D4h ;Index port for CRTC
CRTCPort2 EQU 03D5h ;Data port for CRTC
CRTCAddHi EQU 0Ch ;Register for lo byte of Video address
CRTCAddLo EQU 0Dh ;Register for lo byte of Video address
CRTCCurHi EQU 0Eh ;Register for lo byte of Cursor address
CRTCCurLo EQU 0Fh ;Register for lo byte of Cursor address
CRTC0C DB 0 ;CRT Reg 0C HiByte address value
CRTC0D DB 0 ;CRT Reg 0D LoByte address value

PUBLIC ddVidOwner DD 1 ;JCB that currently owns video
 ;Default to monitor (Job 1)

;End of Data & Equates
;
;==
; BEGIN INTERNAL CODE FOR VIDEO
;==
;
.CODE
;
EXTRN GetpJCB NEAR
EXTRN GetpCrntJCB NEAR

MMURTL V1.0 Page 531 of 667

EXTRN ReadDbgKbd NEAR
EXTRN GetCrntJobNum NEAR

The InitVideo() makes video screen 0 (zero) the default screen for standard VGA hardware.
This makes the VGA text base address 0B8000h. This address is a constant in one of the
INCLUDE files called VGATextBase. This is only called once when the operating system is
initialized. Data ports on standard VGA video hardware are accessed as an array with an index.
See listing 26.2.

Listing 26.2 - Code to Initialize Video

PUBLIC InitVideo:
 MOV AL, CRTCAddHi ;Index of hi byte
 MOV DX, CRTCPort1 ;Index Port
 OUT DX, AL
 MOV AL, CRTC0C ;hi byte value to send
 MOV DX, CRTCPort2 ;Data Port
 OUT DX, AL

 MOV AL, CRTCAddLo ;Index of lo byte
 MOV DX, CRTCPort1 ;Index Port
 OUT DX, AL
 MOV AL, CRTC0D ;lo byte value to send
 MOV DX, CRTCPort2 ;Data Port
 OUT DX, AL
 RETN

;===
; BEGIN PUBLIC CODE FOR VIDEO
;===

SetVidOwner(ddJobNum) selects the screen that you see. This call is used by the monitor in
conjunction with the SetKbdOwner call to change which application gets the keystrokes and
video, the application should be the same for both. The internal debugger is the only code that
will use this call and not move the keyboard at the same time. This is because the debugger has
it’s own keyboard code so I could debug the real keyboard code. Don’t even ask how I debugged
the debugger keyboard code. It certainly wasn’t easy.

The parameter (ddJobNum) is the new job to get the active screen (the one to be displayed). As
always, if the call was successful, EAX returns 0. See listing 26.3.

Listing 26.3 - Code to Set the Video Owner.

ddJobVidCV EQU DWORD PTR [EBP+12]

PUBLIC __SetVidOwner:
 PUSH EBP ;
 MOV EBP,ESP ;

MMURTL V1.0 Page 532 of 667

 MOV EAX, ddJobVidCV ;
 CMP EAX, ddVidOwner ;Already own it?
 JNE ChgVid01 ;No
 XOR EAX, EAX ;Yes
 JMP ChgVidDone
ChgVid01:
 CALL GetpJCB ;Leaves ptr to new vid JCB in EAX
 CMP DWORD PTR [EAX+pVidMem] ,0 ;Got valid video memory???
 JNE ChgVid02 ;Yes
 MOV EAX, ErcVidNum ;NO! Give em an error!
 JMP ChgVidDone
ChgVid02:
 ;Save data on screen to CURRENT job’s pVirtVid
 MOV EAX, ddVidOwner
 CALL GetpJCB
 PUSH VGATextBase ;Source
 MOV EBX, [EAX+pVirtVid] ;Destination
 PUSH EBX
 PUSH 4000 ;Size of video
 CALL FWORD PTR _CopyData ;Do it!

 ;Make pVidMem same as pVirtVid for CURRENT OWNER
 MOV EAX, ddVidOwner
 CALL GetpJCB ;Leaves ptr to new vid JCB in EAX
 MOV EBX, [EAX+pVirtVid]
 MOV [EAX+pVidMem], EBX

 ;Update current video owner to NEW owner

 MOV EAX, ddJobVidCV ;
 MOV ddVidOwner, EAX

 ;Copy in Data from new pVirtVid

 MOV EAX, ddVidOwner
 CALL GetpJCB
 MOV EBX, [EAX+pVirtVid] ;Source
 PUSH EBX
 PUSH VGATextBase ;Destination
 PUSH 4000 ;Size of video
 CALL FWORD PTR _CopyData ;Do it!

 ;Make new pVidMem real video screen for new owner

 MOV EAX, ddVidOwner
 CALL GetpJCB
 MOV EBX, VGATextBase
 MOV [EAX+pVidMem], EBX

 ;Set Cursor position

 MOV EAX, ddVidOwner
 CALL GetpJCB
 MOV ECX, EAX
 MOV EBX, [ECX+CrntX] ;Get current X for new screen
 MOV EAX, [EBX+CrntY] ;Current Y
 CALL HardXY ;Set it up

MMURTL V1.0 Page 533 of 667

 XOR EAX, EAX ;No Error
ChgVidDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4

The SetNormVid(dCharAttr) selects the normal background attribute and fill character used
by ClrScr and ScrollVid on the screen. The parameter dCharAttr (listed as ddNormVid in the
EQU statement in Listing 26.4) is the character and attribute values used in standard video
operation on the current screen. The ClrScr(), EditLine(), and ScrollVid() calls use this value.
It is saved in the JCB for each job. The EAX register returns zero for no error, and you’ll notice
that’s all it can return. See listing 26.4.

Listing 26.4 - Code to set Normal Video Attribute.

ddNormVid EQU DWORD PTR [EBP+12]

PUBLIC __SetNormVid:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;pJCB -> EAX
 MOV EBX, ddNormVid ;
 MOV [EAX+NormAttr], EBX ;
 XOR EAX, EAX
 POP EBP ;
 RETF 4

The GetNormVid(pVidRet) call returns the value the normal screen attribute. This will get the
value that is set with the SetNormVid() call. This call expects a pointer to a byte where this
value is returned. If you noticed that you only return a byte although you passed in a word to
SetNormVid(), you are correct. There’s no mistake; The upper 3 bytes really aren't used (yet).
See Listing 26.5.

Listing 26.5 - Code to get the Normal Video Attribute

pdNormVidRet EQU DWORD PTR [EBP+12]

PUBLIC __GetNormVid:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;pJCB -> EAX
 MOV EBX, [EAX+NormAttr] ;
 MOV ESI, pdNormVidRet ;
 MOV [ESI], BL ;
 XOR EAX, EAX
 POP EBP ;
 RETF 4

The GetVidOwner(pdJobNumRet) returns the job number that is currently assigned the
active video screen. See listing 26.6.

MMURTL V1.0 Page 534 of 667

Listing 26.6 - Code to Get the Current Video Owner

pVidNumRet EQU DWORD PTR [EBP+12]
;
PUBLIC __GetVidOwner:
 PUSH EBP ;
 MOV EBP,ESP ;
 MOV ESI, pVidNumRet ;
 MOV EAX, ddVidOwner ;
 MOV [ESI], EAX ;
 XOR EAX, EAX ; no error obviously
 MOV ESP,EBP ;
 POP EBP ;
 RETF 4

The ClrScr() call clears the screen for the executing job. If this is the active screen, the real
video buffers get wiped. If not, only the caller’s virtual video buffer gets cleared. This uses the
value that you set in SetNormVid() for the color attribute and a space for the character. See
Listing 26.7.

Listing 26.7 - Code to Clear the Screen

PUBLIC __ClrScr:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX
 MOV EDI,[EBX+pVidMem] ;EDI points to his video memory
 MOV EAX, [EBX+NormAttr] ;Attr
 SHL EAX, 8 ;
 MOV AL, 20h ;
 MOV DX, AX
 SHL EAX, 16
 MOV AX, DX ;Fill Char & Attr
 MOV ECX,0400h
 CLD
 REP STOSD
 PUSH 0
 PUSH 0
 CALL FWORD PTR _SetXY ;Erc in EAX on Return
 MOV ESP,EBP ;
 POP EBP ;
 RETF

The TTYOut(pTextOut, ddTextOut, ddAttrib) function translates the text buffer pointed to
with pTextOut into a stream of characters placed in the callers video buffer. The beginning X
and Y coordinates are those found in the caller’s JCB. ddTextOut is the number of chars of text
in the buffer you are pointing to, and ddAttrib is the attribute or color you want for all of the
characters.

MMURTL V1.0 Page 535 of 667

The following characters in the stream are interpreted as follows (listed in hex):

0A - Line Feed. The cursor (next active character placement) will be on the following line at
column 0. If this line is below the bottom of the screen, the entire screen will be scrolled up one
line, the bottom line will be blanked, and the cursor will be placed on the last line in the first
column.
0D - Carriage Return. The Cursor will be moved to column zero on the current line.
08 - backspace. The cursor will be moved one column to the left. If already at column 0,
Backspace will have no effect. The backspace is nondestructive (no character values are
changed).

I will eventually add 07h (Bell), 07F (Delete), and 0Ch (Form Feed). If you want to go beyond
these, you may consider writing an ANSI device driver instead of modifying this code.

Listing 26.8 - Code for TTY Stream Output to Screen.

pTextOut EQU DWORD PTR [EBP+20]
sTextOut EQU DWORD PTR [EBP+16]
dAttrText EQU DWORD PTR [EBP+12]

DataByte EQU BYTE PTR [ECX]

PUBLIC __TTYOut:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX
 MOV EAX, sTextOut ;make sure count isn’t null
 OR EAX, EAX
 JZ TTYDone

TTY00:
 MOV EAX,[EBX+CrntX] ; EAX has CrntX (col)
 MOV EDX,[EBX+CrntY] ; EDX has CrntY (line)
 MOV ECX,pTextOut

 CMP DataByte,0Ah ; LF?
 JNE TTY02
 INC EDX
 CMP EDX,[EBX+nLines] ; Equal to or past the bottom?
 JB TTY06 ; No
 JMP TTYScr ; Yes, goto scroll
TTY02:
 CMP DataByte,0Dh ; CR?
 JNE TTY03
 MOV EAX,0
 JMP TTY06
TTY03:
 CMP DataByte,08h ; BackSpace?
 JNE TTY04
 CMP EAX,0

MMURTL V1.0 Page 536 of 667

 JE TTY04
 DEC EAX
 JMP TTY06
TTY04:
 PUSH EBX ;Save pointer to VCB

 PUSH EAX ;X (Param 1)
 PUSH EDX ;Y (Param 2)
 PUSH ECX ;pointer to text char (Param3)
 PUSH 1 ;Param 4 (nchars)
 MOV ECX,dAttrText ;
 PUSH ECX ;Param 5
 CALL FWORD PTR _PutVidChars ;
 POP EBX ;restore ptr to VCB
 CMP EAX, 0
 JNE TTYDone
 MOV EAX, [EBX+CrntX]
 MOV EDX, [EBX+CrntY]
 INC EAX ;Next column
 CMP EAX,[EBX+nCols]
 JNE TTY06 ;Make cursor follow
 MOV EAX,0
 INC EDX
 CMP EDX,[EBX+nLines] ; past the bottom?
 JNE TTY06 ; No - goto 06 else fall thru

TTYScr:
 DEC EDX ; back up one line
 PUSH EAX ;Save registers (scroll eats em)
 PUSH EBX
 PUSH ECX
 PUSH EDX

 PUSH 0
 PUSH 0
 PUSH 80
 PUSH 25
 PUSH 1 ;fUP (non zero)
 CALL FWORD PTR _ScrollVid ;Ignore error
 POP EDX ;restore registers
 POP ECX
 POP EBX
 POP EAX ;Fall thru to

TTY06:
 PUSH EBX ;save ptr to pJCB

 PUSH EAX
 PUSH EDX
 CALL FWORD PTR _SetXY

 POP EBX ;Restore ptr to VCB
 CMP EAX, 0
 JNE TTYDone
 DEC sTextOut
 JZ TTYDone
 INC pTextOut

MMURTL V1.0 Page 537 of 667

 JMP TTY00 ; Go back for next char
TTYDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 12

The PutVidAttrs(ddCol, ddLine, sChars, dAttr) call sets screen colors (attributes) for the
positions and number of characters specified without affecting the current TTY coordinates or
the character data. It is independent of the current video "stream." This is a fill function and does
not set multiple independent attributes. See Listing 26.9

Listing 26.9.Code to Screen Video Attributes

oADDX EQU DWORD PTR [EBP+24] ;Param 1 COLUMN
oADDY EQU DWORD PTR [EBP+20] ;Param 2 LINE
sADDChars EQU DWORD PTR [EBP+16] ;Param 3 sChars
sADDColor EQU DWORD PTR [EBP+12] ;Param 4 Attr

PUBLIC __PutVidAttrs:
 PUSH EBP ;
 MOV EBP,ESP ;

 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX

 MOV EDI, [EBX+pVidMem] ;point to this VCBs video memory
 MOV EBX,oADDx ;x Position
 SHL EBX,1 ;Times 2
 MOV EAX,oADDy ;y Position
 MOV ECX,0A0h ;Times 160 (char/attrs per line)
 MUL ECX ;Times nColumns
 ADD EAX,EBX
 CMP EAX,0F9Eh ;Last legal posn on screen
 JBE PutAttrs00
 MOV EAX, ErcVidParam
 JMP PcADone
PutAttrs00:
 MOV ECX,sADDChars
 OR ECX, ECX
 JZ PcADone
 ADD EDI,EAX
 MOV EAX,sADDColor
 CLD
pcAMore:
 INC EDI ;Pass the char value
 STOSB ;Move Color in
 LOOP pcAMore
 XOR EAX, EAX ;No Error!
pcADone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 16

MMURTL V1.0 Page 538 of 667

The PutVidChars(ddCol,ddLine,pChars,sChars,ddAttrib) call places characters on the
screen without affecting the current TTY coordinates or the TTY data. It is independent of the
current video "stream." The parameters include the position (column and line), a pointer to the
characters to be placed, the count of characters, and the attribute.

The starting position in screen memory is (Line * 80 + (Column*2)). You alternate between
characters and attributes as we move through screen memory because this is how the video
hardware interprets its buffers for display (e.g., put character, then color, then character, then
color etc.). See listing 26.10.

Listing 26.10 - Code to Place Video chars Anywhere on the Screen

oDDX EQU DWORD PTR [EBP+28] ;Param 1 COLUMN
oDDY EQU DWORD PTR [EBP+24] ;Param 2 LINE
pDDChars EQU DWORD PTR [EBP+20] ;Param 3 pChars
sDDChars EQU DWORD PTR [EBP+16] ;Param 4 sChars
sDDColor EQU DWORD PTR [EBP+12] ;Param 5 Attr

PUBLIC __PutVidChars:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX

 MOV EDI, [EBX+pVidMem] ;point to this VCBs video memory
 MOV EBX,oDDx
 SHL EBX,1 ;Times 2
 MOV EAX,oDDy
 MOV ECX,0A0h ;Times 160
 MUL ECX ;Times nColumns
 ADD EAX,EBX
 CMP EAX,0F9Eh ;Last legal posn on screen
 JBE PutChars00
 MOV EAX, ErcVidParam
 JMP PcDone
PutChars00:
 MOV ECX,sDDChars
 OR ECX, ECX
 JZ PcDone
 MOV ESI,pDDChars
 ADD EDI,EAX
 MOV EAX,sDDColor
 CLD
pcMore:
 MOVSB ;Move Char in
 STOSB ;Move Color in
 LOOP pcMore
 XOR EAX, EAX ;No Error!
pcDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 20

MMURTL V1.0 Page 539 of 667

The GetVidChar(ddCol,ddLine,pCharRet,pAttrRet) call returns the current character and
attribute from the screen coordinates you specify. It doesn’t matter if the caller is the active video
screen or not. This is because the pointer in the JCB is set to either his virtual screen or the real
one, and this is the pointer you use to acquire the attribute. See Listing 26.11.

Listing 26.11.Code to Get a Character and Attribute.

oGDDX EQU DWORD PTR [EBP+24] ;Param 1 COLUMN
oGDDY EQU DWORD PTR [EBP+20] ;Param 2 LINE
pGDDCRet EQU DWORD PTR [EBP+16] ;Param 3 pCharRet
pGDDARet EQU DWORD PTR [EBP+12] ;Param 4 pAttrRet

PUBLIC __GetVidChar:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX

 MOV EDI, [EBX+pVidMem] ;point to this VCBs video memory
 MOV EBX,oGDDx
 SHL EBX,1 ;Times 2
 MOV EAX,oGDDy
 MOV ECX,0A0h ;Times 160
 MUL ECX ;Times nColumns
 ADD EAX,EBX
 CMP EAX,0F9Eh ;Last legal posn on screen
 JBE GetChar00
 MOV EAX, ErcVidParam
 JMP PcGDone
GetChar00:
 ADD EDI,EAX ;EDI now points to char
 MOV ESI,pGDDCRet
 MOV AL, [EDI]
 MOV [ESI], AL ;Give them the char
 INC EDI ;Move to Attr
 MOV ESI,pGDDARet
 MOV AL, [EDI]
 MOV [ESI], AL ;Give them the Attr
 XOR EAX, EAX ;No Error!
pcGDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 20

The ScrollVid(ddULCol,ddULline,nddCols,nddLines, ddfUp) function scrolls the
described square area on the screen either up or down one line. If ddfUp is not zero the scroll
will be up. The line left blank is filled with NormAttr from JCB. ddULCol and ddULLine
describe the upper-left corner of the area to scroll. nddCols and nddLines are the size of the
area.

If you want to scroll the entire screen up one line, the parameters would be ScrollVid(VidNum,
0,0,80,25,1). In this case, the top line is lost (not really scrolled), and the bottom line would be

MMURTL V1.0 Page 540 of 667

blanked. In fact, if you specified ScrollVid (0,1,80,24,1), you would get the same results. See
Listing 26.12.

Listing 26.12.Code to Scroll an Area of the Screen

oULX EQU DWORD PTR [EBP+28] ;Param 1 COLUMN
oULY EQU DWORD PTR [EBP+24] ;Param 2 LINE
nddCols EQU DWORD PTR [EBP+20] ;Param 3 pChars
nddLines EQU DWORD PTR [EBP+16] ;Param 4 sChars
ddfUP EQU DWORD PTR [EBP+12] ;Param 5 Attr

PUBLIC __ScrollVid:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX ;Save pJCB & use in EBX
 MOV EAX, oULX
 CMP EAX, 79
 JA svErcExit
 ADD EAX, nddCols
 CMP EAX, 80
 JA svErcExit
 MOV EAX, oULY
 CMP EAX, 24
 JA svErcExit
 ADD EAX, nddLines
 CMP EAX, 25
 JA svErcExit

 CMP ddfUP, 0 ;Scroll UP?
 JNE svUP0 ;Yes... Scroll UP!

;Scroll DOWN begins

 MOV EAX, oULY ;First line
 ADD EAX, nddLines ;Last line
 MOV ECX, 160
 MUL ECX ;times nBytes per line
 MOV EDI, [EBX+pVidMem] ;EDI points to video memory 0,0
 MOV EDX, EBX ;Save pJCB
 ADD EDI, EAX ;EDI is ptr to 1st dest line
 ADD EDI, oULX ;offset into line
 ADD EDI, oULX ;add again for attributes
 MOV ESI, EDI ;
 SUB ESI, 160 ;ESI is 1st source line
 MOV EBX, ESI ;Save in EBX for reload
 MOV EAX, nDDLines ;How many lines to move
 DEC EAX ;one less than window height
svDOWN1:
 MOV ECX, nddCols ;How many WORDS per line to move
 REP MOVSW ;Move a line (of WORDS!)
 MOV EDI, EBX ;Reload Dest to next line
 MOV ESI, EDI
 SUB ESI, 160

MMURTL V1.0 Page 541 of 667

 MOV EBX, ESI ;Save again
 DEC EAX
 JNZ svDOWN1
 MOV EAX, [EDX+NormAttr] ;Normal video attributes!!!
 SHL EAX, 8
 MOV AL, 20h ;Space
 MOV EDI, EBX ;Put the last line into EDI
 MOV ECX, nddCols
 CLD
 REP STOSW
 XOR EAX, EAX ;No error
 JMP svDone
 ;No... scroll down begins
svUP0:
 MOV EAX, oULY ;First line
 MOV ECX, 160
 MUL ECX ;times nBytes per line
 MOV EDI, [EBX+pVidMem] ;EDI points to video memory 0,0
 MOV EDX, EBX ;Save pJCB
 ADD EDI, EAX ;EDI is ptr to 1st dest line
 ADD EDI, oULX ;offset into line
 ADD EDI, oULX ;add again for attributes
 MOV ESI, EDI ;
 ADD ESI, 160 ;ESI is 1st source line
 MOV EBX, ESI ;Save in EBX for reload
 MOV EAX, nDDLines ;How many lines to move
 DEC EAX ;two less than window height
svUP1:
 MOV ECX, nddCols ;How many WORDS per line to move
 REP MOVSW ;Move a line (of WORDS!)
 MOV EDI, EBX ;Reload Dest to next line
 MOV ESI, EDI
 ADD ESI, 160
 MOV EBX, ESI ;Save again
 DEC EAX
 JNZ svUP1
 MOV EAX, [EDX+NormAttr] ;Normal video attributes!!!
 SHL EAX, 8
 MOV AL, 20h ;Space
 MOV EDI, EBX ;Put the last line into EDI
 SUB EDI, 160
 MOV ECX, nddCols
 CLD
 REP STOSW
 XOR EAX, EAX ;No error
 JMP svDone
svErcExit: ;Error exits will jump here
 MOV EAX, ErcVidParam
svDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 20

The HardXY() call is used to support positioning the cursor in hardware. When a video call that
repositions the cursor is made and the caller owns the real video screen, HardXY() is called to
ensure the hardware follows the new setting. This supports SetXY() and SetVidOwner().

MMURTL V1.0 Page 542 of 667

The parameters to this call are via registers; thus no stack parameters are used. EAX is set with
the new Y position, and EBX is set with the new X position before the call is made. See Listing
26.13.

Listing 26.13 - Support Code to Set Hardware Cursor Position.

HardXY:
 MOV ECX,80
 MUL ECX ; Line * 80
 ADD EAX,EBX ; Line plus column
 MOV DX,CRTCPort1 ; Index register
 PUSH EAX
 MOV AL,CRTCCurLo
 OUT DX,AL ; Index 0Fh for low byte
 POP EAX
 MOV DX,CRTCPort2 ; Data register
 OUT DX,AL ; Send Low byte out
 SHR EAX,08 ; shift hi byte into AL
 PUSH EAX
 MOV DX,CRTCPort1
 MOV AL,CRTCCurHi
 OUT DX,AL ; Index for High byte
 POP EAX
 MOV DX,CRTCPort2
 OUT DX,AL ; Send High byte out
 RETN

The SetXY(ddNewX, ddNewY) function positions the VGA cursor (text mode) to the X and Y
position specified in the parameters ddNewX and ddNewY. If the caller also happens to own the
real video screen buffer (being displayed), then the hardware cursor is also repositioned by
calling the internal support call HardXY() from listing 26.13. See listing 26.14.

Listing 26.14.Code to Set Cursor Position

NewX EQU DWORD PTR [EBP+16]
NewY EQU DWORD PTR [EBP+12]

PUBLIC __SetXY:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX

 MOV ECX,NewX ; Column
 MOV EDX,NewY ; Line
 MOV [EBX+CrntX],ECX ; This saves it in the VCB
 MOV [EBX+CrntY],EDX ;

 CALL GetCrntJobNum ;Leaves ptr to current JCB in EAX
 CMP EAX, ddVidOwner

MMURTL V1.0 Page 543 of 667

 JNE GotoXYDone ;If not on Active screen, skip it

 MOV EAX,NewY ;Setup to call HardXY
 MOV EBX,NewX
 CALL HardXY
GotoXYDone:
 XOR EAX,EAX ;No Error
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8

The GetXY(pddXRet, pddYRet) returns the X and Y cursor position from the caller’s job
control block. The positions in the JCB are updated with each character placement, so this will
be accurate even if the caller is not currently displayed on the real video screen. See listing
26.15.

Listing 26.15.Code to Return Current Cursor Position

pXret EQU DWORD PTR [EBP+16]
pYret EQU DWORD PTR [EBP+12]

PUBLIC __GetXY:
 PUSH EBP ;
 MOV EBP,ESP ;
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, EAX

 MOV EAX,[EBX+CrntX] ; Column
 MOV ESI,pXret
 MOV [ESI], EAX
 MOV EAX,[EBX+CrntY] ; Line
 MOV ESI,pYret
 MOV [ESI], EAX
 XOR EAX,EAX
QXYDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 8

The EditLine(pStr, dCrntLen, dMaxLen, pdLenRet, pbExitChar, dEditAttr) function
reads a line of text from the keyboard and puts it into the string pointed to by pStr. If pStr points
to a valid string (dCrntLen > 0) then the string is displayed. The editing of this string is done at
the current X and Y positions. You also specify the maximum length the string can be
(dMaxLen), where you want the exit character returned (pbExitChar), and finally the attribute
for the text you are editing (dEditAttr).

EditLine() probably shouldn’t even be included with the video code, but should be a library
function instead. I added this call while doing a lot of testing, and it came in so handy as part of
the operating system code I just left it where it was.

MMURTL V1.0 Page 544 of 667

Display and keyboard are handled entirely inside of EditLine(). The following keys are
recognized and handled inside..

08 - Backspace. a destructive backspace, this moves the cursor to left, replacing char with 20h.
20h-7Eh - ASCII text. Any of these places this character in the current X and Y position and
advances the position of the cursor.

Any other key causes Editline() to exit which returns the string in it’s current condition and also
returns the key that caused it to exit. See listing 26.16.

Listing 26.16 - Code to Edit a Line on the Screen

pEdString EQU DWORD PTR [EBP+32]
ddSzCrnt EQU DWORD PTR [EBP+28]
ddSzMax EQU DWORD PTR [EBP+24]
pddSzRet EQU DWORD PTR [EBP+20]
pExitKeyRet EQU DWORD PTR [EBP+16]
dEditAttr EQU DWORD PTR [EBP+12]

;Local vars EditX and EditY hold position of first char of text
;CrntX is the cursor postion

PosnX EQU DWORD PTR [EBP-04]
EditX EQU DWORD PTR [EBP-08]
EditY EQU DWORD PTR [EBP-12]
KeyCode EQU DWORD PTR [EBP-16]

PUBLIC __EditLine:
 PUSH EBP ;
 MOV EBP,ESP ;
 SUB ESP, 16

 CMP ddSzCrnt, 80 ;Is it currently too long?
 JA BadEdit
 CMP ddSzMax, 80 ;Is Max len to long?
 JA BadEdit
 MOV EAX, ddSzCrnt
 CMP EAX, ddSzMax ;Is Crnt len > Max???
 JA BadEdit

 LEA EAX, EditX ;Get current cursor posns in local vars
 PUSH EAX
 LEA EAX, EditY
 PUSH EAX
 CALL FWORD PTR _GetXY
 CMP EAX, 0
 JNE EditDone ;Bad Erc from call

 MOV EAX, EditX
 ADD EAX, ddSzCrnt
 MOV PosnX, EAX ;make PosnX end of string

 MOV ECX, ddSzMax

MMURTL V1.0 Page 545 of 667

 SUB ECX, ddSzCrnt ;ECX how many bytes to zero
 JZ EdLn01 ;None to zero out
 MOV ESI, pEdString ;Initialize currrent string
 ADD ESI, ddSzCrnt ;ESI ptr to 1st empty byte
 MOV AL, 20h ;fill with spaces
Edln00:
 MOV [ESI], AL
 INC ESI
 LOOP Edln00

EdLn01:
 PUSH PosnX
 PUSH EditY
 CALL FWORD PTR _SetXY
 CMP EAX, 0
 JNE EditDone

EdLn02:
 PUSH EditX ;Display current string
 PUSH EditY
 PUSH pEdString
 PUSH ddSzMax
 PUSH dEditAttr ;Attribute they selected
 CALL FWORD PTR _PutVidChars
 CMP EAX, 0
 JNE EditDone
EdLn03:
 LEA EAX, KeyCode
 PUSH EAX
 CMP ddVidOwner, 2 ;Debugger???
 JE EdLn035
 PUSH 1 ;Wait for a key
 CALL FWORD PTR _ReadKbd ;Get a key
 JMP SHORT EdLn036
EdLn035:
 CALL ReadDbgKbd
EdLn036:
 MOV EAX, KeyCode
 AND EAX, 07Fh
 OR EAX, EAX
 JZ EdLn03
 CMP EAX, 08h ;BackSpace?
 JNE EdLn04 ;No - Next test
EdLn037:
 CMP ddSzCrnt, 0
 JE EdLn01
 DEC PosnX
 DEC ddSzCrnt
 MOV ESI, pEdString
 MOV ECX, ddSzCrnt
 MOV BYTE PTR [ESI+ECX], 20h
 JMP Edln01
EdLn04: CMP EAX, 03h ;Left?
 JNE EdLn045 ;No - Next test
 JMP EdLn037
EdLn045:
 CMP EAX, 83h ;Num-Left?

MMURTL V1.0 Page 546 of 667

 JNE EdLn046 ;No - Next test
 JMP EdLn037
EdLn046:
 CMP EAX, 0Dh ;CR?
 JNE EdLn05 ;No - Next test
 JMP EdLn07
EdLn05: CMP EAX, 1Bh ;Escape?
 JNE EdLn06 ;No - Next test
 JMP EdLn07
EdLn06:
 CMP EAX, 7Eh ;Is it above text?
 JA EdLn07 ;Yes, Exit!
 CMP EAX, 20h ;Is it below text??
 JB EdLn07 ;Yes, Exit
 MOV ESI, pEdString ;It’s really a char!
 MOV ECX, ddSzCrnt
 MOV BYTE PTR [ESI+ECX], AL
 MOV ECX, ddSzMax
 CMP ddSzCrnt, ECX
 JAE EdLn01
 INC PosnX
 INC ddSzCrnt
 JMP EdLn01
EdLn07:
 MOV ESI,pExitKeyRet
 MOV [ESI], AL
 MOV ESI,pddSzRet
 MOV EAX, ddSzCrnt
 MOV [ESI], EAX

 PUSH EditX ;Display current string w/Norm Attrs
 PUSH EditY
 PUSH pEdString
 PUSH ddSzMax
 CALL GetpCrntJCB ;Leaves ptr to current JCB in EAX
 MOV EBX, [EAX+NormAttr]
 PUSH EBX ;Normal Attribute from JCB
 CALL FWORD PTR _PutVidChars ;Ignore error (we are leaving anyway)
 XOR EAX, EAX
 JMP EditDone
BadEdit:
 MOV EAX, ErcEditParam
EditDone:
 MOV ESP,EBP ;
 POP EBP ;
 RETF 24

Relating MMURTL’s Video Code to Your Operating System

The video hardware on your platform will determine how much work you have to do to
implement a video interface. From this chapter, you can see that simplicity was my goal. In this
age of graphics, you no doubt will want to experiment with both character-based and graphical
interfaces. I recommend you keep the virtual character video concept in mind because it allows
both character-based and graphical interfaces to coexist on a system.

MMURTL V1.0 Page 547 of 667

Chapter 27, File System Code

Introduction

The MMURTL FAT file system is truly no great accomplishment. Reverse engineering provides
some satisfaction, but never the amount that an original design would.

There are better file systems to be designed than the one that came with a 15-year-old operating
system, but none are as wide spread as the MS-DOS FAT file system.

How MMURTL Handles FAT

The physical disk layout, as seen from the disk controller’s standpoint, is as follows:

Cylinder numbers run from 0 to nMaxCyls-1.
Head numbers run from 0 to nMaxheads-1.
Sector numbers run from 1 to nMaxSectorsPerTrack.

Physical (Absolute) Sector Numbers

Physical sector numbers (absolute) begin at Cylinder 0, Head 0, Sector 1. As the physical sector
number rolls over (nMaxSectorsPerTrack+1), the head number is incremented, which moves
you to the next track (same cylinder, next head). When the head number rolls over
(nMaxHeads is reached), the cylinder number is incremented.

Track and cylinder are not interchangeable terms in the above text. If you have six heads on your
drive, you have 6 tracks per cylinder. This can be confusing because many books and documents
use the terms interchangeably. And you can, so long as you know that’s what you’re doing.

Hidden Sectors

MS-DOS reserves a section of the physical hard disk. This area is called the hidden sectors. This
is usually the very first track on the disk (begins at Cylinder 0, head 0, Sector 1). The partition
tables are kept at the very end of the first sector in this hidden area (offset 01BEh in the first
sector to be exact).

The partition tables are 16-byte entries that describe "logical" sections of the disk that can be
treated as separate drives. There are usually no "hidden sectors" on floppy disks, nor are there
any partition tables.

MMURTL V1.0 Page 548 of 667

Logical Block Address (LBA)

MMURTL device drivers treat the entire disk as a single physical drive. The MMURTL file
system reads the partition tables, then sets up the device driver to span the entire physical disk as
0 to nMaxBlockNumbers-1. This is referred to as the Logical Block Address (LBA) and is the
value passed in to the DeviceOp call for the MMURTL hard/floppy disk device drivers (LBAs
are used with all MMURTL devices).

DO NOT confuse MMURTL’s LBA for the sector number in an MS-DOS logical drive.
MMURTL calls these “logical blocks” because you still have to convert them into physical
cylinder, head, and sector to retrieve the data.

MS-DOS Boot Sector

The first sector of an MS-DOS logical drive is its boot sector. Each of the MS-DOS logical
partitions will have a boot sector, although only the first will be marked as bootable (if any are).

It's position on the disk is calculated from the partition table information.

File System Initialization

The MMURTL-FAT file system reads the partition table and saves the starting LBA and length
of each of DOS logical disk that is found. Armed with this information, MMURTL can access
each of the DOS logical disks as a separate disk drive.

To maintain some sanity, the MMURTL file system gives all of its logical drives a letter, just
like MS-DOS. MMURTL supports two floppy drives (A & B) and up to eight logical hard disk
(C-J). All information on the logical drives are kept in an array of records (Ldrvs). This includes
the logical-letter-to-physical-drive conversions.

After you have the layout of each of the partitions, you read the boot sector from the first DOS
logical drive. The boot sector contains several pieces of important information about the drive
geometry (numbers of heads, sectors per track, etc.), which are also placed in the Logical Drive
structures.

After you have the drive geometry information, you setup the MMURTL device driver. This
tells the device driver how many cylinders, heads and sectors per track are on the physical disk.
Until this is done, the device driver assumes a minimum drive size, and you should only read the
partition table (or boot sector if no partition table is on the disk). This provides enough
information to do a DeviceInit call to set up proper drive geometry.

If you were building a loadable file system to replace the one that's included in MMURTL, you
would call your routine to initialize the file system very early in the main program block. You
must not service file system requests until this is done.

MMURTL V1.0 Page 549 of 667

File System Listing

The file system implementation in Listing 27.1 has ample comments to describe the purpose of
each function. An important concept to note is that the file system itself is a separate task that
runs at a relatively high priority of 5.

At the very end of Listing 27.1, you will find a function called InitFS(), which is called from the
Monitor to initialize the file system. All resources are allocated in this function before we spawn
the new file system task and register the service with the operating system.

Listing 27.1 - MS-DOS FAT-Compatible File System Code

#define U32 unsigned long
#define U16 unsigned int
#define U8 unsigned char
#define S32 long
#define S16 int
#define S8 char
#define TRUE 1
#define FALSE 0

/*********** MMURTL Public Prototypes ***************/

/* From MKernel */

extern far AllocExch(long *pExchRet);
extern far U32 GetTSSExch(U32 *pExchRet);
extern far SpawnTask(char *pEntry,
 long dPriority,
 long fDebug,
 char *pStack,
 long fOSCode);
extern far long WaitMsg(long Exch, char *pMsgRet);
extern far long CheckMsg(long Exch, char *pMsgRet);
extern far long Request(unsigned char *pSvcName,
 unsigned int wSvcCode,
 unsigned long dRespExch,
 unsigned long *pRqHndlRet,
 unsigned long dnpSend,
 unsigned char *pData1,
 unsigned long dcbData1,
 unsigned char *pData2,
 unsigned long dcbData2,
 unsigned long dData0,
 unsigned long dData1,
 unsigned long dData2);

extern far long Respond(long dRqHndl, long dStatRet);

/* From MData */

MMURTL V1.0 Page 550 of 667

extern far void CopyData(U8 *pSource, U8 *pDestination, U32 dBytes);
extern far void FillData(U8 *pDest, U32 cBytes, U8 bFill);
extern far long CompareNCS(U8 *pS1, U8 *pS2, U32 dSize);

/* From MTimer.h */
extern far long GetCMOSTime(long *pTimeRet);
extern far long GetCMOSDate(long *pTimeRet);
extern far long GetTimerTick(long *pTickRet);

/* From MVid.h */
extern far long TTYOut (char *pTextOut, long ddTextOut, long ddAttrib);
extern far long GetNormVid(long *pNormVidRet);

#include "MKbd.h"

/* From MDevDrv */
extern far U32 DeviceOp(U32 dDevice,
 U32 dOpNum,
 U32 dLBA,
 U32 dnBlocks,
 U8 *pData);

extern far U32 DeviceStat(U32 dDevice,
 S8 * pStatRet,
 U32 dStatusMax,
 U32 *pdSatusRet);

extern far U32 DeviceInit(U32 dDevNum,
 S8 *pInitData,
 U32 sdInitData);

/* From MMemory.h */
extern far U32 AllocOSPage(U32 nPages, U8 *ppMemRet);
extern far U32 DeAllocPage(U8 *pOrigMem, U32 nPages);

/* From MJob.h */
extern far U32 GetPath(long JobNum, char *pPathRet, long *pdcbPathRet);
extern far U32 RegisterSvc(S8 *pName, U32 Exch);

/* NEAR support for debugging */

extern long xprintf(char *fmt, ...);
extern U32 Dump(unsigned char *pb, long cb);

/* File System error codes */

#define ErcOK 0 /* Alls Well */
#define ErcEOF 1 /* DUH... The END */
#define ErcBadSvcCode 32 /* Service doesn’t handle that code */

#define ErcBadFileSpec 200 /* invalid file spec (not correct format)*/
#define ErcNoSuchDrive 201 /* Try another letter bozo */
#define ErcNotAFile 202 /* Open a directory?? NOT */
#define ErcNoSuchFile 203 /* No can do! It ain’t there...*/
#define ErcNoSuchDir 204 /* Ain’t no such dir... */
#define ErcReadOnly 205 /* You can’t modify it bubba */
#define ErcNoFreeFCB 206 /* We’re really hurtin... */

MMURTL V1.0 Page 551 of 667

#define ErcBadOpenMode 207 /* Say what? Mode??? */
#define ErcFileInUse 208 /* File is open in an incompatible mode */
#define ErcNoFreeFUB 209 /* Sorry, out of File User Blocks */
#define ErcBadFileHandle 210 /* WHOAAA, bad handle buddy! */
#define ErcBrokenFile 211 /* Cluster chain broken on file */
#define ErcBadFCB 213 /* We got REAL problems... */
#define ErcStreamFile 214 /* Operation not allowed on Stream File */
#define ErcBlockFile 215 /* Operation not allowed on Block File */
#define ErcBeyondEOF 217 /* SetLFA or Read/WriteBlock beyond EOF */
#define ErcNoParTable 218 /* No partiton table found on disk!!! */
#define ErcBadFATClstr 220 /* File system screwed up (or your disk) */
#define ErcRenameDrv 222 /* They have tried to rename across Dir/Vol*/
#define ErcRenameDir 223 /* They have tried to rename across Dir/Vol*/
#define ErcNoMatch 224 /* No matching directory entry */

#define ErcWriteOnly 225 /* Attempt to read write-only device */
#define ErcDupName 226 /* Name exists as a file or dir already */
#define ErcNotSupported 227 /* Not supported on this file */
#define ErcRootFull 228 /* The Root Directory is Full */
#define ErcDiskFull 230 /* No more free CLUSTERS!!! */

#define ErcNewMedia 605 /* for floppy mounting from FDD */

/**************** FAT Buffer control structure **********************/

/*
 The Fat structures are for keeping track of the FAT buffers.
 We never want to have more than one copy of a FAT sector in
 memory at one time, and we also never want to read one when
 its already here (a waste of time)! We also keep track
 of the last time it was used and deallocate the oldest (LRU -
 Least Recently Used). Initially filling out the Fat control
 structure is part of the file system initialization. If the
 FAT sector we are in has been modified (data written to clusters
 in it & FAT updated) we write it ASAP!
 Each FAT buffer is 1 sector long, except the first one which
 is 3 sectors for floppies (FAT12 types). This is because the
 FAT12 entires span sectors!
*/

#define nFATBufs 17 /* 1 Static for floppies + 16 * 512 = 8192, 2 pages
*/

static struct fattype { /* */
 U8 *pBuf; /* points to beginning of fat buffer */
 U32 LastUsed; /* Tick when last used (0 = Never) */
 U32 LBASect; /* LBA of first FAT sect in buf (where it came from) */
 U16 iClstrStart; /* Starting cluster for each buf */
 U8 Drive; /* LDrive this FAT sector is from */
 U8 fModLock; /* Bit 0 = Modified, bit 1 = Locked */
 };

static struct fattype Fat[nFATBufs]; /* 16 bytes * 17 */

/* We read 3 sectors worth of floppy fat buf in cause cluster
entries span sectors
*/

MMURTL V1.0 Page 552 of 667

U8 FatBufA[1536]; /* floppy fat buffer */

#define FATMOD 0x01
#define FATLOCK 0x02

/**************** File Contol Block Structures (FCBs) **********/
/* One FCB is allocated and filled out for each file that is open.
 The actual directory entry structure from the disk is embedded
 in the FCB so it can be copied directly to/from the directory
 sector on the disk.
*/
#define nFCBs 128
#define sFCB 64

static struct FCB {
 S8 Name[8]; /* From here to Filesize is copy of DirEnt */
 S8 Ext[3];
 S8 Attr; /* from MS-DOS */
 U8 Resvd1[10]; /* ???????? */
 U16 Time; /* Only changed when created or updated */
 U16 Date;
 U16 StartClstr; /* At least one per file!! */
 U32 FileSize; /* last entry in FAT Dir Ent (32 bytes) */
 U32 LBADirSect; /* LBA of directory sector this is from */
 U16 oSectDirEnt; /* Offset in sector for the dir entry */
 U8 Ldrv; /* Logical drive this is on (A-J, 0-9) */
 U8 Mode; /* 0 or 1 (Read or Modify). */
 U8 nUsers; /* Active FUBs for this file (255 MAX). 0= Free FCB */
 U8 fMod; /* This file was modified! */
 U8 Resvd[22]; /* Out to 64 bytes */
 };

static struct FCB *paFCB; /* a pointer to array of allocated FCBs. */
static struct FCB *pFCB; /* pointer to one FCB */

/********************** File User Blocks **************************/

/* Each user of an open file is assigned a FUB. The FUB number is the
 filehandle (beginning with 3).) 0, 1 & 2 are reserved for NUL,
 KBD and VID devices.
*/

#define nFUBs 128
#define sFUB 32

/* The FUB contains information on a file related to a user’s view
 of the file. It is used to hold information on files opened
 in stream and block mode. Three important fields in the FUB are:
 LFABuf - LFA of first byte in buffer for a stream file.
 Clstr - Clstr of last block read or stream fill.
 LFAClstr - LFA of first byte in Clstr.

 LFAClstr and Clstr give us a relative starting point when
 reading a file from disk. If we didn’t save this information
 on the last access, we would have to "run" the cluster chain
 everytime we wanted to read or access a file beyond the last

MMURTL V1.0 Page 553 of 667

 point we read.
*/

struct FUB {
 U16 Job; /* User’s Job Number. 0 if FUB is free. */
 U16 iFCB; /* FCB number for this file (0 to nFCBs-1) */
 U32 CrntLFA; /* Current Logical File Address (File Ptr) */
 U8 *pBuf; /* Ptr to buffer if stream mode */
 U32 sBuf; /* Size of buffer for Stream file in bytes */
 U32 LFABuf; /* S-First LFA in Clstr Buffer */
 U32 LFAClstr; /* LFA of Clstr (below). */
 U16 Clstr; /* Last Cluster read */
 U8 fModified; /* Data in buffer was modified */
 U8 fStream; /* NonZero for STREAM mode */
 U8 Rsvd[4]; /* Pad to 32 bytes */
 };

static struct FUB *paFUB; /* a pointer to allocated FUBs. Set up at
init. */
static struct FUB *pFUB; /* a pointer to allocated FUBs. Set up at
init. */

/* Boot sector info (62 byte structure) */
struct fsbtype {
 U8 Jmp[3];
 U8 OEMname[8];
 U16 bps;
 U8 SecPerClstr;
 U16 ResSectors;
 U8 FATs;
 U16 RootDirEnts;
 U16 Sectors;
 U8 Media;
 U16 SecPerFAT;
 U16 SecPerTrack;
 U16 Heads;
 U32 HiddenSecs;
 U32 HugeSecs;
 U8 DriveNum;
 U8 Rsvd1;
 U8 BootSig;
 U32 VolID;
 U8 VolLabel[11];
 U8 FileSysType[8]; /* 62 bytes */
 };
static struct fsbtype fsb;

/* Partition Table Entry info. 16 bytes */
struct partent {
 U8 fBootable;
 U8 HeadStart;
 U8 SecStart;
 U8 CylStart;
 U8 FATType;
 U8 HeadEnd;
 U8 SecEnd;

MMURTL V1.0 Page 554 of 667

 U8 CylEnd;
 U32 nFirstSector;
 U32 nSectorsTotal;
 };

static struct partent partab[4]; /* 4 partition table entries 64 bytes */
static U16 partsig;

/* Bit definitions in attribute field for a directory entry */

#define ATTRNORM 0x00
#define READONLY 0x01
#define HIDDEN 0x02
#define SYSTEM 0x04
#define VOLNAME 0x08
#define DIRECTORY 0x10
#define ARCHIVE 0x20

/* Directory Entry Record, 32 bytes */

struct dirstruct {
 U8 Name[8];
 U8 Ext[3];
 U8 Attr;
 U8 Rsvd[10];
 U16 Time;
 U16 Date;
 U16 StartClstr;
 U32 FileSize;
 };

static struct dirstruct dirent;

static struct dirstruct *pDirEnt; /* a pointer to a dir entry */

/* When a file is opened, the filename is parsed into an array
 to facilitate searching the directory tree. IN MS-DOS all
 dir and file names are SPACE padded (20h). The FileSpec array
 contains the fully parsed path of the file. For instance,
 If you were to open "A:\Dog\Food\IsGood.txt" the FileSpec
 array would look like this:
 FileSpec[0] = "DOG "
 FileSpec[1] = "FOOD "
 FileSpec[2] = "ISGOOD TXT"
 FileSpec[3][0] = NULL;
 Note that the DOT is not inlcuded (it’s not in the DOS directory
 either), and the next unused FileSpec entry contain NULL in the
 first byte. SpecDepth tells us how many directories deep the
 name goes.
*/

static U8 FDrive /* Drive parsed from file operation */
static U8 FileSpec[7][11]; /* Hierarchy from file spec parsing */
static U8 SpecDepth; /* Depth of parse (0=Root File) */

/* Used for Rename */
static U8 FDrive1 /* Drive parsed from file operation */

MMURTL V1.0 Page 555 of 667

static U8 FileSpec1[7][11]; /* Hierarchy from file spec parsing */
static U8 SpecDepth1; /* Depth of parse (0=Root File) */

/* raw sector buffer for all kinds of stuff */

static U8 abRawSector[516];
static U8 abTmpSector[516];
static U8 abDirSectBuf[516];

/* These arrays keep track of physical drive data (0-4). */
#define nPDrvs 4

static struct phydrv {
 U32 nHeads; /* heads per drives */
 U32 nSecPerTrk; /* Sectors per track */
 U16 BS1Cyl; /* Cyl of 1st boot sector on disk */
 U8 BS1Head; /* Head of 1st boot sector on disk */
 U8 BS1Sect; /* Sector of 1st boot sector on disk */
 }

static struct phydrv PDrvs[nPDrvs];

/* This array of structures keeps track of logical drive data (A-J). */

#define nLDrvs 10

static struct ldrvtype {
 U32 LBA0; /* lba for Start of LDrive (bootSect) */
 U32 LBAData; /* lba for Start of Data Area */
 U32 LBAMax; /* Max lba for logical drive */
 U32 LBARoot; /* lba of the Root directory */
 U32 LBAFAT; /* lba of first FAT */
 U16 nHeads; /* Setup after boot sector is read */
 U16 nSecPerTrk; /* Setup after boot sector is read */
 U16 nRootDirEnt; /* Number of Root directory entries */
 U16 sFAT; /* nSectors in a FAT */
 U8 DevNum; /* Device Number for this ldrv FF = NONE */
 U8 SecPerClstr; /* For each logical drive */
 U8 nFATS; /* number of FATs */
 U8 fFAT16; /* True for FAT16 else FAT12 */
 };

static struct ldrvtype Ldrv[nLDrvs];

/* This is the Hard Disk Device Status record.
 It is peculiar to the HD Drvr */

struct hddevtype{
 U32 erc;
 U32 blocks_done;
 U32 BlocksMax;
 U8 fNewMedia;
 U8 type_now; /* current fdisk_table for drive selected */
 U8 resvd0[2]; /* padding for DWord align */
 U32 nCyl; /* total physical cylinders (we really don’t care) */
 U32 nHead; /* total heads on device */
 U32 nSectors; /* Sectors per track */

MMURTL V1.0 Page 556 of 667

 U32 nBPS; /* Number of bytes per sect. 32 bytes out to here.*/
 U32 LastRecalErc0;
 U32 LastSeekErc0;
 U8 LastStatByte0;
 U8 LastErcByte0;
 U8 fIntOnReset; /* Interrupt was received on HDC_RESET */
 U8 filler0;
 U32 LastRecalErc1;
 U32 LastSeekErc1;
 U8 LastStatByte1;
 U8 LastErcByte1;
 U8 ResetStatByte; /* Status Byte immediately after RESET */
 U8 filler1;
 U32 resvd1[2]; /* out to 64 bytes */
 };

static struct hddevtype HDDevStat;

/* This is the Floppy Device Status record.
 It is peculiar to the FD Drvr */

struct fdstattype{
 U32 erc; /* Last Error from device */
 U32 blocks_done;
 U32 BlocksMax;
 U8 fNewMedia;
 U8 type_now; /* current fdisk_table for drive selected */
 U8 resvd1[2]; /* padding for DWord align */
 U32 nCyl; /* total physical cylinders */
 U32 nHead; /* total heads on device */
 U32 nSectors; /* Sectors per track */
 U32 nBPS; /* Number of bytes per sect */
 U8 params[16]; /* begin device specific fields */
 U8 STATUS[8]; /* status returned from FDC (for user status) */
 U32 resvd3;
 U32 resvd4; /* 64 bytes total */
 };

static struct fdstattype FDDevStat;

static long FSysStack[512]; /* 2048 byte stack for Fsys task */

static long FSysExch;

struct reqtype { /* 64 byte request block structure */
 long ServiceExch;
 long RespExch;
 long RqOwnerJob;
 long ServiceRoute;
 char *pRqHndlRet;
 long dData0;
 long dData1;
 long dData2;
 int ServiceCode;
 char npSend;
 char npRecv;
 char *pData1;

MMURTL V1.0 Page 557 of 667

 long cbData1;
 char *pData2;
 long cbData2;
 long RQBRsvd1;
 long RQBRsvd2;
 long RQBRsvd3;
 };

static struct reqtype *pRQB;

static char *fsysname = "FILESYSM";

static unsigned long keycode; /* for testing */

/*========================== BEGIN CODE ============================*/

/**
 Called from read_PE, this gets the starting
 cylinder, head and sector for the first boot
 sector on a physical drive and stores it in the
 phydrv array. d is the drive, i is the index
 into the partition table we read in.
***/

static void GetBSInfo(U32 d, U32 i)
{
 PDrvs[d].BS1Head = partab[i].HeadStart;
 PDrvs[d].BS1Sect = partab[i].SecStart;
 PDrvs[d].BS1Cyl = partab[i].CylStart;

 if (!i)
 { /* primary partition info - use it for PDrv info */
 PDrvs[d].nHeads = partab[i].HeadEnd;
 PDrvs[d].nSecPerTrk = partab[i].nFirstSector & 0xff;
 }
}

/** InitFloppy *********************************
 This gets status from the floppy drive (device ld)
 and sets the physical & logical drive parameters
 for the type. It is called when the file system
 is first initialized and when there has been
 an error on the floppy.
***/

static U32 StatFloppy(U8 ld)
{
U32 erc, i;

/* Set gets status for the floppy type from the FDD and
 sets logical paramters for Ldrvs.
*/

Ldrv[0].DevNum= 10; /* Device Numbers for floppies */
Ldrv[1].DevNum= 11;

erc = DeviceStat(ld+10, &FDDevStat, 64, &i);

MMURTL V1.0 Page 558 of 667

if (!erc)
{
 PDrvs[ld].nHeads = FDDevStat.nHead;
 PDrvs[ld].nSecPerTrk = FDDevStat.nSectors;
 Ldrv[ld].LBA0 = 0; /* Floppy Boot Sector - always 0 */
 Ldrv[ld].LBAMax= FDDevStat.BlocksMax-1; /* Max lba for logical drive 0 */

 Ldrv[ld].nHeads = FDDevStat.nHead;
 Ldrv[ld].nSecPerTrk = FDDevStat.nSectors;

 erc = 0;
}
else
 Ldrv[ld].DevNum = 0xff;

 return erc;
}

/**
 Reads the partition table entries from hard
 drives and sets up some of the the logical
 drive array variables for hard Disks.
 It also saves first cylinder, head and sector
 of the first partiton on each physical drive
 so we can get more info for the LDrv arrays
 from the boot sector of that partition.
***/

static U32 read_PE(void)
{
U32 erc, ercD12, ercD13, i, j;
U8 fFound1, fFound2;

fFound1 = 0; /* Have we found first valid partition on drive */
fFound2 = 0;

/* Set defaults for 4 physical drives. This info will be set
 correctly when the partition table and boot sectors are read.
*/

for (i=2; i< nLDrvs; i++)
{ /* default to no logical hard drives */
 Ldrv[i].DevNum = 0xff;
}

i = 2; /* first Logical Number for hard drives "C" */

for (j=2; j<4; j++)
{ /* Array index Numbers for 2 physical hard Disks */

 erc = DeviceOp(j+10, 1, 0, 1, abRawSector); /* add 10 for Disk device nums
*/
 if (j==2) ercD12 = erc;
 else ercD13 = erc;

 if (!erc)
 {

MMURTL V1.0 Page 559 of 667

 CopyData(&abRawSector[0x01fe], &partsig, 2);

 /* It MUST have a partition table or we can’t use it! */

 if (partsig != 0xAA55) return ErcNoParTable;

 CopyData(&abRawSector[0x01be], &partab[0].fBootable, 64);

/*
 Dump(&partab[0].fBootable, 64);
 ReadKbd(&keycode, 1);
*/

 if (partab[0].nSectorsTotal > 0)
 {
 Ldrv[i].LBA0 =partab[0].nFirstSector; /* lba for Start of LDrv
(bootSect) */
 Ldrv[i].LBAMax =partab[0].nSectorsTotal; /* Max lba for logical drive
*/
 Ldrv[i].LBAMax =partab[0].nSectorsTotal; /* Max lba for logical drive
*/
 if (partab[0].FATType > 3)
 Ldrv[i].fFAT16 = 1;
 Ldrv[i].DevNum = j+10;
 if ((j==2) && (!fFound1))
 { GetBSInfo(2, 0); fFound1=1; }
 if ((j==3) && (!fFound2))
 { GetBSInfo(3, 0); fFound2=1; }
 i++; /* if valid partition go to next LDrv */
 }

 if (partab[1].nSectorsTotal > 0)
 {
 Ldrv[i].LBA0 = partab[1].nFirstSector;
 Ldrv[i].LBAMax = partab[1].nSectorsTotal;
 if (partab[1].FATType > 3)
 Ldrv[i].fFAT16 = 1;
 Ldrv[i].DevNum = j+10;
 if ((j==2) && (!fFound1)) { GetBSInfo(2, 1); fFound1=1; }
 if ((j==3) && (!fFound2)) { GetBSInfo(3, 1); fFound2=1; }
 i++; /* if we had a valid partition go to next */
 }

 if (partab[2].nSectorsTotal > 0)
 {
 Ldrv[i].LBA0 = partab[2].nFirstSector;
 Ldrv[i].LBAMax = partab[2].nSectorsTotal;
 if (partab[2].FATType > 3)
 Ldrv[i].fFAT16 = 1;
 Ldrv[i].DevNum = j+10;
 if ((j==2) && (!fFound1)) { GetBSInfo(2, 2); fFound1=1; }
 if ((j==3) && (!fFound2)) { GetBSInfo(3, 2); fFound2=1; }
 i++; /* if we had a valid partition go to next */
 }

 if (partab[3].nSectorsTotal > 0)
 {

MMURTL V1.0 Page 560 of 667

 Ldrv[i].LBA0 = partab[3].nFirstSector;
 Ldrv[i].LBAMax = partab[3].nSectorsTotal;
 if (partab[3].FATType > 3)
 Ldrv[i].fFAT16 = 1;
 Ldrv[i].DevNum = j+10;
 if ((j==2) && (!fFound1))
 {
 GetBSInfo(2, 3);
 fFound1=1;
 }
 if ((j==3) && (!fFound2))
 {
 GetBSInfo(3, 3);
 fFound2=1;
 }
 i++; /* if we had a valid partition go to next */
 }
 }
 }

 if (ercD12) return ercD12; /* there may be no Device 13 */
 else return 0;
}

/**
 Reads in the first boot sector from each physical drive to get
 drive geometry info not available in partition table. This includes
 number of heads and sectors per track. Then we call DeviceInit
 for each physical device to set its internal drive geometry.
 This must be done before we even try to read the other boot sectors
 if the disk has mulitple partitions (otherwise it fails).
***/

static U32 SetDriveGeometry(U32 d) /* d is the device number (12 or 13)
*/
{
U32 erc, i;

 if (d==12)
 {
 erc = DeviceStat(12, &HDDevStat, 64, &i);
 if (!erc)
 {
 HDDevStat.nHead = PDrvs[2].nHeads;
 HDDevStat.nSectors = PDrvs[2].nSecPerTrk;
 erc = DeviceInit(12, &HDDevStat, 64); /* Set up drive geometry */
 }
 }

 if (d==13)
 {
 erc = DeviceStat(13, &HDDevStat, 64, &i);
 if (!erc)
 {
 HDDevStat.nHead = PDrvs[3].nHeads;
 HDDevStat.nSectors = PDrvs[3].nSecPerTrk;
 erc = DeviceInit(13, &HDDevStat, 64); /* Set up drive geometry */

MMURTL V1.0 Page 561 of 667

 }
 }

return erc;
}

/**
 Read boot sector from logical drive (i) and sets up logical and
 physical drive array variables for the FAT file system found on
 the logical drive (described in the boot sector).
***/

static U32 read_BS(U32 i)
{
U32 erc, j;

if (Ldrv[i].DevNum != 0xff)
{

 j = Ldrv[i].DevNum; /* j is MMURTL Device number */

 erc = DeviceOp(j, 1, Ldrv[i].LBA0, 1, abRawSector);

 if ((erc==ErcNewMedia) && (i<2))
 {
 erc = DeviceOp(j, 1, Ldrv[i].LBA0, 1, abRawSector);
 }

 CopyData(abRawSector, &fsb.Jmp, 62);

 if (erc==0)
 {
 Ldrv[i].LBARoot = fsb.ResSectors + Ldrv[i].LBA0 +
 (fsb.FATs * fsb.SecPerFAT);
 Ldrv[i].nRootDirEnt = fsb.RootDirEnts; /* n Root dir entries */
 Ldrv[i].SecPerClstr = fsb.SecPerClstr;
 Ldrv[i].nHeads = fsb.Heads;
 Ldrv[i].nSecPerTrk = fsb.SecPerTrack;
 Ldrv[i].sFAT = fsb.SecPerFAT; /* nSectors in a FAT */
 Ldrv[i].nFATS = fsb.FATs; /* number of FATs */
 Ldrv[i].LBAFAT = Ldrv[i].LBA0 + fsb.ResSectors;
 Ldrv[i].LBAData = Ldrv[i].LBARoot + (fsb.RootDirEnts / 16);
 if (fsb.FileSysType[4] == ’2’)
 Ldrv[i].fFAT16 = 0;

 } /* if erc */
} /* if valid logical device */
return 0;
}

/***
 This gets the CMOS date & time and converts it into the
 format for the DOS FAT file system. This is two words
 with bits representing Year/Mo/day & Hr/Min/SecDIV2.
**/
static void GetFATTime(U16 *pTimeRet, U16 *pDateRet)
{

MMURTL V1.0 Page 562 of 667

U32 date, time;
U16 DDate, DTime, w;

 GetCMOSDate(&date);
 GetCMOSTime(&time);
 /* Do the date */
 DDate = (((date >> 12) & 0x0f) * 10) + ((date >> 8) & 0x0f); /* day */
 w = (((date >> 20) & 0x0f) * 10) + ((date>>16) & 0x0f) + 2; /* month */
 DDate |= (w << 4);
 w = (((date >> 28) & 0x0f) * 10) + ((date >> 24) & 0x0f); /* year */
 DDate |= (w + 1900 - 1980) << 9;
 /* Do the time */
 DTime = (((((time >> 4) & 0x0f) * 10) + (time & 0x0f))/2); /* secs/2 */
 w = (((time >> 12) & 0x0f) * 10) + ((time >> 8) & 0x0f);
 DTime |= (w << 5); /* mins */
 w = (((time >> 20) & 0x0f) * 10) + ((time >> 16) & 0x0f); /* hours */
 DTime |= (w << 11);
 *pTimeRet = DTime;
 *pDateRet = DDate;
}

/***
 This updates a directory entry by reading in the
 sector it came from and placing the modifed entry
 into it then writing it back to disk. The date is
 also updated at this time.
**/
static U32 UpdateDirEnt(U32 iFCB)
{
U32 erc, i, j;
U8 Drive;
 Drive = paFCB[iFCB]->Ldrv; /* What logical drive are we on? */
 i = paFCB[iFCB]->LBADirSect; /* Sector on disk */
 j = paFCB[iFCB]->oSectDirEnt; /* offset in sector */

 /* update time in dir entry */
 GetFATTime(&paFCB[iFCB].Time, &paFCB[iFCB].Date);

 /* Read sector into a buffer */
 erc = DeviceOp(Ldrv[Drive].DevNum, 1, i, 1, abDirSectBuf);

 if (!erc)
 {
 CopyData(&paFCB[iFCB], &abDirSectBuf[j], 32);
 erc = DeviceOp(Ldrv[Drive].DevNum, 2, i, 1, abDirSectBuf);
 }
 return erc;
}

/***
 Checks the validity of the a file handle and also
 returns the index to the FCB if the handle is OK.
 The function return OK (0) if handle is good, else
 a proper error code is returned.
**/

MMURTL V1.0 Page 563 of 667

static U32 ValidateHandle(U32 dHandle, U32 *iFCBRet)
{
 /* get some checks out of the way first */

 if (dHandle < 4) return ErcBadFileHandle;
 if (dHandle >= nFUBs) return ErcBadFileHandle;
 if (!paFUB[dHandle].Job) return ErcBadFileHandle;

 /* Looks like a valid handle */
 *iFCBRet = paFUB[dHandle]->iFCB;
 return 0;
}

/***
 Returns absolute disk address for the
 cluster number you specify. This gives us
 the LBA of the first sector of data that
 the cluster number represents.
 The sector number is returned from the fucntion.
 Uses: Ldrv[CrntDrv].LBAData
 Ldrv[CrntDrv].SecPerClstr
**/

static U32 ClsToLBA(U16 Clstr, U8 Drive)
{
U32 LBA;

 Clstr-=2; /* Minus 2 cause 0 and 1 are reserved clusters */
 LBA = Ldrv[Drive].SecPerClstr * Clstr;
 LBA += Ldrv[Drive].LBAData;
 return LBA;
}

/***
 This writes out the specified FAT sector back into
 the FAT. It also checks to see if there is more
 than one copy of the fat and updates the second copy
 if it exists.
**/
static U32 UpdateFAT(U32 iFAT)
{
U32 erc, i, k;
U8 Drive;

 erc = 0;
 if (Fat[iFAT].fModLock & FATMOD)
 { /* Modified?? */

 Drive = Fat[iFAT].Drive; /* What logical drive are we on? */
 i = Fat[iFAT].LBASect; /* Where to write it back */

 if (!iFAT)
 { /* This is the floppy buffer [0] */
 /* set up to write upto 3 sectors from the buffer */

 if (i+2 < Ldrv[Drive].sFAT + Ldrv[Drive].LBAFAT)

MMURTL V1.0 Page 564 of 667

 k = 3;
 else if (i+1 < Ldrv[Drive].sFAT + Ldrv[Drive].LBAFAT)
 k = 2;
 else
 k = 1;
 }
 else
 k=1;

 erc = DeviceOp(Ldrv[Drive].DevNum, 2, i, k, Fat[iFAT].pBuf);
 if (!erc)
 {
 Fat[iFAT].fModLock &= ~FATMOD; /* Not modified anymore */
 if (Ldrv[Drive].nFATS > 1)
 { /* 2 FATS! */
 /* if we have two FATS we must update the second fat
 also. This will be located directly aftrer the first
 FAT (by exactly LDrv.sFat sectors).
 */
 i+= Ldrv[Drive].sFAT;
 erc = DeviceOp(Ldrv[Drive].DevNum, 2, i, k, Fat[iFAT].pBuf);
 }
 }
 }
 return erc;
}

/***
 Reads in the FAT sector that contains the Cluster we
 specified into a FAT buffer if it isn’t already in
 one. The index to the FAT buffer is returned.
 Returns Error if not in FAT.
 Uses: Ldrv[LDrive].LBAFAT
 Ldrv[LDrive].fFAT16
 Ldrv[LDrive].DevNum
 Each sector of the FAT contains 256 cluster entries
 for FAT16 types. To find it, we Divide the cluster
 number by the count of entries (256), and add this
 to the beginning sector of the FAT. It is SOOO
 important (for speed) to have the FAT sectors in
 memory, that we allocate the FAT buffers on a Least
 Recently Used (LRU) basis for hard disk drives.

 It’s more complicated for a FAT12 types (floppies)
 because cluster entries span fat sectors (they have
 an odd number of nibbles). For this reason, we have
 one 3 sector fat buffer for fat12 devices (floppies).
 We fill it with up to 3 sectors. This is because the
 last entry may span the sectors and we must be able
 to read it. There are 1024 cluster entries in
 a FAT12 3 sector buffer.
***/

static U32 FindFatSect(U8 Drive, U16 Clstr, U32 *piFatRecRet, U8 fLock)
{
U32 i, j, k;
U32 first, oSector, erc, LRU, iLRU, iFound, Tick;

MMURTL V1.0 Page 565 of 667

U16 MaxClstr;

 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

 if (Clstr >= MaxClstr)
 return(ErcEOF);

 if (Clstr < 2)
 {
 return (ErcBadFATClstr);
 }

 GetTimerTick(&Tick);

 erc = 0; /* default to no error */

 /* Set oSector to offset of sector in FAT
 There are 256 cluster entries in 1 sector of a FAT16,
 and 1024 in a FAT12 (3 sectors)
 */

 if (Ldrv[Drive].fFAT16)
 {
 oSector = Clstr/256;
 first = Clstr-(Clstr%256);

 /* Set i to LBA of FAT sector we need by adding
 offset to beginning of FAT
 */

 i = oSector + Ldrv[Drive].LBAFAT;

 /* If FAT sector is out of range there’s a BAD problem... */

 if (i >= Ldrv[Drive].sFAT + Ldrv[Drive].LBAFAT)
 {
 return (ErcBadFATClstr);
 }
 else
 { /* Else we get it for them */

 /* Loop through the Fat bufs and see if its in one already. */
 /* Save the index of the LRU in case it’s not there. */
 /* Set iFound to index of FatBuf (if found). */
 /* Otherwise, Set up iLRU to indicate what the oldest buffer is */

 iFound = 0xffffffff;
 LRU = 0xffffffff; /* saves tick of oldest one so far */
 iLRU = 1; /* default */
 for (j=1; j<nFATBufs; j++)
 {
 if (Fat[j].LastUsed > 0)
 { /* Valid ? (ever been used) */
 if ((first == Fat[j].iClstrStart) &&

MMURTL V1.0 Page 566 of 667

 (Drive == Fat[j].Drive))
 {
 iFound = j;
 if (fLock)
 Fat[j].fModLock |= FATLOCK;
 break; /* Already IN! */
 }
 }
 if (Fat[j].LastUsed < LRU)
 {
 LRU = Fat[j].LastUsed;
 iLRU = j;
 }
 }

 if (iFound != 0xffffffff)
 { /* Its already in memory */
 Fat[j].LastUsed = Tick; /* update LRU */
 }
 else
 { /* else put into oldest buffer */
 j = iLRU;

 /* Check to see if Fat[iLRU] is valid and has been
 modified. If it is, write it out before we read
 the next one into this buffer. This done by
 calling UpdateFAT(iFatRec).
 */
 if (Fat[j].fModLock & FATMOD)
 erc = UpdateFAT(j);

 if (!erc)
 {
 erc = DeviceOp(Ldrv[Drive].DevNum, 1, i, 1, Fat[j].pBuf);
 Fat[j].Drive = Drive; /* Update Drive */
 Fat[j].LastUsed = Tick; /* update LRU */
 Fat[j].iClstrStart = first; /* update first cluster num
*/
 Fat[j].LBASect = i; /* LBA this FAt sect came
from */
 }
 }
 }
 }

 /* This is for FAT12s */

 else
 {
 oSector = (Clstr/1024) * 3; /* X3 cause we read 3 at a time */
 first = Clstr-(Clstr%1024);

 /* Set i to LBA of FAT sector we need by adding offset (oSector)
 to beginning of FAT */

 i = oSector + Ldrv[Drive].LBAFAT;
 j = 0;

MMURTL V1.0 Page 567 of 667

 /* If FAT sector is out of range there’s a BAD problem... */

 if (i >= Ldrv[Drive].sFAT)
 return (ErcBadFATClstr);
 else
 { /* Else we get it for them */

 /* Check the single floppy fat buf and see if its already there. */
 /* Set iFound to index of FatBuf (if found). */

 iFound = 0xffffffff;

 if (Fat[0].LastUsed > 0)
 { /* Valid ? (nonzero means it’s been used) */
 if ((first == Fat[0].iClstrStart) &&
 (Drive == Fat[0].Drive))
 {
 iFound = 0;
 if (fLock)
 Fat[0].fModLock |= FATLOCK;
 }
 }

 if (iFound == 0xffffffff)
 {
 /* It’s not the one we want or isn’t there.
 Check to see if Fat[0] is valid and has been
 modified. If it is, write it out before we read
 the one we want into the buffer. This done by
 calling UpdateFAT(iFatRec).
 */
 if (Fat[0].fModLock & FATMOD)
 erc = UpdateFAT(0);

 /* set up to read upto 3 sectors into buffer */

 if (i+2 < Ldrv[Drive].sFAT + Ldrv[Drive].LBAFAT)
 k = 3;
 else if (i+1 < Ldrv[Drive].sFAT + Ldrv[Drive].LBAFAT)
 k = 2;
 else
 k = 1;

 if (!erc)
 {
 erc = DeviceOp(Ldrv[Drive].DevNum, 1, i, k, Fat[0].pBuf);

 Fat[0].Drive = Drive; /* Update Drive */
 Fat[0].LastUsed = Tick; /* update LRU */
 Fat[0].iClstrStart = first; /* update first cluster num
*/
 Fat[0].LBASect = i; /* LBA this FAT sect came from */
 }
 }
 }
 }

MMURTL V1.0 Page 568 of 667

 piFatRecRet = j; / Buffer that holds the sector(s) */

 return (erc); /* Disk error Bad news */
}

/***
 Returns the value found for this cluster
 entry in a fat sector buffer. Values can be:
 FAT16 FAT12
 Next entry in the chain (0002-FFF0 (002-FF0)
 Last entry in chain (FFF8)(FF8)
 Available cluster (0)(0)
 Bad Cluster (FFF7)(FF7)
 (other vlaues are reserved).
**/

static U32 GetClstrValue(U16 Clstr, U8 Drive, U8 fLock,
 U16 *pValRet, U32 *iFatBufRet)
{
U32 erc, oClstr, iFat;
U16 ClstrVal, *pClstr;

 erc = FindFatSect(Drive, Clstr, &iFat, fLock);

 if (erc)
 {
 *pValRet= 0;
 return(erc);
 }

 pClstr = Fat[iFat].pBuf;
 oClstr = Clstr - Fat[iFat].iClstrStart; /* offset into FatBuf */

 if (Ldrv[Drive].fFAT16)
 { /* if drive is FAT16 type */
 pClstr += oClstr * 2; /* WORDS in */
 ClstrVal = *pClstr;
 }
 /* FAT12 entries are 1.5 bytes long (what a pain).
 This means we get the offset and see whether it
 is an odd or even byte, then take the proper nibble
 by ANDing or shifting.
 */
 else
 { /* a FAT12... */
 pClstr += oClstr + (oClstr/2); /* 1.5 bytes in */
 ClstrVal = *pClstr; /* We have 16 bits */
 if (Clstr & 1) /* Odd, must shift */
 ClstrVal >>= 4;
 ClstrVal &= 0xfff;
 }
 *pValRet= ClstrVal;
 *iFatBufRet = iFat;

 return(erc);

MMURTL V1.0 Page 569 of 667

}

/***
 Sets the value in Clstr to the value in
 NextClstr which will be one of the following
 values: FAT16 FAT12
 Next entry in the chain (0002-FFEF (002-FEF)
 Last entry in chain (FFFF)(FFF)
 Available cluster (0)(0)
 Bad Cluster (FFF7)(FF7)
 (other vlaues are reserved).
 This marks the associated fat buffer as modified.
 This is the ONLY call that modifies a FAT buffer!
**/

static U32 SetClstrValue(U16 Clstr, U16 NewClstrVal, U8 Drive, U32
*iFatBufRet)
{
U32 erc, oClstr, iFat;
U16 ClstrVal, *pClstr, ClstrSave;

 erc = FindFatSect(Drive, Clstr, &iFat, 0);
 if (erc)
 {
 *iFatBufRet = 0;
 return(erc);
 }

 pClstr = Fat[iFat].pBuf;
 oClstr = Clstr - Fat[iFat].iClstrStart; /* offset into FatBuf*/
 if (Ldrv[Drive].fFAT16)
 { /* if drive is FAT16 type */
 pClstr += oClstr * 2; /* WORDS in */
 *pClstr = NewClstrVal;
 }
 /* FAT12 entries are 1.5 bytes long (remember??).
 SAVE THE CORRECT NIBBLE OF THE ADJACENT CLUSTER!!
 */
 else
 { /* a FAT12... */
 pClstr += oClstr + (oClstr/2); /* 1.5 bytes in */
 ClstrSave = *pClstr; /* We have 16 bits */
 if (Clstr & 1)
 { /* Odd, must shift */
 NewClstrVal <<= 4;
 NewClstrVal &= 0xfff0;
 ClstrVal = (ClstrSave & 0x0F) | NewClstrVal;
 }
 else
 {
 NewClstrVal &= 0x0fff;
 ClstrVal = (ClstrSave & 0xf000) | NewClstrVal;
 }
 *pClstr = ClstrVal;
 }
 Fat[iFat].fModLock |= FATMOD;

MMURTL V1.0 Page 570 of 667

 *iFatBufRet = iFat;
 return(erc);
}

/***
 Read the FAT and get the cluster number for the
 next cluster in the chain for the Clstr specifed.
 This returns 0 and an error if failed.
 0 is an illegal cluster number.
 Remember, the cluster you are on is actually the
 number of the next cluster in a linked list!
**/

static U32 NextFATClstr(U8 Drive, U16 Clstr, U16 *pNextClstrRet)
{
U32 erc, i;
U16 NextClstr;

 erc = GetClstrValue(Clstr, Drive, 0, &NextClstr, &i);

 if (erc)
 {
 *pNextClstrRet = 0;
 return(erc);
 }
 *pNextClstrRet = NextClstr;
 return(0);
}

/***
 This allocates the next empty cluster on the disk
 to the tail of the clstr that is passed in.
 LastClstr is a valid cluster of a file or
 directory (and MUST be the last one).
 We error out if it isn’t!
 This returns 0 and an error if it fails.
 Remember, the cluster you are on is actually the
 number of the next cluster in a linked list!
 This looks through the current and succesive
 FAT sectors (if needed) to add to the file.
 A cluster is available to allocate if it is
 0. This is strictly a first fit algorithm.
**/

static U32 ExtendClstrChain(U8 Drive, U16 LastClstr, U16 *pNextClstrRet)
{
U32 erc, i, j, k;
U16 ClstrValue, MaxClstr, CrntClstr;
U8 fFound;

 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

 /* i is index to Fat with last sector of current chain */

MMURTL V1.0 Page 571 of 667

 erc = GetClstrValue(LastClstr, Drive, 1, &ClstrValue, &i);
 if (erc)
 {
 *pNextClstrRet = 0;
 return(erc);
 }

 if (ClstrValue < MaxClstr)
 { /* no need to extend it */
 *pNextClstrRet = ClstrValue;
 Fat[i].fModLock &= ~FATLOCK; /* unlock it */
 return(0);
 }

 /* OK... now we have the Fat sector and the offset in the Fat
 buf of the last cluster allocated to this file. Let’s go
 further into the buffer and try to get an empty one.
 */

 CrntClstr = LastClstr;
 fFound = 0;
 while (!fFound)
 {
 ++CrntClstr; /* next cluster */
 erc = GetClstrValue(CrntClstr, Drive, 0, &ClstrValue, &j);
 if (erc)
 {
 *pNextClstrRet = 0;
 Fat[i].fModLock &= ~FATLOCK; /* unlock previous lastclstr */
 return(erc);
 }
 if (!ClstrValue)
 {
 fFound = 1; /* found an empty one */
 }
 }

 if (fFound)
 { /* CrntClstr is index to empty one */

 /* Set the LastCluster to point to the new cluster found */

 erc = SetClstrValue(LastClstr, CrntClstr, Drive, &k);
 if (erc)
 {
 *pNextClstrRet = 0;
 Fat[i].fModLock &= ~FATLOCK; /* unlock previous lastclstr */
 return(erc);
 }
 Fat[k].fModLock &= ~FATLOCK; /* unlock it */

 /* Set the newcluster to "end Cluster" chain value */

 erc = SetClstrValue(CrntClstr, 0xFFFF, Drive, &j);
 }
 *pNextClstrRet = CrntClstr;

MMURTL V1.0 Page 572 of 667

 return(erc);
}

/***
 This truncates the file chain to the cluster
 specified (makes it the last cluster).
 This means we walk the rest of the chain setting
 all the entries to 0 (so they can be reallocated).
 This returns an error if failed.
**/

static U32 TruncClstrChain(U8 Drive, U16 Clstr)
{
U32 erc, i;
U16 MaxClstr, NextClstr, CrntClstr;

 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

 /* i will be index to FatRec with last sector of current chain */

 erc = GetClstrValue(Clstr, Drive, 0, &NextClstr, &i);
 if (erc)
 return(erc);

 if (NextClstr >= MaxClstr)
 { /* no need to truncate it */
 return(0); /* It’s already the end. */
 }

 /* OK... now we cut it off all the way down the chain.
 We start by placing MaxClstr in the last sector and
 then 0 in all entries to the end of the chain.
 */

 erc = GetClstrValue(Clstr, Drive, 0, &NextClstr, &i);
 if (erc)
 return(erc);
 erc = SetClstrValue(Clstr, 0xFFFF, Drive, &i); /* new end of chain */
 if (erc)
 return(erc);

 while ((NextClstr) && (NextClstr < MaxClstr))
 {
 CrntClstr = NextClstr;
 erc = GetClstrValue(CrntClstr, Drive, 0, &NextClstr, &i);
 if (erc)
 return(erc);
 erc = SetClstrValue(CrntClstr, 0, Drive, &i); /* Free it up */
 if (erc)
 return(erc);
 }

 /* DONE! */
 return(0);

MMURTL V1.0 Page 573 of 667

}

/**
 This finds the absolute cluster you want from the
 LFA in a particular file. The file handle must already
 be validated! It also returns the relative LFA of
 the beginning of this cluster.
***/

static U32 GetAbsoluteClstr(U32 dHandle, U32 dLFA,
 U16 *pClstrRet, U32 *prLFARet)
{
U32 erc, iFCB, spc, bpc, rLFA;
U16 rClstrWant, rClstrNow, Clstr, MaxClstr;
U8 Drive;

 iFCB = paFUB[dHandle]->iFCB;
 Drive = paFCB[iFCB]->Ldrv; /* What logical drive are we on? */
 spc = Ldrv[Drive].SecPerClstr; /* sectors per cluster */
 bpc = spc * 512; /* bytes per cluster */

 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

/*
 Calculate relative by dividing cluster size in bytes by dLFA.
 If zero, we want the 1st cluster which is listed in the FCB.
 If it is greater than zero, we have to "walk the FAT cluster
 chain" until we reach the one we want, then read it in.

 The FUB fields LFAClstr and Clstr store the file LFA of the last
 cluster in this file that was read or written. This means if the
 LFA is higher than the last read or written, we don’t waste the
 time reading the whole chain. We start from where we are.

 The major difference is we may not be reading the first sector
 in the cluster. We figure this out from the dLFA as compared to
 LFAClstr.

*/

 rClstrWant = dLFA / bpc; /* Relative clstr they want
*/
 rClstrNow = paFUB[dHandle]->LFAClstr / bpc; /* Rel ’Clstr’ in FUB */

 if (rClstrWant < rClstrNow)
 { /* Is it earlier in the file? */
 Clstr = paFCB[iFCB]->StartClstr; /* Yes, start at the beginning */
 rClstrNow = 0;
 rLFA = 0;
 }
 else
 {
 Clstr = paFUB[dHandle]->Clstr; /* No, start at current cluster
*/

MMURTL V1.0 Page 574 of 667

 rLFA = paFUB[dHandle]->LFAClstr; /* LFA of this cluster */
 }

 /* We need to run the cluster chain if rClstrNow < ClstrWant */

 while ((rClstrNow < rClstrWant) && /* haven’t reach it yet */
 (Clstr < MaxClstr) && /* Not last cluster */
 (Clstr))
 { /* A valid cluster */
 erc = NextFATClstr(Drive, Clstr, &Clstr);
 if (erc)
 return(erc);
 ++rClstrNow;
 rLFA += bpc;
 }

 if (rClstrNow != rClstrWant) /* Cluster chain appears broken... */
 return ErcBrokenFile;

 *pClstrRet = Clstr;
 *prLFARet = rLFA;
 return(0);
}

/***
 SetFileSize sets the FileSize entry in the FCB for
 the handle specified. This means we will allocate
 or deallocate clusters as necessary to satisfy this
 request. The file MUST be open in MODE MODIFY.
 This must be done before a file can be written
 to beyond current FileSize (Block and Stream types).
**/

static U32 SetFileSizeM(U32 dHandle, U32 dSize)
{
U32 erc, i, iFCB, rLFA;
U32 CrntSize, nCrntClstrs, spc, bpc, nClstrsWant;
U16 Clstr;
U8 Drive;

 erc = ValidateHandle(dHandle, &iFCB);
 if (erc)
 return erc;
 if (!paFCB[iFCB]->Mode)
 return ErcReadOnly;

 Drive = paFCB[iFCB]->Ldrv; /* What logical drive are we on? */
 spc = Ldrv[Drive].SecPerClstr; /* sectors per cluster */
 bpc = spc * 512; /* bytes per cluster */

 /* Looks like it’s valid to change the size */

 CrntSize = paFCB[iFCB]->FileSize;

 if (CrntSize == dSize) /* No need to do anything! */
 return(0);

MMURTL V1.0 Page 575 of 667

 nCrntClstrs = CrntSize/bpc; /* nClusters currently */
 if (CrntSize%bpc)
 nCrntClstrs++;

 if (!CrntSize)
 nCrntClstrs = 1; /* ZERO length files have 1 Clstr! */

 nClstrsWant = dSize/bpc; /* nClusters they we need */
 if (dSize%bpc)
 nClstrsWant++;

 if (!dSize)
 nClstrsWant = 1; /* ZERO length files have 1 Clstr! */

 if (nClstrsWant == nCrntClstrs)
 erc = 0;

 else if (nClstrsWant > nCrntClstrs)
 { /* Need to extend allocation */

 /* get the last cluster in the file */
 erc = GetAbsoluteClstr(dHandle, CrntSize, &Clstr, &rLFA);
 i = nCrntClstrs;
 while ((!erc) && (i < nClstrsWant))
 {
 erc = ExtendClstrChain(Drive, Clstr, &Clstr);
 i++;
 }
 }
 else if (nClstrsWant < nCrntClstrs)
 { /* Need to truncate it */

 /* Get to cluster where it should be truncated */

 erc = GetAbsoluteClstr(dHandle, dSize, &Clstr, &rLFA);
 if (!erc)
 erc = TruncClstrChain(Drive, Clstr);
 /* Now we must ensure that the cluster helper is NOT
 beyond EOF!
 */
 if (paFUB->LFAClstr > dSize)
 {
 paFUB->LFAClstr = 0;
 paFUB[dHandle]->Clstr = paFCB[iFCB]->StartClstr;
 }

 }
 if (!erc)
 {
 paFCB[iFCB]->FileSize = dSize;
 paFCB[iFCB]->fMod = 1;
 }

 return erc;
}

MMURTL V1.0 Page 576 of 667

/***
 This searches a directory beginning at Clstr for pName and returns
 a pointer to the 32 byte dir entry which is in a temporary buffer.
 If not found, returns NIL. When searching directories, if the
 filename begins with a NULL the search need go no futher!
**/

static U32 GetDirEnt(U8 *pName,
 U8 Drive,
 U16 Clstr,
 U32 *pLBARet,
 U32 *poEntRet,
 U8 **pEntRet)
{
unsigned long sector, i, j, k, erc;
U8 fFound, fEnd, *pEnt, *pStart;
U16 MaxClstr;

 j = Ldrv[Drive].SecPerClstr; /* How many sectors per cluster */
 sector = ClsToLBA(Clstr, Drive); /* absolute sector of first dir sector */
 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */
 i = 0;
 fEnd=0;
 fFound=0;

 fFound= 0;
 while ((!fFound) && (!fEnd))
 { /* while there are valid entries */
 if (i==j)
 { /* reached last dir sector of this cluster */
 erc = NextFATClstr(Drive, Clstr, &Clstr);
 if (!erc)
 {
 if (Clstr >= MaxClstr) /* last sector */
 return(ErcNoSuchFile); /* not found */
 sector = ClsToLBA(Clstr, Drive); /* LBA of next dir sector */
 i=0;
 }
 else
 {
 *pEntRet = 0;
 return(erc);
 }
 }

 erc = DeviceOp(Ldrv[Drive].DevNum, 1, sector++, 1, abDirSectBuf);
 if (erc)
 return(erc);

 ++i; /* next sector in cluster */

MMURTL V1.0 Page 577 of 667

 pEnt = &abDirSectBuf[0];
 pStart = pEnt;

 for (k=0; k<16; k++)
 { /* 16 entries per sector */
 if (*pEnt==0)
 { /* 0 in a DirEnt stops search */
 fEnd=1;
 break;
 }

 if (CompareNCS(pEnt, pName, 11) == -1)
 {
 fFound=1;
 pLBARet = sector-1; / tell em what LBA of DirEnt */
 poEntRet = pEnt-pStart; / Tell em offset in LBA */
 break;
 }
 pEnt+=32; /* 32 byte per entry */
 }
 }
 if (fFound)
 {
 *pEntRet = pEnt;
 return(0);
 }
 else return (ErcNoSuchFile);
}

/***
 This searches the ROOT directory for pName
 and returns a pointer to the 32 byte entry which
 is in a temporary buffer. If not found, returns NIL;
 When searching directories, if the filename begins
 with a NULL the search need go no futher!
***/

static U32 GetRootEnt(U8 *pName,
 U8 Drive,
 U32 *pLBARet,
 U32 *poEntRet,
 U8 **pEntRet)
{
unsigned long i, j, k, erc;
U8 fFound, fEnd, *pEnt, *pStart;

 i = Ldrv[Drive].LBARoot;
 j = Ldrv[Drive].nRootDirEnt;

 fFound = 0;
 fEnd = 0;
 while ((j) && (!fFound) && (!fEnd))
 { /* while there are valid entries */

 erc = DeviceOp(Ldrv[Drive].DevNum, 1, i++, 1, abRawSector);

MMURTL V1.0 Page 578 of 667

 if (erc)
 return(erc);

 pEnt = abRawSector;
 pStart = pEnt;
 for (k=0; k<16; k++)
 {
 if (*pEnt==0)
 { /* 0 in a DirEnt stops search */
 fEnd=1;
 break;
 }
 if (CompareNCS(pEnt, pName, 11) == -1)
 {
 fFound=1;
 pLBARet = i-1; / tell em what LBA of DirEnt */
 poEntRet = pEnt-pStart; / Tell em offset in LBA */
 break;
 }
 --j; /* one less dir ent */
 pEnt+=32; /* 32 byte per entry */
 }
 }
 if (fFound)
 {
 *pEntRet = pEnt;
 return(0);
 }
 else
 return (ErcNoSuchFile);
}

/**
 This builds a full file specification from
 pName and places it in pDest based on the
 path from iJob. cbDestRet is set to size.
***/

static void BuildSpec(char *pName,
 long cbName,
 char *pDest,
 long *cbDestRet,
 long iJob)
{
long i;

 if ((cbName) && (pName) && (pName[1] == ’:’))
 { /* Do NOT use path */
 CopyData(pName, pDest, cbName);
 i = cbName;
 }
 else
 { /* Use path as prefix */
 i = 0;
 GetPath(iJob, pDest, &i);
 if ((cbName) && (pName))
 {

MMURTL V1.0 Page 579 of 667

 CopyData(pName, &pDest[i], cbName);
 i += cbName;
 }
 }
 *cbDestRet = i;
}

/***
 The parses out the path name into directories, filename,
 and extension (Example):
 C:\TEMP\TEST.TXT (with TEMP being a dir in the root).
 This also uses the current path for the job to build
 the filename. If the name starts with \ or "DRIVE:"
 then the path from the JCB is NOT used. Otherwise
 the pName is cancatenated to the job’s path.
 SpecDepth is set to the level of the last valid
 11 character string (0-6).
***/

static U32 ParseName(U8 *pName, U32 cbName, U32 iJob)
{
unsigned long i, j, k, erc;
U8 c, *pPart;
char Spec[70];
U32 cbSpec;

 erc = 0;
 FDrive = 0;

 FillData(FileSpec, (7*11), ’ ’); /* Fill parse table with spaces */

 BuildSpec(pName, cbName, Spec, &cbSpec, iJob);

 j = 0; /* index into crnt part of spec */
 k = 0; /* index into crnt tree level */
 pPart = Spec;
 for (i=0; i < cbSpec; i++)
 {
 switch (c = *pPart++)
 {
 case 0x5c : /* ’\’ separates dir or fname */
 if (j>0)
 { /* if it’s not the first one */
 ++k;
 j=0;
 }
 break;
 case ’:’ :
 if ((j==1) && (k==0) && (FDrive==0))
 {
 FDrive = FileSpec[0][0] & 0xdf; /* Make drive Upper*/
 FileSpec[0][0] = ’ ’;
 j=0; /* back to beginning of part */
 k=0;
 }

MMURTL V1.0 Page 580 of 667

 else erc = ErcBadFileSpec;
 break;
 case ’.’ : /* . can only appear once in dir or fname */
 if (j>8) erc = ErcBadFileSpec;
 else j=8; /* move to extension */
 break;
 case ’>’ : /* not allowed in spec */
 case ’<’ :
 case ’,’ :
 case ’+’ :
 case ’|’ :
 case ’]’ :
 case ’[’ :
 case ’+’ :
 case ’=’ :
 case ’@’ :
 case ’*’ :
 case ’?’ :
 erc = ErcBadFileSpec;
 break;
 default : /* make chars upper */
 if (j>10)
 erc = ErcBadFileSpec;
 else
 {
 if (((c >= ’A’) && (c <= ’Z’)) ||
 ((c >= ’a’) && (c <= ’z’)))
 c &= 0xdf;
 FileSpec[k][j] = c;
 ++j;
 }
 break;
 }

 if (erc) break; /* bad news. Exit for loop */
 }
SpecDepth = k;
return erc;
}

/*** Get Directory Sector *******************************
 Gets a 512 byte directory sector in sequence number from
 the directory path given. SectNum = 0 to nMax for Dir.
 This also returns the LBA for sector itself for
 internal users of this call.
**/

static U32 GetDirSectorM(char *pPath,
 long cbPath,
 char *pSectRet,
 long cbRetMax,
 long SectNum,
 long *LBARet,
 U16 *ClstrRet,
 long iJob)
{

MMURTL V1.0 Page 581 of 667

U32 sector, i, j, k, erc, spc, level, iSect;
U16 MaxClstr, Clstr, rClstr;
U8 fFound, *pEnt, Drive;

 if (cbRetMax > 512) /* WHOA Bub, 1 Sector at a time! */
 cbRetMax = 512;

 erc = ParseName(pPath, cbPath, iJob);

 /* The entire path has now been parsed out into an array of
 arrays, each 11 bytes long that contain each directory name
 in the path for the sector they want.
 The first is always the root (entry 0).
 The drive will be a letter in FDrive.
 */

 if ((FDrive > 0x40) && (FDrive < 0x52)) /* A to J */
 Drive = FDrive - 0x41; /* Make it 0-9 */
 else
 return(ErcNoSuchDrive);

 if (Drive < 2)
 {
 StatFloppy(Drive);
 erc= read_BS(Drive);
 }

 if (Ldrv[Drive].DevNum == 0xff)
 return(ErcNoSuchDrive);

 i = Ldrv[Drive].LBARoot;
 j = Ldrv[Drive].nRootDirEnt;

 if (FileSpec[0][0] == ’ ’)
 { /* They want sector in root */
 if (SectNum > j/32) /* Beyond Root entries! */
 return(ErcNoMatch);

 /* Else we can give them the sector NOW */
 erc = DeviceOp(Ldrv[Drive].DevNum, 1, i+SectNum, 1, abRawSector);
 if (!erc)
 {
 *LBARet = i+SectNum;
 CopyData(abRawSector, pSectRet, cbRetMax);
 }
 return(erc);
 }

 /* We have to run the root for a dir name... */

 fFound = 0;
 while ((j) && (!fFound))
 { /* while there are valid entries */
 erc = DeviceOp(Ldrv[Drive].DevNum, 1, i++, 1, abRawSector);
 if (erc)
 return(erc);
 pEnt = abRawSector; /* Point to first entry */

MMURTL V1.0 Page 582 of 667

 for (k=0; k<16; k++)
 {
 if (CompareNCS(pEnt, FileSpec[0], 11) == -1)
 {
 fFound=1;
 break;
 }
 --j; /* one less dir ent */
 pEnt+=32; /* 32 byte per entry */
 }
 }
 if (!fFound)
 return (ErcNoMatch);

 pDirEnt = pEnt; /* Entry we just found in root was dir */

 if (!(pDirEnt->Attr & DIRECTORY))
 {
 return(ErcNoSuchDir);
 }

 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

 spc = Ldrv[Drive].SecPerClstr; /* How many sectors per cluster */
 Clstr = pDirEnt->StartClstr;

 level = 1; /* start at this directory+1, compare to FileSpec */

 while (!erc)
 { /* looking for Dir */

 if (FileSpec[level][0] == ’ ’)
 { /* They want sector in this dir */

 if (!(pDirEnt->Attr & DIRECTORY))
 {
 return(ErcNoSuchDir);
 }
 rClstr = SectNum /spc; /* calc relative cluster from start clstr */
 iSect = SectNum % spc; /* Add this to cluster start for sector */
 sector = ClsToLBA(Clstr, Drive); /* sector of first dir sector */
 while ((rClstr--) && (!erc))
 erc = NextFATClstr(Drive, Clstr, &Clstr);
 if (erc)
 return(erc);
 sector = ClsToLBA(Clstr, Drive); /* LBA of this clstr */
 sector += iSect;
 erc = DeviceOp(Ldrv[Drive].DevNum, 1, sector, 1, abRawSector);
 if (!erc)
 {
 CopyData(abRawSector, pSectRet, cbRetMax);
 *LBARet = sector;
 *ClstrRet = Clstr;
 }

MMURTL V1.0 Page 583 of 667

 return(erc);
 }
 else
 { /* Else we must find this sub dir name */

 sector = ClsToLBA(Clstr, Drive); /* sector of first dir sector */
 fFound=0;
 i = 0;

 while (!fFound)
 { /* while there are valid entries */

 if (i==spc)
 { /* reached last dir sector of this cluster */
 erc = NextFATClstr(Drive, Clstr, &Clstr);
 if (!erc)
 {
 if (Clstr >= MaxClstr) /* last sector */
 return(ErcNoSuchFile); /* not found */
 sector = ClsToLBA(Clstr, Drive); /* LBA of next sector */
 i=0;
 }
 else
 return(erc);
 }

 erc = DeviceOp(Ldrv[Drive].DevNum, 1, sector++, 1, abRawSector);
 if (erc)
 return(erc);
 i++; /* Next sector in this cluster */

 pEnt = &abRawSector[0];
 for (k=0; k<16; k++)
 { /* 16 entries per sector */
 if (CompareNCS(pEnt, FileSpec[level], 11) == -1)
 {
 fFound=1;
 break;
 }
 pEnt+=32; /* 32 byte per entry */
 }
 }
 pDirEnt = pEnt; /* Entry we just found */
 Clstr = pDirEnt->StartClstr; /* Clstr @ start of dir entry */
 }
 ++level; /* next level of parsed filespec */
 }
return (erc);
}

/***
 This is the BLOCK read for the MMURTL DOS file system.
 It reads whole sectors and returns them to pBytesRet.
 There are NO internal filesystem buffers for this call.
 Data is returned directly to your buffer from the Disk.
 This is the fastest method for reading a file.
 This is also used internally to fill a stream buffer.

MMURTL V1.0 Page 584 of 667

**/

static U32 ReadBlockM(U32 dHandle,
 U8 *pBytesRet,
 U32 nBytes,
 U32 dLFA,
 U32 *pdBytesRet,
 U8 fFill) /* TRUE if filling a stream buffer */
{
U32 erc, j, LBA, iFCB, bpc, spc, nDone, rLFA, nLeft, nBlks;
U16 Clstr, MaxClstr, ClstrSav;
U8 Drive;

 erc = ValidateHandle(dHandle, &iFCB); /* Sets iFCB if OK */
 if (erc) return erc;

 /* Certain FUB fields have different meanings in stream */

 if ((paFUB[dHandle].fStream) && (!fFill))
 {
 *pdBytesRet = 0;
 return ErcStreamFile;
 }

 /* set these up in advance */

 nBlks = nBytes/512; /* nBytes MUST be multiple of 512 */
 Drive = paFCB[iFCB]->Ldrv; /* What logical drive are we on? */
 spc = Ldrv[Drive].SecPerClstr; /* sectors per cluster */
 bpc = 512 * spc; /* Bytes per cluster */
 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

 /* Call to find the absolute cluster on the the logical disk,
 and also the relative LFA of the cluster in question.
 */

 erc = GetAbsoluteClstr(dHandle, dLFA, &Clstr, &rLFA);

 LBA = ClsToLBA(Clstr, Drive); /* Get LBA of the target cluster */

 /* Now LBA equals beginning of cluster that dLFA resides in.
 We must see which sector in Clstr is the starting LBA. To do this
 we MOD (dLFA in sectors) by (sectors per cluster) and
 add the leftover amount (should be 0 to nSPC-1) to LBA before we
 read. For example: if dLFA was 2560 and spc was 4, this
 would be 5 % 4 = 1. We would add 1 to the LBA.
 This is only done for the first read in the loop.

 We also set nleft which is how many sectors are left in the
 current cluster we are reading from.
 */

 LBA += (dLFA/512) % spc;

MMURTL V1.0 Page 585 of 667

 nLeft = spc - ((dLFA/512) % spc);
 nDone = 0;

 while ((nBlks) && (!erc))
 { /* while buffer isn’t full and no error */
 if (nBlks > nLeft)
 j = nLeft;
 else j = nBlks;

 paFUB[dHandle]->Clstr = Clstr; /* Save Current cluster */
 paFUB[dHandle]->LFAClstr = rLFA; /* Save LFA for Clstr in FUB */

 erc = DeviceOp(Ldrv[Drive].DevNum, 1, LBA, j, pBytesRet);
 if (erc)
 break;
 pBytesRet += j * 512; /* further into their buffer */
 nBlks -= j;
 nLeft -= j;
 nDone += j;

 if ((nBlks) && (!nLeft))
 { /* current cluster has none left */
 nLeft = spc;
 ClstrSav = Clstr;
 erc = NextFATClstr(Drive, Clstr, &Clstr); /* next FAT cluster */
 if (erc)
 {
 *pdBytesRet = nDone*512;
 return(erc);
 }
 rLFA += bpc; /* Update rel LFA of new
cluster*/
 if (Clstr >= MaxClstr)
 erc = ErcEOF; /* Last cluster */
 if (!Clstr)
 erc = ErcBrokenFile; /* No good next cluster! */
 LBA = ClsToLBA(Clstr, Drive); /* Get LBA of the target
cluster*/
 }
 }
 *pdBytesRet = nDone*512;

 return erc; /* WE’RE DONE, return the error (if any) */
}

/*** Write Block ***************************************
 This is the BLOCK write for the MMURTL FAT file system.
 dLFA must be the LFA of a valid portion of the file and
 nBlks must not extend beyond the last cluster allocated
 to the file. IOW, you must call SetFileSize first.
 In a block write dLFA is always written on
 a sector boundry. We must make sure that the filesize
 will accomidate the sectors we want to write!
**/

static U32 WriteBlockM(U32 dHandle, char *pData, U32 nBytes,

MMURTL V1.0 Page 586 of 667

 U32 dLFA, U32 *pdnBytesRet)
{
U32 erc, i, j, LBA, iFCB, bpc, spc, nDone, rLFA, nLeft, nBlks;
U16 Clstr, MaxClstr;
U8 Drive;

 erc = ValidateHandle(dHandle, &iFCB); /* Sets iFCB if OK */
 if (erc) return erc;

 nBlks = nBytes/512;
 dLFA = (dLFA/512)*512; /* round LFA down to nearest sector */

 if (!paFCB[iFCB]->Mode) /* Is it open in Modify?? */
 return(ErcReadOnly);

 i = (paFCB[iFCB]->FileSize/512); /* Set i nBlks in file max */
 if (paFCB[iFCB]->FileSize%512)
 i++;

 j = (dLFA/512) + nBlks; /* blocks to write past dLFA*/

 if (j > i)
 return(ErcBeyondEOF);

 /* It seems OK to write the blocks out, so now let’s DO IT! */

 Drive = paFCB[iFCB]->Ldrv; /* What logical drive are we on? */
 spc = Ldrv[Drive].SecPerClstr; /* sectors per cluster */
 bpc = 512 * spc; /* Bytes per cluster */
 if (Ldrv[Drive].fFAT16)
 MaxClstr = 0xfff8;
 else
 MaxClstr = 0xff8; /* FAT12 */

 erc = GetAbsoluteClstr(dHandle, dLFA, &Clstr, &rLFA);
 if (erc)
 return(erc);

 LBA = ClsToLBA(Clstr, Drive); /* Get LBA of the target cluster */

 /* Now LBA equals beginning of cluster that dLFA resides in.
 We must see which sector in Clstr is the starting LBA. To do this
 we MOD (dLFA in sectors) by (sectors per cluster) and
 add the leftover amount (should be 0 to nSPC-1) to LBA before we
 write. For example: if dLFA was 2560 and spc was 4, this
 would be 5 % 4 = 1. We would add 1 to the LBA.
 This is only done for the first write in the loop.
 We also set nleft which is how many sectors are left in the
 current cluster we are writing to.
 */

 LBA += (dLFA/512) % spc;
 nLeft = spc - (dLFA/512) % spc;
 nDone = 0;

 while ((nBlks) && (!erc))

MMURTL V1.0 Page 587 of 667

 { /* while blocks are left to write */
 if (nBlks > nLeft)
 j = nLeft;
 else j = nBlks;

 paFUB[dHandle]->Clstr = Clstr; /* Save Current cluster */
 paFUB[dHandle]->LFAClstr = rLFA; /* Save LFA for Clstr in FUB */

 erc = DeviceOp(Ldrv[Drive].DevNum, 2, LBA, j, pData);
 if (erc)
 break;
 pData += (j * 512); /* Update address */
 nDone += j; /* Total blocks done so far */
 nBlks -= j;
 nLeft -= j;

 if ((nBlks) && (!nLeft))
 { /* done with current cluster */
 nLeft = spc;
 erc = NextFATClstr(Drive, Clstr, &Clstr); /* next FAT cluster */
 if (erc)
 return(erc);
 rLFA += bpc; /* Update rel LFA of new
cluster*/
 if ((Clstr >= MaxClstr) && (nBlks)) /* Problem! */
 erc = ErcBeyondEOF; /* Last cluster & they want
more*/
 if (!Clstr) erc = ErcBrokenFile; /* No good next cluster! */
 LBA = ClsToLBA(Clstr, Drive); /* Get LBA of the target
cluster*/
 }
 }
 *pdnBytesRet = nDone * 512;
 return erc; /* WE’RE DONE, return the error (if any) */
}

/***
 Fills the stream buffer for the Current LFA in the FUB.
 We simply figure out which relative LBA we want in the
 buffer and call ReadBlockM to fill it. We then set
 LFABuf in the FUB to show the LFA of the first byte
 in the buffer.
**/

static U32 FillStreamBuff(U32 dHandle, U8 fInitial)
{
U32 erc, i, LFA, cLFA, LFABuf, iFCB;
U32 sBuf;
U8 *pBuf;

 erc = 0;

 /* Set these up in advance */

 cLFA = paFUB[dHandle]->CrntLFA; /* Find out where we want to be */
 LFABuf = paFUB[dHandle]->LFABuf; /* LFA of first byte in buffer now */

MMURTL V1.0 Page 588 of 667

 pBuf = paFUB[dHandle]->pBuf; /* Local ptr to buffer */
 sBuf = paFUB[dHandle]->sBuf; /* size of buffer */
 iFCB = paFUB[dHandle]->iFCB; /* FCB for this FUB */

 /* If the file was just opened we fill with LFA 0 */

 if (fInitial)
 {
 erc = ReadBlockM(dHandle, pBuf, sBuf, 0, &i, TRUE);
 }

 /* Else If the LFA is already in the buffer we just exit OK */

 else if ((cLFA >= LFABuf) && (cLFA < (LFABuf + sBuf)))
 {
 erc = 0;
 }

 /* ELSE We must figure out what starting LFA we want and fill the buffer
*/

 else
 {
 LFA = (cLFA/512) * 512; /* Round down to nearest sector */
 erc = ReadBlockM(dHandle, pBuf, sBuf, LFA, &i, 1);
 paFUB[dHandle]->LFABuf = LFA;
 }

 if (erc == ErcEOF) /* We ignore this when filling the buffer */
 erc = 0;
 return erc; /* WE’RE DONE, return the error (if any, except EOF) */
}

/***
 This is the STREAM read for the MMURTL FAT file system.
 Used in conjunction with Get & Set FileLFA, you can
 move to any portion of the file to read one or more bytes.
 Data is buffered in Page sized chunks by the file
 system. This is the easiest method for reading a file.
**/

static U32 ReadBytesM(U32 dHandle, U8 *pBytesRet, U32 nBytes, U32 *pdReadRet)
{
U32 erc, iFCB, sBuf, cLFA, fSize;
U32 nBytesDone, /* Total read so far */
 lfaEOB, /* LFA end of Buffer */
 nBytesOut; /* Number of bytes to copy (this buffer full) */
U8 *pOut, *pBuf; /* Next data to send caller from buffer. Local pbuf */

 erc = ValidateHandle(dHandle, &iFCB); /* Sets iFCB if OK */
 if (erc) return erc;

 /* Certain FUB fields have different meanings in stream type file */

 if (!paFUB[dHandle]->fStream)
 return ErcBlockFile;

MMURTL V1.0 Page 589 of 667

 cLFA = paFUB[dHandle]->CrntLFA; /* local cLFA */
 fSize = paFCB[iFCB]->FileSize; /* local size */

 /* check and see if we are at EOF */

 if (cLFA >= fSize)
 { /* early out */
 *pdReadRet = 0;
 return ErcEOF;
 }

 /* We are not at EOF so we need to fill stream buff
 and then calculate how many bytes we can give them
 from this buffer full of data.
 */

 pBuf = paFUB[dHandle]->pBuf; /* Local ptr to buffer/size */
 sBuf = paFUB[dHandle]->sBuf;
 nBytesDone = 0;

 while ((nBytesDone < nBytes) &&
 (cLFA < fSize) &&
 (!erc))
 {
 erc = FillStreamBuff(dHandle, 0); /* Fill the buff */

 /* Find out the LFA at the end of the buffer since we
 just filled it. It may be less than the end since
 we may be near EOF.
 */

 lfaEOB = paFUB[dHandle]->LFABuf + sBuf -1; /* LFA at End of Buffer */
 if (lfaEOB > fSize) /* Beyond EOF? */
 lfaEOB = fSize - 1;

 /* Calculate pointer to the next chunk out from stream buffer */

 pOut = pBuf + (cLFA - paFUB[dHandle]->LFABuf);

 /* Calc how many bytes we can get out of buffer (belongs to file) */

 nBytesOut = lfaEOB - cLFA + 1;
 if (nBytesOut > nBytes-nBytesDone)
 nBytesOut = nBytes-nBytesDone;

 /* Send bytes to pBytesRet */

 CopyData(pOut, pBytesRet, nBytesOut);

 pBytesRet += nBytesOut; /* Update pBytesRet */
 nBytesDone += nBytesOut; /* Update nBytesDone */
 cLFA += nBytesOut; /* update CrntLFA */
 paFUB[dHandle]->CrntLFA = cLFA;
 }

 pdReadRet = nBytesDone; / Tell em how many bytes they got */
 if (!erc)

MMURTL V1.0 Page 590 of 667

 if (cLFA == fSize)
 erc = 1;

 return erc;
}

/***
 Flushes the stream buffer if it has been modified.
 We read the current LBA of the buffer and write it
 to disk. Then reset the flag in the FCB.
 This uses WriteBlockM. We ensure we do not call
 WriteBlockM with more sectors than are allocated
 to the file cause the buffer may extend past the
 actual allocated amount of clusters!
**/

static U32 FlushStreamBuff(U32 dHandle)
{
U32 erc, i, j, LFABuf, iFCB, size;
U32 sBuf;
U8 *pBuf;

 erc = 0;

 if (paFUB[dHandle]->fModified)
 {

 LFABuf = paFUB[dHandle]->LFABuf; /* LFA of first byte in buf now
*/
 pBuf = paFUB[dHandle]->pBuf; /* Local ptr to buffer */
 sBuf = paFUB[dHandle]->sBuf; /* size of buffer */
 iFCB = paFUB[dHandle]->iFCB; /* to check filesize */
 size = paFCB[iFCB]->FileSize;

 i = (sBuf/512); /* Total blocks in buff */
 j = (size-LFABuf)/512; /* Blocks in buf belonging to file */
 if ((size-LFABuf)%512) /* Odd bytes, add one more block */
 j++;
 if (j < i)
 i = j;

 erc = WriteBlockM(dHandle, pBuf, i*512, LFABuf, &i);
 paFUB[dHandle]->fModified = 0;
 }
 return erc;
}

/*** Write Bytes (Stream) ******************************
 This is the STREAM write for the MMURTL FAT file system.
 This uses FillStreamBuff to set up the buffer, and
 FlushStreamBuff to write modified stream buffers.
 This also calls SetFileSizeM to extend the
 filelength when necessary (writing at EOF).
**/

static U32 WriteBytesM(U32 dHandle, char *pData, U32 nBytes, U32 *nBytesRet)

MMURTL V1.0 Page 591 of 667

{
U32 erc, iFCB, sBuf, cLFA, fSize, OrigSize;
U32 nBytesDone, /* Total written so far */
 lfaEOB, /* LFA end of Buffer */
 nBytesOut; /* Number of bytes to copy (this buffer full) */
U8 *pOut, *pBuf; /* Next data to send caller from buffer. Local pbuf */

 erc = ValidateHandle(dHandle, &iFCB); /* Sets iFCB if OK */
 if (erc) return erc;

 /* Certain FUB fields have different meanings in stream type file */

 if (!paFUB[dHandle]->fStream)
 return(ErcBlockFile);

 if (!paFCB[iFCB]->Mode) /* Is it open in Modify?? */
 return(ErcReadOnly);

 cLFA = paFUB[dHandle]->CrntLFA; /* local cLFA */
 fSize = paFCB[iFCB]->FileSize; /* local size */

 /* check and see if we are at EOF or will go past it
 when we write */

 if (cLFA + nBytes > fSize)
 { /* Must set file size first */
 OrigSize = fSize;
 erc = SetFileSizeM(dHandle, cLFA + nBytes);
 if (erc)
 return(erc);
 fSize = paFCB[iFCB]->FileSize; /* local size */
 }

 /* Now we loop writing the bytes to the stream buffer
 filling it with each new section of the file.
 As this occurs we must call fillStreamBuff with
 each new section of the file if not already in the
 buff to ensure proper continuity of the file in case
 we are overwriting existing sections of the file.
 */

 pBuf = paFUB[dHandle]->pBuf; /* Local ptr to buffer/size */
 sBuf = paFUB[dHandle]->sBuf;
 nBytesDone = 0;

 while ((nBytesDone < nBytes) &&
 (cLFA < fSize) &&
 (!erc))
 {
 /* First call FlushStreamBuff which will write the current
 buffer and reset the fModified flag (if needed).
 */
 erc = FlushStreamBuff(dHandle);
 if (erc)
 return(erc);

 if (cLFA < OrigSize)

MMURTL V1.0 Page 592 of 667

 erc = FillStreamBuff(dHandle, 0); /* Fill the buff */
 else
 paFUB[dHandle]->LFABuf= (cLFA/512) * 512; /* Just set Buff LFA */

 /* Find out the LFA at the end of the buffer since we
 just filled it. It may be less than the end since
 we may be near EOF.
 */

 lfaEOB = paFUB[dHandle]->LFABuf + sBuf -1; /* LFA at End of Buffer */
 if (lfaEOB > fSize) /* Beyond EOF? */
 lfaEOB = fSize - 1;

 /* Calc pointer to where next chunk goes in stream buffer */

 pOut = pBuf + (cLFA - paFUB[dHandle]->LFABuf);

 /* Calc how many bytes we can write to buffer */

 nBytesOut = lfaEOB - cLFA + 1;
 if (nBytesOut > nBytes-nBytesDone)
 nBytesOut = nBytes-nBytesDone;

 /* Get bytes from pData into stream buffer */

 CopyData(pData, pOut, nBytesOut);
 paFUB[dHandle]->fModified = 1;

 pData += nBytesOut; /* Update pData pointer */
 nBytesDone += nBytesOut; /* Update nBytesDone */
 cLFA += nBytesOut; /* update CrntLFA */
 paFUB[dHandle]->CrntLFA = cLFA;
 }

 nBytesRet = nBytesDone; / Tell em how many bytes we wrote */

 return erc;

}

/***
 GetFileSize returns the FileSize entry from the FCB
 for the handle specified. This means the file must be
 OPEN. This call would NOT be used for a directory
 listing function as you would have to open each file
 to get the information. Use ReadDirSector instead.
**/

static U32 GetFileSizeM(U32 dHandle, U32 *pdSizeRet)
{
U32 erc, iFCB;
 erc = ValidateHandle(dHandle, &iFCB);
 if (erc) return erc;
 *pdSizeRet = paFCB[iFCB]->FileSize;
 return 0;
}

MMURTL V1.0 Page 593 of 667

/***
 SetFileLFA sets a Stream mode file pointer to dLFA.
 If attempted on a block mode file an error is returned.
 -1 (0xffffffff) is equal to EOF. The Stream Buffer
 is filled with the sectors that contains the LFA.
**/

static U32 SetFileLFAM(U32 dHandle, S32 dLFA)
{
U32 erc, iFCB;

 erc = ValidateHandle(dHandle, &iFCB);
 if (erc) return erc;

 if (!paFUB[dHandle]->fStream)
 return ErcBlockFile;

 if (paFCB[iFCB]->Mode) /* Modify mode - Flush will flush if needed */
 erc = FlushStreamBuff(dHandle);

 /* -1 = Set file ptr to EOF */

 if (dLFA == -1)
 dLFA = paFCB[iFCB]->FileSize;

 if (dLFA > paFCB[iFCB]->FileSize)
 erc = ErcBeyondEOF;

 if (!erc)
 {
 paFUB[dHandle]->CrntLFA = dLFA; /* Find out where we are in the file
*/
 erc = FillStreamBuff(dHandle, 0);
 }

 return erc;
}

/***
 GetFileLFA gets a Stream mode file pointer for caller
 returning it to pdLFARet.
 If attempted on a block mode file an error is returned.
 EOF is returned as the FileSize.
**/

static U32 GetFileLFAM(U32 dHandle, U32 *pdLFARet)
{
U32 erc, iFCB;
 erc = ValidateHandle(dHandle, &iFCB);
 if (erc) return erc;
 if (!paFUB[dHandle]->fStream)
 return ErcBlockFile;
 *pdLFARet = paFUB[dHandle]->CrntLFA;

MMURTL V1.0 Page 594 of 667

 return erc;
}

/***
 This calls parse to validate the filename and separate
 it into directories and a filename. It then walks
 up the tree until it either finds and opens the file,
 or errors out. The handle that is returned is
 4 higher than the index to the FUB. This is becuase
 0, 1, 2 & 3 are reserved for NUL, KBD, VID, and LPT
 which are only accesible from the blocking File calls.
***/

static U32 OpenFileM(U8 *pName,
 U32 cbName,
 U8 Mode,
 U8 fStream,
 U32 *pdHandleRet,
 U32 iJob) /* make use of iJob later!!! */
{
U32 erc, level, i, iFCB, iFUB, LBADirEnt, EntOffset;
U16 Clstr;
U8 fFound, *pMem, Drive;

 if (Mode > 1) return ErcBadOpenMode;

 level = 0; /* start at the root, compare to SpecDepth */

 erc = ParseName(pName, cbName, iJob);

 /* The entire path has now been parsed out into an array of
 arrays, each 11 bytes long that contain each directory name
 up to and inlcuding the filename. The first is always
 the root (entry 0). The drive will be a letter in FDrive.
 */

 if ((FDrive > 0x40) && (FDrive < 0x52)) /* A to J */
 Drive = FDrive - 0x41; /* Make it 0-9 */
 else erc = ErcNoSuchDrive;

 if (Ldrv[Drive].DevNum == 0xff)
 erc = ErcNoSuchDrive;

 if (Drive < 2)
 {
 StatFloppy(Drive);
 erc= read_BS(Drive);
 }

 if (!erc)
 { /* Get Root dir entry */
 erc = GetRootEnt(FileSpec[level],
 Drive,
 &LBADirEnt,
 &EntOffset,
 &pDirEnt);

MMURTL V1.0 Page 595 of 667

 if (erc == ErcNoSuchFile)
 {
 if (level == SpecDepth) erc = ErcNoSuchFile;
 else erc = ErcNoSuchDir;
 }
 if (erc)
 return(erc);

 if (!erc)
 Clstr = pDirEnt->StartClstr; /* Clstr = beginning of file or dir */

 while ((level < SpecDepth) && (!erc))
 { /* looking for Dir, not file yet */

 ++level; /* next level of parsed filespec */

 erc = GetDirEnt(FileSpec[level],
 Drive,
 Clstr,
 &LBADirEnt,
 &EntOffset,
 &pDirEnt);
 if (erc == ErcNoSuchFile)
 {
 if (level == SpecDepth) erc = ErcNoSuchFile;
 else erc = ErcNoSuchDir;
 }
 else if (erc)
 return(erc);
 else
 Clstr = pDirEnt->StartClstr; /* Clstr @ start of dir entry */
 }

 /* if we got here with no error we’ve got a file or a DIR.
 If it’s DIR then it’s an error.
 pDirEnt points to its directory entry, and Clstr
 is the starting cluster of the file
 */

 if (!erc)
 {
 /* If Attributes say it’s not a file then ERROR */

 if (pDirEnt->Attr & (VOLNAME | DIRECTORY))
 return ErcNotAFile;

 /* If ModeModify and File is readOnly then ERROR */

 if ((Mode) && (pDirEnt->Attr & READONLY))
 return ErcReadOnly;

 /* We check to see if it’s already open by looking through the
 valid FCBs to see if we have a Drive, StartClstr& name match.
 If so, we must see if the modes are compatible.
 A valid FCB is one where nUsers > 0.
 */

MMURTL V1.0 Page 596 of 667

 fFound = 0;
 i=0;
 while ((i<nFCBs) && (!fFound))
 {

 if ((paFCB[i]->nUsers) &&
 (paFCB[i]->Ldrv == Drive) &&
 (paFCB[i]->StartClstr == pDirEnt->StartClstr) &&
 (CompareNCS(&paFCB[i],
 FileSpec[SpecDepth], 11) == 0xffffffff))
 fFound = 1;
 else
 ++i;
 }

 if (fFound)
 { /* it’s open already. i is index into FCBs */
 if (paFCB[i]->Mode) /* it’s open in Modify already */
 return ErcFileInUse;
 else
 {
 iFCB = i; /* Index to this FCB */
 pFCB = &paFCB[i]; /* make pFCB point to FCB found */
 pFCB->nUsers++; /* One more user */
 }
 }
 else
 { /* It not already open. Find empty FCB */
 i = 0;
 while ((i<nFCBs) && (paFCB[i]->nUsers)) ++i; /* Find new FCB */

 if (i==nFCBs) return ErcNoFreeFCB; /* Couldn’t */

 /* i now indexes into FCBs for a free FCB. New we copy the
 directory entry for the file into the FCB and set up
 the other FCB values. */

 iFCB = i; /* used to add an FUB */
 pFCB = &paFCB[i]; /* make pFCB point to FCB found */
 CopyData(pDirEnt, pFCB, 32); /* Copy Dir Ent into FCB */
 pFCB->Ldrv = Drive; /* Set Drive */
 pFCB->nUsers++; /* Now in use */
 pFCB->Mode = Mode; /* Open mode */
 pFCB->LBADirSect = LBADirEnt; /* So we know where it came from */
 pFCB->oSectDirEnt = EntOffset; /* " " */
 }

 /* Now we have an FCB (either existing or we just built it).
 Now add an FUB and fill in the info for the user
 so we can return a handle to it. The Job fields is 0
 for free FUBs.
 */

 i = 4;
 while ((i<nFUBs) && (paFUB[i]->Job)) ++i; /* Find new FUB */
 if (i==nFUBs)

MMURTL V1.0 Page 597 of 667

 {
 pFCB->nUsers--; /* Make FCB correct */
 return ErcNoFreeFUB; /* Couldn’t */

 }

 /* If we got here, i is an index to a free FUB. */

 iFUB = i;
 paFUB[iFUB]->Job = iJob; /* Job Owner */
 paFUB[iFUB]->iFCB = iFCB; /* Set index to FCB for this file */
 paFUB[iFUB]->CrntLFA = 0; /* Current Logical File Address */
 paFUB[iFUB]->fModified = 0; /* Stream buf was modified */
 paFUB[iFUB]->fStream = fStream; /* NonZero for STREAM mode */
 paFUB[iFUB]->Clstr = pDirEnt->StartClstr; /* Start Cluster */
 paFUB[iFUB]->LFAClstr = 0; /* Rel LFA to 0 */
 paFUB[iFUB]->LFABuf = 0; /* First LFA in Buffer */
 paFUB[iFUB]->sBuf = 0; /* Default to No Buf */

 if (fStream)
 { /* allocate/fill buffer and set rest of FUB */

 erc = AllocOSPage(1, &pMem); /* Stream Buf is 4K */

 if (erc)
 { /* No MEM left... Bummer */
 pFCB->nUsers--; /* Return FCB to pool */
 paFUB[iFUB]->Job = 0; /* Return FUB to pool */
 return erc; /* Return Erc to user... */
 }

 paFUB[iFUB]->pBuf = pMem; /* Ptr to buffer if stream mode */
 paFUB[iFUB]->sBuf = 4096; /* Size of buffer */

 erc = FillStreamBuff(iFUB, 1); /* fInitial to TRUE */

 if (erc)
 {
 pFCB->nUsers--; /* Return FCB to pool */
 paFUB[iFUB]->Job = 0; /* Return FUB to pool */
 DeAllocPage(pMem, 1); /* Free memory for buffer */
 return erc; /* Return Erc to user... */
 }
 }

 pdHandleRet = iFUB; / File handle */
 }
 }

return erc;

}

/***
 CLOSE FILE for the MMURTL DOS file system. This finds
 the FUB, checks to see if the buffer should be flushed

MMURTL V1.0 Page 598 of 667

 and deallocated (only for stream mode), invalidates
 the FUB, and the FCB (if this is the last or only user).
**/

static U32 CloseFileM (U32 dHandle)
{
U32 erc, iFCB, i;

 erc = ValidateHandle(dHandle, &iFCB);
 if (erc) return erc;

 if (paFCB[iFCB]->Mode)
 { /* Modify mode */
 if (paFUB[dHandle]->fStream)
 {
 erc = FlushStreamBuff(dHandle);
 }
 UpdateDirEnt(iFCB); /* ignore error */
 }

 if (paFUB[dHandle]->fStream)
 DeAllocPage(paFUB[dHandle]->pBuf, 1); /* Free buffer */

 /* This means the FS is screwed up. This shouldn’t happen... */
 if (!paFCB[iFCB]->nUsers)
 erc = ErcBadFCB;
 else
 paFCB[iFCB]->nUsers--;

 /* Now we should be able to close it and free the the FUB.
 If the FCB.nUsers flips to 0 it will be free too
 */

 paFUB[dHandle]->Job = 0;

 /* This will write all modified fat sectors */

 for (i=0; i<nFATBufs; i++)
 UpdateFAT(i);

 return erc;
}

/*** Create File ***************************************
 This is Create File for the MMURTL FAT file system.
 This is also used internally to create directories.
**/

static U32 CreateFileM(char *pName,
 long cbName,
 long attrib,
 long iJob)
{
unsigned long dHandle, i, j, k, erc, LBA, spc;
char Path[70];
long cbPath;

MMURTL V1.0 Page 599 of 667

char filename[12];
U16 CrntClstr, ClstrValue, iStart, DirClstr;
U8 fFound, Drive, fDir;

 /* First we try to open it to see if it exists. If we get back
 ErcOK or ErcFileInUse the name is already
 in use as a file and we give them ErcDupName.
 We return other errors as we find them.
 */
 if (attrib & DIRECTORY)
 {
 fDir = 1;
 erc = 0;
 }
 else
 fDir = 0;

 erc = OpenFileM(pName, cbName, 0, 0, &dHandle, iJob);

 switch (erc)
 {
 case ErcOK:
 CloseFileM(dHandle);
 erc = ErcDupName;
 break;
 case ErcFileInUse:
 erc = ErcDupName;
 break;
 case ErcNotAFile: /* It a directory... */
 break;
 case ErcNoSuchFile:
 { /* OK, this means we can try to create it! */

 erc = 0;

 BuildSpec(pName, cbName, Path, &cbPath, iJob);

 erc = ParseName(Path, cbPath, iJob);
 if (erc)
 return(erc);

 /* FDrive was set up on Parse */
 Drive = FDrive - 0x41; /* Make it 0-9 */

 /* First we setup the filename from what was parsed out
 during the Parse call. Then eliminate it from Path.
 */

 CopyData(FileSpec[SpecDepth], filename, 11); /* filename */

 filename[11] = 0;

 /* Hack the filename from Path so we can search the
 directory path properly */

 while ((cbPath) && (Path[cbPath-1] != 0x5C))
 {

MMURTL V1.0 Page 600 of 667

 cbPath--;
 }

 /* Each directory sector has 16 32 byte entries.
 We will now walk thru each sector until we find one
 that is a deleted or empty entry.
 A deleted entry has E5h as its first character in the name.
 An unused entry has 00h as its first character in the name.
 */

 fFound = 0;
 i = 0; /* i = sectornum */
 while ((!fFound) && (!erc))
 {
 erc = GetDirSectorM(Path, cbPath, abTmpSector,
 512, i++, &LBA, &DirClstr, iJob);
 if (!erc)
 {
 k = 0;
 pDirEnt = abTmpSector;
 while (k<16)
 {
 if ((pDirEnt->Name[0] == 0xE5) ||
 (!pDirEnt->Name[0]))
 {
 fFound = 1;
 break;
 }
 pDirEnt += 32;
 k++;
 }
 }
 }
 /* When we get here, we have either found an entry or
 we have run out of sectors! If we run out of sectors
 and this is the root, we error out (RootFull), otherwise
 we extend the directory.
 */

 if ((erc == ErcNoMatch) && (!SpecDepth))
 return (ErcRootFull);

 else if (erc == ErcEOF)
 { /* reach end of dir! */

 /* We must now extend the cluster chain for this
 directory entry. DirClstr holds the last
 valid sector of the directory.
 */

 FillData(abTmpSector, 512, 0);
 spc = Ldrv[Drive].SecPerClstr; /* sectors per cluster */
 erc = ExtendClstrChain(Drive, DirClstr, &DirClstr);
 if (erc)
 return(erc);
 LBA = ClsToLBA(DirClstr, Drive);
 j = LBA;

MMURTL V1.0 Page 601 of 667

 i = spc;
 erc = 0;
 while ((i--) && (!erc))
 {
 erc = DeviceOp(Ldrv[Drive].DevNum, 2, j++,
 1, abTmpSector);
 }
 pDirEnt = abTmpSector; /* first entry in new sector */
 fFound = 1;

 /* We now have a new cluster on the end of the
 directory and it is all zeros!. The first sector
 is pointed to by LBA and abTmpSector is still zeros
 just as an new dir sector should be with pDirEnt
 pointing to the first entry.
 */
 }

 if ((!erc) && (fFound))
 { /* Let’s DO IT! */

 /* pDirEnt points to the entry we will use and
 abTmpSector still has the entire sector in it,
 so we find an empty clstr on the disk, allocate
 to this file, fill in the rest of the dir
 entry and we are almost done.
 */

 /* Find a fat buf already in memory for this drive */
 /* One WILL be here! */

 k = 0;
 CrntClstr = 0;
 while ((k<nFATBufs) && (!CrntClstr))
 {
 if ((Drive == Fat[k].Drive) && (Fat[k].LastUsed))
 CrntClstr = Fat[k].iClstrStart; /* valid cluster */
 k++;
 }

 if (!CrntClstr)
 CrntClstr = 2; /* Can’t find it so start at beginning */

 iStart = CrntClstr; /* where we started looking for empties */

 fFound = 0;
 while (!fFound)
 {
 ++CrntClstr; /* next cluster */
 if (CrntClstr == iStart)
 return(ErcDiskFull);

 erc = GetClstrValue(CrntClstr, Drive, 0, &ClstrValue, &j);

 if ((!erc) && (!ClstrValue))
 fFound = 1; /* found an empty one */

MMURTL V1.0 Page 602 of 667

 else if (erc == ErcBadFATClstr)
 { /* off the end */
 /* we started AFTER beginning of disk so
 we will go back and look for empties
 from beginning to where we started.
 */

 if (iStart > 2)
 CrntClstr = 2;
 else
 return(ErcDiskFull);
 }
 else if (erc)
 return(erc);
 }

 /* If we got here, we found an empty cluster */

 CopyData(filename, pDirEnt, 11);
 if (!fDir)
 pDirEnt->Attr =
 attrib & (READONLY | HIDDEN | SYSTEM | ARCHIVE);
 else
 pDirEnt->Attr = attrib;
 GetFATTime(&pDirEnt->Time, &pDirEnt->Date);
 pDirEnt->StartClstr = CrntClstr;
 pDirEnt->FileSize = 0;
 erc = SetClstrValue(CrntClstr, 0xFFFF, Drive, &i);
 /* Now we write the dir sector back to disk */
 if (!erc)
 erc = DeviceOp(Ldrv[Drive].DevNum, 2, LBA,
 1, abTmpSector);

 /* If we were creating a directory, we must add
 the two deafult directory entries . and ..
 This is done by filling out abTmpSector as
 the first sector of an empty directory and writing
 it out to the allocated cluster.
 We then zewro it out and write it to the rest
 of the sectors in the new cluster.
 */

 if (fDir)
 {
 FillData(abTmpSector, 512, 0);
 pDirEnt = abTmpSector; /* first entry in new sector */

 /* do the current dir entry (.) */

 CopyData(". ", pDirEnt, 11);
 pDirEnt->Attr = DIRECTORY;
 GetFATTime(&pDirEnt->Time, &pDirEnt->Date);
 pDirEnt->StartClstr = CrntClstr;
 pDirEnt->FileSize = 0;

 /* do the previous current dir entry (.) */

MMURTL V1.0 Page 603 of 667

 pDirEnt += 32;
 CopyData(".. ", pDirEnt, 11);
 pDirEnt->Attr = DIRECTORY;
 GetFATTime(&pDirEnt->Time, &pDirEnt->Date);
 pDirEnt->StartClstr = DirClstr;
 pDirEnt->FileSize = 0;

 spc = Ldrv[Drive].SecPerClstr; /* sectors per cluster */
 LBA = ClsToLBA(CrntClstr, Drive);
 j = LBA;

 /* Write this sector out to disk */
 erc = DeviceOp(Ldrv[Drive].DevNum, 2, j++,
 1, abTmpSector);

 FillData(abTmpSector, 512, 0); /* zero the rest */

 erc = 0;
 i = spc-1; /* less one cause we wrote the first */
 while ((i--) && (!erc))
 {
 erc = DeviceOp(Ldrv[Drive].DevNum, 2, j++,
 1, abTmpSector);
 }

 }
 /* This will write all modified fat sectors */

 for (i=0; i<nFATBufs; i++)
 UpdateFAT(i);

 return(erc);

 }
 else
 return(erc);
 }
 default: ;

 } /* switch */
 return (erc);
}

/*** Delete File ***************************************
 This is Delete File for the MMURTL FAT file system.
 The file must be opened in mode modify which gives
 the caller exclusive access. The file is closed
 even if the Delete fails.
**/

static U32 DeleteFileM(long *dHandle)
{
U32 erc, iFCB, i;
U16 iStart;
U8 Drive;

 erc = ValidateHandle(dHandle, &iFCB);

MMURTL V1.0 Page 604 of 667

 if (erc) return erc;

 Drive = paFCB[iFCB]->Ldrv; /* What logical drive are we on? */

 if (!paFCB[iFCB]->Mode)
 { /* Modify mode? */
 CloseFileM(dHandle);
 return ErcReadOnly;
 }
 if (paFUB[dHandle]->fStream)
 DeAllocPage(paFUB[dHandle]->pBuf, 1); /* Free buffer */

 iStart = paFCB[iFCB]->StartClstr;
 if (iStart)
 {
 erc = TruncClstrChain(Drive, iStart);
 if (!erc)
 erc = SetClstrValue(iStart, 0, Drive, &i);
 }

 paFCB[iFCB]->Name[0] = 0xE5;
 UpdateDirEnt(iFCB); /* ignore error */

 /* This means the FS is screwed up. This shouldn’t happen... */
 if (!paFCB[iFCB]->nUsers)
 erc = ErcBadFCB;
 else
 paFCB[iFCB]->nUsers--;

 /* Now we should be able to close it and free the the FUB.
 If the FCB.nUsers flips to 0 it will be free too
 */

 paFUB[dHandle]->Job = 0;

 /* This writes all modified fat sectors */

 for (i=0; i<nFATBufs; i++)
 UpdateFAT(i);

 return erc;
}

/*** Rename File ***************************************
 This is Rename File for the MMURTL FAT file system.
**/

static U32 RenameFileM(char *pCrntName, long dcbCrntName,
 char *pNewName, long dcbNewName, U32 iJob)
{
U32 dHandle, erc, erc1, iFCB;

 erc = OpenFileM(pCrntName, dcbCrntName, 1, 0, &dHandle, iJob);
 if (!erc)
 {
 FDrive1 = FDrive;
 CopyData(FileSpec, FileSpec1, 77);

MMURTL V1.0 Page 605 of 667

 SpecDepth1 = SpecDepth;
 erc = ParseName(pNewName, dcbNewName, iJob);
 if (!erc)
 if ((FDrive1 != FDrive) || (SpecDepth1 != SpecDepth))
 erc = ErcRenameDrv; /* No Rename across drives */
 if (!erc)
 if (SpecDepth) /* Compare upper tree */
 if (CompareNCS(FileSpec, FileSpec1, SpecDepth * 11) != -1)
 erc = ErcRenameDir; /* No Rename across dirs */
 if (!erc)
 { /* OK to rename */
 iFCB = paFUB[dHandle]->iFCB; /* FCB for this FUB */
 CopyData(FileSpec[SpecDepth], &paFCB[iFCB], 11);
 erc = UpdateDirEnt(iFCB);
 }
 erc1 = CloseFileM(dHandle);
 if (!erc)
 erc = erc1;
 }
 return (erc);
}

/*** Create Dir ***************************************
 This is Create Directory for the MMURTL FAT file system.
**/

static U32 CreateDirM(char *pPath, long cbPath, long iJob)
{
long erc;

 erc = CreateFileM(pPath, cbPath, DIRECTORY, iJob);
 return(erc);

}
/*** Delete Directory ***********************************
 This is Delete Directory for the MMURTL FAT file system.
**/

static U32 DeleteDirM(char *pPath, long cbPath, long fAllFiles, long iJob)
{
 pPath = 0;
 cbPath = 0;
 fAllFiles = 0;
 iJob = 0;
}

/***
 This is the File system task. All file system requests
 end up here to be serviced.
**/

static void FSysTask(void)
{
U32 FMsg[2], merc, erc, i;
U16 i16;

MMURTL V1.0 Page 606 of 667

while (1)
{
 erc = WaitMsg(FSysExch, FMsg);
 if (!erc)
 {

 pRQB = FMsg[0]; /* first DD in Msg is pointer to RQBlock */

 switch (pRQB->ServiceCode)
 {
 case 0 : /* JobAbort - CLOSE ALL FILES FOR THIS JOB! */
 i = 4;
 while (i<nFUBs)
 {
 if (paFUB[i]->Job == pRQB->dData0)
 {
 CloseFileM(i);
 }
 ++i; /* next FUB */
 }

 erc = 0;
 break;
 case 1 : /* OpenFile */
 erc = OpenFileM(pRQB->pData1, /* pFilename */
 pRQB->cbData1, /* dcbFilename */
 pRQB->dData0, /* Mode */
 pRQB->dData1, /* Type */
 pRQB->pData2, /* pdHandleRet */
 pRQB->RqOwnerJob); /* iJob Owner */
 break;
 case 2 : /* CloseFile */
 erc = CloseFileM(pRQB->dData0); /* Handle */
 break;
 case 3 : /* ReadBlock */
 erc = ReadBlockM(pRQB->dData0, /* Handle */
 pRQB->pData1, /* pDataRet */
 pRQB->cbData1, /* nByes */
 pRQB->dData1, /* dLFA */
 pRQB->pData2, /* pdnBytesRet */
 0); /* NOT internal */
 break;
 case 4 : /* WriteBlock */
 erc = WriteBlockM(pRQB->dData0, /* Handle */
 pRQB->pData1, /* pData */
 pRQB->cbData1, /* nBytes */
 pRQB->dData1, /* dLFA */
 pRQB->pData2); /* pdBytesRet */
 break;
 case 5 : /* ReadBytes */
 erc = ReadBytesM(pRQB->dData0, /* Handle */
 pRQB->pData1, /* pDataRet */
 pRQB->cbData1, /* nBytes */
 pRQB->pData2); /* pdnBytesRet */
 break;
 case 6 : /* WriteBytes */
 erc = WriteBytesM(pRQB->dData0, /* Handle */

MMURTL V1.0 Page 607 of 667

 pRQB->pData1, /* pData */
 pRQB->cbData1, /* nBytes */
 pRQB->pData2); /* pdnBytesRet */
 break;
 case 7 : /* GetFileLFA */
 erc = GetFileLFAM(pRQB->dData0, /* Handle */
 pRQB->pData1); /* pdLFARet */
 break;
 case 8 : /* SetFileLFA */
 erc = SetFileLFAM(pRQB->dData0, /* Handle */
 pRQB->dData1); /* dNewLFA */
 break;
 case 9 : /* GetFileSize */
 erc = GetFileSizeM(pRQB->dData0, /* Handle */
 pRQB->pData1); /* pdSizeRet */
 break;
 case 10 : /* SetFileSize */
 erc = SetFileSizeM(pRQB->dData0, /* Handle */
 pRQB->dData1); /* dSize */
 break;
 case 11 : /* CreateFile */
 erc = CreateFileM(pRQB->pData1, /* pFilename */
 pRQB->cbData1, /* cbFilename */
 pRQB->dData0, /* Attributes */
 pRQB->RqOwnerJob); /* iJob Owner */
 break;
 case 12 : /* RenameFile */
 erc = RenameFileM(pRQB->pData1, /* pCrntName */
 pRQB->cbData1, /* cbCrntName */
 pRQB->pData2, /* pNewName */
 pRQB->cbData2, /* dcbNewName */
 pRQB->RqOwnerJob); /* JobNum */
 break;
 case 13 : /* DeleteFile */
 erc = DeleteFileM(pRQB->dData0); /* Handle */
 break;
 case 14 : /* CreateDirectory */
 erc = CreateDirM(pRQB->pData1, /* pPath */
 pRQB->cbData1, /* cbPath */
 pRQB->RqOwnerJob); /* JobNum */
 break;
 case 15 : /* DeleteDirectory */
 erc = DeleteDirM(pRQB->pData1, /* pPath */
 pRQB->cbData1, /* cbPath */
 pRQB->dData0, /* fAllFiles */
 pRQB->RqOwnerJob); /* JobNum */
 break;
 case 16 : /* GetDirSector */
 erc = GetDirSectorM(pRQB->pData1, /* pPath */
 pRQB->cbData1, /* cbPath */
 pRQB->pData2, /* pSectRet */
 pRQB->cbData2, /* cbRetMax */
 pRQB->dData0, /* SectNum */
 &i, /* for LBARet */
 &i16, /* for DirClstr */
 pRQB->RqOwnerJob); /* JobNum */
 break;

MMURTL V1.0 Page 608 of 667

 default :
 erc = ErcBadSvcCode;
 break;
 }

 merc = Respond(FMsg[0], erc);

 }
} /* forever */
}

/***************** PUBLIC BLOCKING CALLS FOR FILESYSM *************
 These calls query the TSS Exhange and use it to make Requests
 to the file system service on the behalf of the caller.
 These calls are fully reentrant! No static data!
***/

U32 far _OpenFile(char *pFilename,
 long dcbFilename,
 long Mode,
 long Type,
 long *pdHandleRet)
{
long erc, exch, rqhndl, i, msg[2];
 if (dcbFilename == 3)
 {
 if (CompareNCS(pFilename, "NUL" , 3) == -1)
 {
 *pdHandleRet = 0;
 return(0);
 }
 else if (CompareNCS(pFilename, "KBD" , 3) == -1)
 {
 *pdHandleRet = 1;
 return(0);
 }
 else if (CompareNCS(pFilename, "VID" , 3) == -1)
 {
 *pdHandleRet = 2;
 return(0);
 }
 else if (CompareNCS(pFilename, "LPT" , 3) == -1)
 {
 erc = DeviceOp(3, 10, 0, 0, &i); /* 10=Open */
 if (!erc)
 *pdHandleRet = 3;
 return(erc);
 }
 }

 GetTSSExch(&exch); /* No error will come back! */
 erc = Request(fsysname, 1, exch, &rqhndl,
 1, /* 1 Send ptr */
 pFilename, dcbFilename,
 pdHandleRet, 4,
 Mode, Type, 0);
 if (!erc) erc = WaitMsg(exch, msg);

MMURTL V1.0 Page 609 of 667

 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _CloseFile(unsigned long dHandle)
{
long erc, exch, rqhndl, i, msg[2];

 if (dHandle < 3)
 return(0);
 else if (dHandle == 3)
 {
 erc = DeviceOp(3, 11, 0, 0, &i); /* 11 = Close */
 return(erc);
 }

 GetTSSExch(&exch);
 erc = Request(fsysname, 2, exch, &rqhndl,
 0, /* 0 Send ptr */
 0, 0,
 0, 0,
 dHandle, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _ReadBlock(long dHandle,
 char *pDataRet,
 long nBlks,
 long dLFA,
 long *pdnBlksRet)
{
long erc, exch, rqhndl, msg[2], i;
 if (dHandle < 4)
 return(ErcNotSupported);
 GetTSSExch(&exch);
 erc = Request(fsysname, 3, exch, &rqhndl,
 1, /* 1 Send ptr */
 pDataRet, nBlks,
 pdnBlksRet, 4,
 dHandle, dLFA, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc)
 return(erc);
 if(msg[1])
 {
 DeviceStat(10, &FDDevStat, 64, &i);
 }
 return(msg[1]);
}

/*************************************/
U32 far _WriteBlock(long dHandle,
 char *pData,

MMURTL V1.0 Page 610 of 667

 long nBlks,
 long dLFA,
 long *pdnBlksRet)

{
long erc, exch, rqhndl, msg[2];
 if (dHandle < 4)
 return(ErcNotSupported);
 GetTSSExch(&exch);
 erc = Request(fsysname, 4, exch, &rqhndl,
 1, /* 1 Send ptr */
 pData, nBlks,
 pdnBlksRet, 4,
 dHandle, dLFA, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _ReadBytes(long dHandle,
 char *pDataRet,
 long nBytes,
 long *pdnBytesRet)
{
long erc, exch, rqhndl, msg[2], i;
 if (dHandle == 0)
 {
 *pdnBytesRet = 0;
 return(0);
 }
 else if (dHandle == 1)
 {
 i = 0;
 while (i < nBytes)
 {
 ReadKbd(*pDataRet++, 1);
 i++;
 }
 *pdnBytesRet = i;
 return(0);
 }
 else if ((dHandle == 2) || (dHandle == 3))
 {
 *pdnBytesRet = 0;
 return(ErcWriteOnly);
 }

 GetTSSExch(&exch);
 erc = Request(fsysname, 5, exch, &rqhndl,
 1, /* 1 Send ptr */
 pDataRet, nBytes,
 pdnBytesRet, 4,
 dHandle, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);

MMURTL V1.0 Page 611 of 667

}

/*************************************/
U32 far _WriteBytes(long dHandle,
 char *pData,
 long nBytes,
 long *pdnBytesRet)

{
long erc, exch, rqhndl, VidAttr, msg[2];

 if (dHandle == 0)
 {
 *pdnBytesRet = nBytes;
 return(0);
 }
 else if (dHandle == 1)
 {
 *pdnBytesRet = 0;
 return(ErcReadOnly);
 }
 else if (dHandle == 2)
 {
 GetNormVid(&VidAttr);
 TTYOut(pData, nBytes, VidAttr);
 *pdnBytesRet = nBytes;
 return(0);
 }
 else if (dHandle == 3)
 {
 erc = DeviceOp(3, 2, 0, nBytes, pData); /* 2 = CmdWriteRec */
 return(erc);
 }

 GetTSSExch(&exch);
 erc = Request(fsysname, 6, exch, &rqhndl,
 1, /* 1 Send ptr */
 pData, nBytes,
 pdnBytesRet, 4,
 dHandle, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _GetFileLFA(long dHandle,
 long *pdLFARet)

{
long erc, exch, rqhndl, msg[2];
 if (dHandle < 4)
 return(ErcEOF);

 GetTSSExch(&exch);
 erc = Request(fsysname, 7, exch, &rqhndl,
 0, /* 0 Send ptrs */

MMURTL V1.0 Page 612 of 667

 pdLFARet, 4,
 0, 0,
 dHandle, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _SetFileLFA(long dHandle,
 long dNewLFA)
{
long erc, exch, rqhndl, msg[2];
 if (dHandle < 4)
 return(ErcNotSupported);
 GetTSSExch(&exch);
 erc = Request(fsysname, 8, exch, &rqhndl,
 0, /* 0 Send ptrs */
 0, 0,
 0, 0,
 dHandle, dNewLFA, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _GetFileSize(long dHandle,
 long *pdSizeRet)
{
long erc, exch, rqhndl, msg[2];
 if (dHandle < 4)
 return(ErcNotSupported);
 GetTSSExch(&exch);
 erc = Request(fsysname, 9, exch, &rqhndl,
 0, /* 0 Send ptrs */
 pdSizeRet, 4,
 0, 0,
 dHandle, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _SetFileSize(long dHandle,
 long dSize)
{
long erc, exch, rqhndl, msg[2];
 if (dHandle < 4)
 return(ErcNotSupported);
 GetTSSExch(&exch);
 erc = Request(fsysname, 10, exch, &rqhndl,
 0, /* 0 Send ptrs */
 0, 0,
 0, 0,
 dHandle, dSize, 0);

MMURTL V1.0 Page 613 of 667

 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _CreateFile(char *pFilename,
 long cbFilename,
 long Attribute)
{
long erc, exch, rqhndl, msg[2];
 GetTSSExch(&exch);
 erc = Request(fsysname, 11, exch, &rqhndl,
 1, /* 1 Send ptrs */
 pFilename, cbFilename,
 0, 0,
 Attribute, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _RenameFile(char *pCrntName,
 long cbCrntName,
 char *pNewName,
 long cbNewName)
{
long erc, exch, rqhndl, msg[2];
 GetTSSExch(&exch);
 erc = Request(fsysname, 12, exch, &rqhndl,
 2, /* 2 Send ptrs */
 pCrntName, cbCrntName,
 pNewName, cbNewName,
 0, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _DeleteFile(long dHandle)
{
long erc, exch, rqhndl, msg[2];
 if (dHandle < 4)
 return(ErcNotSupported);
 GetTSSExch(&exch);
 erc = Request(fsysname, 13, exch, &rqhndl,
 0, /* 0 Send ptrs */
 0, 0,
 0, 0,
 dHandle, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

MMURTL V1.0 Page 614 of 667

/*************************************/
U32 far _CreateDir(char *pPath,
 long cbPath)
{
long erc, exch, rqhndl, msg[2];
 GetTSSExch(&exch);
 erc = Request(fsysname, 14, exch, &rqhndl,
 1, /* 1 Send ptrs */
 pPath, cbPath,
 0, 0,
 0, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _DeleteDir(char *pPath,
 long cbPath,
 long fAllFiles)
{
long erc, exch, rqhndl, msg[2];
 GetTSSExch(&exch);
 erc = Request(fsysname, 15, exch, &rqhndl,
 1, /* 1 Send ptrs */
 pPath, cbPath,
 0, 0,
 fAllFiles, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/*************************************/
U32 far _GetDirSector(char *pPathSpec,
 long cbPathSpec,
 char *pEntRet,
 long cbEntRet,
 long SectNum)
{
long erc, exch, rqhndl, msg[2];
 GetTSSExch(&exch);
 erc = Request(fsysname, 16, exch, &rqhndl,
 1, /* 1 Send ptrs */
 pPathSpec, cbPathSpec,
 pEntRet, cbEntRet,
 SectNum, 0, 0);
 if (!erc) erc = WaitMsg(exch, msg);
 if (erc) return(erc);
 return(msg[1]);
}

/**
 Initialization Routine for the File system.
 This is called the Monitor where any errors
 will be reported.
**/

MMURTL V1.0 Page 615 of 667

U32 InitFS(void)
{
U32 erc, i, j;
U8 *pMem;

 /* Allocate FAT buffers and initialize FAT related structures.
 We will allocate 24Kb worth of buffers (6 Pages, 16 buffers).
 */

 Fat[0].pBuf = FatBufA; /* floppy fat buffers */

 erc = AllocOSPage(2, &pMem);

 if (!erc) /* hard disk fat buffers from allocated mem */
 for (i=1; i<nFATBufs; i++)
 {
 Fat[i].pBuf = pMem; /* Make pBuf point to each buffer */
 pMem += 512; /* Next buffer in allocated memory */
 }

 /* Allocate and initialize FCBs and FUBs. This is enough FCBs and
 FUBS for 128 openfiles. (Good enough to start...)
 */

 if (!erc)
 erc = AllocOSPage(2, &paFCB); /* a pointer to allocated FCBs. */
 if (!erc)
 FillData(paFCB, 8192, 0);
 if (!erc)
 erc = AllocOSPage(1, &paFUB); /* a pointer to allocated FUBs. */
 if (!erc)
 FillData(paFUB, 4096, 0);

 if (!erc) erc = read_PE(); /* reads partition tables */

 if (!erc) erc = SetDriveGeometry(12);

 if (!erc)
 {
 erc = SetDriveGeometry(13);
 if (erc == 663) erc = 0; /* may be invalid drive */
 }

 StatFloppy(0);
 StatFloppy(1);

 /* read all logical drive boot sectors */

 if (!erc)
 {
 for (i=0; i< nLDrvs; i++)
 {
 if (Ldrv[i].DevNum != 0xff)
 {
 read_BS(i);
 }

MMURTL V1.0 Page 616 of 667

 }
 }

 for (i=0; i<nLDrvs; i++)
 if (Ldrv[i].DevNum != 0xff)
 {
 j=12;
 if (Ldrv[i].fFAT16)
 j=16;
 xprintf("%c: Heads %d, Sec/Trk %d, Sec/Clstr %d, Dev %d, FAT%d \r\n",
 i+0x41,
 Ldrv[i].nHeads,
 Ldrv[i].nSecPerTrk,
 Ldrv[i].SecPerClstr,
 Ldrv[i].DevNum,
 j);
 }

 if (!erc)
 erc = AllocExch(&FSysExch);

 /* Start the filesystem task at a decently high priority (5).
 This should be higher than the Monitor status task and even the
 Keyboard. */

 if (!erc)
 erc = SpawnTask(&FSysTask, 5, 0, &FSysStack[511], 1);

 if (!erc)
 erc = RegisterSvc(fsysname, FSysExch);

return erc;

}

MMURTL V1.0 Page 617 of 667

Chapter 28, DASM; A 32-Bit Intel-Based Assembler

Introduction

DASM is an Intel-based 32-bit assembler designed for the development of MMURTL Operating
System. It is also used to develop software to run on MMURTL.

The version included with this book runs in MS-DOS. The source code is included. To develop
an operating system, you must run the assembler in another environment. Running in MS-DOS
will make DASM easy for you to use as a development tool for your own system. Of course,
there are better assemblers out there, but none as inexpensive, and even fewer come with source
code. How you design your memory-management and loading techniques will determine how
much you would have to modify DASM to suit your needs.

Unlike most other Intel-based assemblers, DASM combines the functions of an assembler and a
linker. It produces an executable file called a RUN file (along with DLLs and Device Drivers). A
RUN file is analogous to the MS-DOS executable file (.EXE). It can be modified quite easily to
output object modules compatible with 32-bit linkers on other systems, if that is what you need.

DASM Concepts

Most assemblers and compilers produce what is called object code. This is an intermediate form
of machine code, and binary data stored in a file called an object module. Object modules are
usually combined to produce executable code with binary data which will be ready to load and
run by an operating system.

The advantages of using object code modules are:

• You can place modules of object code in a library and search the library for what you
need (unresolved externals).

• You can break your project (the program you are working on) into smaller pieces and
compile them separately as you change them. When you want to produce an executable
file you "link" all of these object modules together with a program called a linker.

• Local variables, labels and procedures may be hidden from other modules.

Separate relocatable modules are also required when programming with a "segmented" memory
model.

DASM eliminates the need for object code. This means you don’t require a separate linker.
However, DASM still provides all the advantages of separate compilation of source code
modules and library search functions normally associated with a linker and object code.

In other systems with three C Source files:

MMURTL V1.0 Page 618 of 667

1. Compile Module 1 into object module
2. Compile Module 2 into object module
3. Compile Module 3 into object module
4. Place object modules in Library (if desired)
5. Link object module making an executable file

With MMURTL and three C source files using DASM:

1. Compile Module 1 into assembly language
2. Compile Module 2 into assembly language
3. Compile Module 3 into assembly language
4. Assemble (make an executable file)

The difference between these two systems is in what the compiler produces. In other systems, the
compilers and assemblers produce object modules. With MMURTL, the CM32 compiler
produces assembly language, and the assembler produces the executable file (the RUN file).

The advantages mentioned above for the systems that produce object code are not lost in the
MMURTL development system. You can still edit and compile separate modules to speed the
development cycle, provide organization, and assist in code reuse. External library code can still
be included in your project, and local (non-public or static) variables, labels and functions are
still hidden in each module. The one obvious difference is that all of your library code is in
assembler source format.

To accomplish this, each of the public variables and code labels in your source libraries are listed
in a text file that is searched by the assembler. A small utility is included that automatically
searches and indexes them into the required text format for you. This is your Librarian.
Because there is no linking, the development cycle is further reduced.

Using DASM

Application Template File

DASM combines the functions of an assembler and a linker. Because of this, you don’t specify
an assembler source file on the command line for DASM. Instead, you provide the name of an
assembly language Template File (.ATF). The template file is actually an assembler source file
that defines the structure of your program. It provides complete control of how your program is
assembled (and linked).

The template file may contain standard INCLUDE files for MMURTL entry and exit code
required by compilers along with your .ASM file names. It also contains statements to set stack
size, virtual memory offsets, and a few other things.
The following is a template file for a very simple program (yes, good old Hello World).

MMURTL V1.0 Page 619 of 667

Listing 28.1 - Simple Application Template File

;STANDARD APPLICATION TEMPLATE FILE

;--------------- SYSTEM Entry/Exit module/commands go here

.DATA ;Start data segment
.VIRTUAL 0h
.CODE
.VIRTUAL 0h

;--------------- USER modules Begin here

.INCLUDE Hello.ASM ;Your assembly module
.INCLUDE \CM32\CM32.ASM ;Standard Entry/Exit code

;--------------- USER Library Search files begin here

.SEARCH \CM32\LIB\CM32.PUB
.SEARCH \MMURTL\LIB\OS.PUB

.END

That’s it. The DOT Commands (commands preceded by a period), included files, and library
code search file lists are all DASM needs to build your complete application and turn it into a run
file.

To build the application, compile Hello.c which produces Hello.ASM. This file contains code
and data assembly language sections. Then at the command prompt you execute DASM
providing the name of the template file:

>DASM Hello.ATF <Enter>

Hello.ATF is the assembly language template file shown above. A Run file named Hello.RUN is
produced if there were no errors during the assembly and link process.
The following example ATF file is for a more complicated program. It simply includes more
modules.

Listing 28.2 - A More Complicated Template File

;STANDARD APPLICATION TEMPLATE FILE

;--- Commands that affect the entire program go here

.DATA ;Start data segment
.STACK 1000 ;This will default to 1 Page (4K)

;--- USER modules Begin here

.INCLUDE Editor.ASM ;Main Editor Module
.INCLUDE Display.ASM
.INCLUDE Search.ASM

MMURTL V1.0 Page 620 of 667

.INCLUDE LoadSave.ASM

.INCLUDE BufMgmt.ASM

;--- USER Library Search files begin here

.SEARCH \CM32\LIB\CM32.PUB
.SEARCH \MMURTL\LIB\OS.PUB

.END

As you can see, it is not really any more complicated than Hello.ATF; It just has a few more
modules.

Command Line Options

The format of the DASM command line is:

DASM TemplateFile [RunFile] /L /S /E /D /V

The following Command Line options (switches) are available with DASM:

/L = Complete List file generated
/S = Include SYMBOLS (only in complete list file)
/E = List file for Errors/warnings only
/D = Process as Dynamic link library (.DLL built)
/V = Process as device driver (.DRV built)

The options are not case-sensitive and are explained in the following sections.

List File Option

The /L option produces a complete list file of all actions the assembler takes on your source
code. The list file is automatically named SourceName.LIS. It has the same prefix as your
source file with a .LIS extension. The format of the list file is as follows:

Line Address Action/Code/Data Source Code
00001 0000000 <- DSeg begins .DATA

The line number is the line for the current module you are assembling. The Address is the offset
in the segment you are currently in (CSeg or DSeg). The Action/Code/Data column shows what
action DASM took based on the source code for that line. It may show instructions, data storage
or command options. Your source code is shown in the far right column.

Note that generating a complete list file takes considerable time and disk space. You should use
the /L option only when necessary.

MMURTL V1.0 Page 621 of 667

Errors Only Option

The /E option also produces a list containing only the error statements. If no list file is specified
because you didn’t use the /L or /E options), all of the errors are displayed on the screen.
Approximately 70 errors are generated by DASM. They are explained in text form but also
contain a number; you can use the number to refer to the section at the end of this chapter for
more detailed information about errors.

Dynamic Link Libraries

The /D option causes DASM to produce a MMURTL-compatible Dynamic Link Library (.DLL)
instead of a .RUN file. A DLL in MMURTL may not contain any data. If the DSeg offset is not
0 at the end of the compile, an error is produced. DLLs in MMURTL may only contain code and
stack-based variables. DLLs must be fully re-entrant. See chapter 10, “Systems Programming.”

Device Drivers

The /V option causes DASM to produce a MMURTL-compatible device driver (.DRV) instead
of a .RUN file. A device driver in MMURTL may contain code and data. Device drivers in
MMURTL do not necessarily have to be fully re-entrant. See Chapter 10, “Systems
Programming,” for more information on device drivers.

DASM Source Files

DASM isn't a fully parameterized macro assembler. It does, however, support simple macro
substitution through the use of the EQU statement. DASM operates with DOT commands. DOT
commands are reserved command words that begin with a period and are the first non-
whitespace data on a line.

Local (Non-Public) Declarations

DASM allows nesting up to four levels of INCLUDE files (five if you include the level 0
template file). When each of the INCLUDE files listed in the .ATF file are opened, they cause
DASM to clear all nonpublic labels and variables from the symbol table. The next and
subsequent levels do not do this. You can still write .ASM files that use include files for shared
local declarations. In our first example (Hello.c and Hello.asm), if there were an INCLUDE
statement in Hello.asm, it would not cause local names to be cleared from the symbol table.
However, if Hello.asm were broken up into two files (Hello1.asm, and Hello2.asm) and both
were listed in the .ATF file, when DASM closed opened Hello1.asm and then opened
Hello2.asm, all of the local labels and variables listed in Hello1.asm would be "forgotten."

Memory Model

DASM is designed specifically for the MMURTL Operating System. MMURTL is a paged-
memory OS. If you are familiar with the Intel processor segmentation model, you know that

MMURTL V1.0 Page 622 of 667

code and data may reside in multiple segments. This was a requirement when programs were
restricted to a 64Kb segment. You may also be familiar with the infamous small memory model:
a program was made of a single code segment, and the data and stack shared another segment.
This is effectively MMURTL’s memory model for all programs. Code and data segments in a
MMURTL application are not limited to 64K. In theory, they can be up to two gigabytes. A
program’s stack resides in the data segment just as in the DOS small memory model. The code,
data and stack of your program are further separated (logically) in memory on 4096 byte pages.
What all this means to the programmer is ease of use. DASM does all the dirty work lining up
the code and data from different ASM source modules. Address offsets are completely resolved
at assemble time, and DLL offsets are resolved at load time.

DASM Program Structure

A stand-alone DASM program is made of code and data segment parts that may be broken up
through one or more source files. Two DOT commands determine what segment you’re currently
in. DASM module structure is shown below to illustrate this:

Listing 28.3 - Alternating data and code in a template file

.STACK 4096
 ;Minimum stack size in bytes
.DATA
 ;Start data segment
 ;Variables, data, data EQUs, etc. are defined here
.CODE
.START
 ;Entry point code defined here
.DATA
 ;Continue data segment
 ;More data defined here
.CODE
 ;Continue code segment
 ;More code here
.END

DOT Commands

A DOT command is a reserved command word preceded by a period (.). The DOT command
must be the only active text on the line (trailing comments are allowed). Some DOT commands
have a single parameter following the command word. Only a few DOT commands exist,
because the Memory Model in MMURTL is so simple to use. The following DOT commands are
recognized by DASM. They are described in detail in the following section:

.DATA

.CODE

.START

.INCLUDE filename

MMURTL V1.0 Page 623 of 667

.ALIGN n

.VIRTUAL n

.END

.SEARCH filename

.STACK n

.VERSION string

.DATE

.DEBUG n

Each MMURTL program has only two segments. MMURTL uses segmented memory only for
protection purposes which is transparent to the programmer anyway. As far as the programmer is
concerned, there is only code, data and a stack.

The following is a detailed description of the DOT commands and their parameters (if any):

.DATA - This indicates the start or continuation of the data segment. The data segment is where
you define your data storage variables. No processor instructions are allowed in the data
segment.

.CODE - This indicates the start or continuation of the code segment where processor
instructions and read-only storage may be defined. DASM is designed to recognize the complete
80386 instruction set. Instructions specific to the 80486 or Pentium processors should be coded
in-line with DB statements if required.

.START - This is placed just before the instruction you want for your program entry point (when
the program is loaded, this is where it begins execution). Only one .START is allowed in your
program no matter how many separate modules you have linked together. It must be in a code
segment or an error will occur. If you are using one of the provided format files for use with the
CM32 compiler, .START is already included in the \CM32\LIB\SUPPORT.ASM file. All you
have to do it make sure you have defined main() in one of your modules.

.STACK (n) - n is the number of bytes for the initial program stack for the main program thread
(first JOB task). If no stack command is found, the MMURTL loader allocates a one-page stack
automatically (4096 bytes). .STACK statements are additive. This is so you can add to the stack
in a heavily recursive library module if you need to.

MMURTL allows true multithreading. Memory will have to be allocated (or used from your
existing data segment) as a stack for each additional task that you spawn (thread). The number of
initial pages of Stack is limited to 256 (1Mb). This is discussed in much greater detail in Chapter
9, “Application Programming.”

VIRTUAL xxxx - xxxx is a value that tells the assembler where to assume the segment is
loaded. This command is used in the data or code segment to set the default initial segment offset
value that the assembler works with. In virtual (paged) memory systems (such as MMURTL),
there are advantages to specifying where the assembler assumes the segment will be loaded, or
relocated. This command should appear only once in each segment, and must appear before any

MMURTL V1.0 Page 624 of 667

code, data, or labels are defined. Application programs don’t need to use the .VIRTUAL
command. They are 0 by default for the code and the data segment. For Example

.DATA
.VIRTUAL 40000000h

This tells DASM that the data segment will begin at linear address 40000000h (1Gb).
Subsequent continuations of the segment in any of your source modules should not have a
.VIRTUAL command in them. This does not mean that the module will actually load in memory
at that linear address, it simply tells DASM to assume this it does. You should not assume this
yourself.

.ALIGN boundary - Where boundary is WORD, DWORD or PARA. This allows you to
align the next storage declarations in the data segment on a memory address multiple of the
specified size. This is used rarely, but may be of use in some situations such as optimizing file
buffers for direct disk reads and writes. WORD means an even address. DWORD means an
address that is modulo 4.

.INCLUDE filename - This statement closes the current assembly language file and opens
filename and begins processing data statements and instructions from it. This also clears all local
variables and labels from the symbol table if this is a "first level" include statement (listed in the
.ATF file). Local means those that were not defined as PUBLIC or EXTRN, which is different
from many assemblers, but provides the same functionality of separately linked modules to allow
hidden local variables and code labels. In C, functions and variables defined static will not be
listed as PUBLIC in the assembler file.

.SEARCH filename.pub - This searches a public text index file for unresolved variables and
code/function label names. PUB files are specially formatted text files that list public code and
variables in assembly language source files. The linker will include the assembly source files
listed in the PUB file if they contain the public name of an unresolved external. The .PUB files
may be read several times if a new module is included that defined externals that are not already
in the DASM’s symbol table.

.VERSION string - This allows the definition of a string that will be included in the RUN file
header so the program version can be easily obtained without running it or searching with a
binary editor or viewer. The string may be up to 70 characters in length, begins after the first
white space following the .VERSION command, and ends when the end of line is detected. All
character beyond 70 are truncated.

.DATE - This tells the assembler to place the current date and time in the run file header in text
format.

.DEBUG n - DASM allows several debugging modes, and n is the number of the mode you
want activated. This will cause additional code (and possibly data) to be added to your RUN file
for debugging purposes, or causes a separate symbol table to be generated that a debugger can
open, read and use to find publics, line numbers, etc.

MMURTL V1.0 Page 625 of 667

.END - This tells the assembler you are done with all source modules. .END is only used at the
end of the format file (or module if this is a single-file assembly language program), not at the
end of each segment piece or assembler source module. A segment type ends by default when a
new segment type begins. .END indicates there is no more source text to process.

DASM versus DOS Assemblers

DASM programs are generally very similar to DOS assembler programs. A major difference is
the lack of SEGMENT commands and segment alignment options as they aren’t required with
MMURTL. Remember, with MMURTL your program sees a 2 GB 32-bit linear address space.
ASSUME commands are also absent from DASM. They aren't needed with ‘flat’ application
memory. DASM assumes DS, ES, SS, FS and GS, all refer to your data segment. CS always
refers to your code segment. If you need to read data from your code segment, segment register
prefixes work fine, although I can't imagine where you would need to do so. Code segment pages
in MMURTL are read-only. For example:

CS:[EBX+MyCodeLabel+5]

Another difference is the lack of the PROC (Procedure) attribute. The only operational purpose
PROC served was to tell the assembler what type of return instruction to use. Code labels in
MMURTL serve as the PROC identifier, and you specify whether or not you want them public.
Public labels can be referenced by code in other modules and will be resolved at assemble/link
time. You also specify a RETN (Near) or RETF (Far) instruction manually.

IMPORTANT NOTE: Only MMURTL operating system software uses the RETF instruction
because all calls to your code will be 32-bit near calls (relative or indirect). In fact, the only far
calls from your program will be to the operating system or it's device driver interfaces, which are
all predefined through processor call gates.

As with some DOS assemblers, references to forward code labels and forward data are allowed,
as long as DASM can figure out the size of the reference. You will receive an error if it can't.
References to data or code outside of the current module must have an EXTRN declaration in
advance. The assembler must be aware of its type to generate the correct instruction.

DASM Addressing Modes

DASM recognizes all valid 32-bit addressing modes for the 386/486 processors, with 16-bit
addressing modes are not allowed or recognized. DASM is a little fussier than most assemblers
when it comes to address or memory operands. But as you will see from the following examples,
it's fairly easy to understand, and very close to the DOS assemblers. It follows the definitions in
the Intel 386/486 Programmer’s Reference manuals very closely.

The following rules apply:

MMURTL V1.0 Page 626 of 667

1. All address operands must be contained in square brackets [effective address], unless it is
a simple address variable with no registers or scaling involved.

2. The disp (displacement) value shown in the examples below may be a variable name, a
number, an expression involving constants, variables, or labels.

3. If the address operand is a single variable name, DASM assumes you are moving that
variable’s contents (the size it was defined) to or from the memory address or register (it’s
the same as DOS assemblers). This is overridden if you use a register as the source or
destination and it’s not the same size as the variable, or if you force the size of the move
with the modifiers BYTE PTR, WORD PTR, DWORD PTR, and FWORD PTR.

Table 28.1 shows the address constructs for memory operands in instructions. These are 32-bit
addressing modes only.

Table 28.1 - .Specifying Memory Operands

Format [Brackets Required?]
[disp32] optional
[Reg32] required
[Reg32+disp32] required
[Reg32+Reg32] required
[Reg32*Scale+disp32] required
[Reg32+Reg32*Scale+disp32] required

The following sections describe items in table 28.1 and provide examples.

The disp32 construct is a displacement value from the beginning of the segment. This is
usually entered in your program as a simple variable name such as MOV EAX, MyVar. It may
also be a number derived in a simple additive expression using a simple variable such as
[MyVar+5]. In this case, you should enclose the expression in Square Brackets to indicate that it
is an address and not an immediate value, for immediate values may also be constructed with
expressions containing variable names and/or code labels. An example of this would be:
Label2-Label1

A value that is the difference between the addresses of the two labels would not be considered an
address after the calculation is performed. It becomes a constant in the code. No Address “fixup”
will be applied by the loader. This type of statement might be used to find out how large a
particular section of code is.

Reg32 is any 32-bit register (EAX, EBX, ECX, EDX, EDI, ESI, EBP, or ESP).

Scale is the number 2, 4 or 8 and indicates a special scaled addressing mode on the 386. The *2,
*4 or *8 must follow the Reg32 that you want to be scaled (multiplied) by that value. An
example of a Scaled Instruction is:

MOV AX, [MyArray+ECX+EBX*2]

MMURTL V1.0 Page 627 of 667

If MyArray were a two-dimensional array of WORDS (16-bit values), ECX could contain the
offset into the first dimension, while EBX had the index to the item you wanted in the second
dimension. The *2 scale would effectively multiply the index by the size of a WORD to ensure
you accessed the correct second-dimension entry. This means high level languages don’t need to
do their own multiplication for access to WORD, DWORD or QWORD (64-bit) entries for one
or two dimensional arrays.

The actual syntax for Memory operands is the same as the constructs shown in Table 28.1 above.
Square brackets are required for all memory operands except simple variable names. Examples:

.DATA
MyVar DD 10 ;a DWORD variable
MyBArray DB 100 DUP(0) ;a single dimension byte array
MyWArray DW 1600 DUP(0) ;This is a 40 x 40 array of words

.CODE
 MOV MyVar, 10 ;Immediate value into DWORD MyVar
 ;

The next example moves 20h into the 10th WORD of the 5th element of MyWArray. (e.g.,
MyWArray[5][10] = 20h)

 MOV ECX, 5 ;Set up for the example
 MOV EBX, 10 ; " "
 MOV [MyArray+ECX+EBX*2], 20h

The next example does the same thing as the preceding example. It shows you that addressing
elements are accepted in any order, but must all be inside the square brackets:

 MOV [EBX*2+ECX+MyArray], 20h ;same as above
 ;
 ;Now we move 0 into an byte of MyBArray
 ;that is indexed by some value in EDX
 ;
 MOV [MyBArray+EDX], 0h
.END

In the preceding examples, DASM knew what size the immediate value was because a variable
of known size was used in the address. Consider this invalid instruction:

 MOV [ECX], 20h ;Bad instruction

DASM has no way to know if ECX points to a BYTE, WORD or DWORD! In these cases, you
must use address modifiers to tell DASM the size of the destination memory variable. DASM
will sign extend the value as required. Example:

 MOV WORD PTR [ECX], 20h

This says ECX is pointing to a WORD. The immediate value would be sign extended (to 16 bits)
and moved to the address contained in ECX.

MMURTL V1.0 Page 628 of 667

Storage Declarations

Inside the data or code segments of your program you can issue storage instructions for data to
be accessed by your program. This done with the DB, DW, and DD instructions. Modifiers may
be used to duplicate storage values for arrays. Data in your code segment is assumed to be read-
only.
Labels (variable names) may precede any storage statement such as:

 Count DB 0

DB (Define Byte)

The DB instruction defines one or more bytes of storage. Immediate numeric values or strings
may be defined with DB. Examples:

EOL DB 0Ah ;creates one byte of labeled
 ;storage with 0Ah as the value

 DB 5, 4, 6, 8 ;4 bytes with the values shown

 DB 100 DUP(0) ;One hundred bytes filled with 0

 DB ’The Quick Brown Fox’, 0Ah
 ;Creates ASCII bytes with the text
 ;followed by a 0Ah byte

DW (Define Word)

This defines one or more WORDS of storage (two bytes). The syntax is the same as for DB
except string values are not allowed.

DD (Define Double Word)

This defines one or more DWORDS of storage (four bytes). The syntax is the same for bytes
except quoted strings are not allowed.

DF (Define Far Word)

This is used only to define a single 48-bit quantity (far pointer). It defines a 6 byte quantity
broken into two parts. The first part is the offset (four bytes), while the second is the selector(two
bytes). The Offset portion must be separated from the selector portion by a colon (:). Example:

pFarProc DF 00000000h : 0000h

This is used for two things. First, to define OS entry points in library module definitions. This
allows you to hardcode the OS entry points. In other operating systems this would not be a good

MMURTL V1.0 Page 629 of 667

idea, but because MMURTL uses 386/486 Call Gates, the OS code can move while it’s entry
points will always stay the same. Second, the DF statement can also be used to define variables
for use with the SIGT, LIDT, and LGDT, and other instructions that require a 48-bit (6-byte)
storage size.

Application programmers will not generally use this except to access OS calls indirectly.

DASM Peculiar Syntax

DASM has some syntax difference from other assemblers you may be familiar with. The
following sections cover these differences.

PUBLIC Declarations

By default, variables and codes labels are not visible to other modules that are included as a
program. To make them visible (to resolve external use), you must precede the label with the
reserved word PUBLIC. Examples:

.DATA

PUBLIC MyVar DB 10h ;Will be visible to ALL modules
 ;specified in the .ATF file
.CODE
PUBLIC MyProc: ;Will be visible to ALL modules
 PUSH EBP ;specified in the .ATF file
 MOV EBP, SP
 ...
.END

Note that this is a little different than most DOS assemblers. They usually require the PUBLIC
declaration on a separate line.

EXTRN Declarations

External references from your module must be presented to DASM before their use. If you call
external procedures directly, you must declare them somewhere inside your code segment before
they are referenced. External variables must be declared in your DATA segment prior to use.
There are three different types of externals in DASM; data, near code, and far code.

EXTRN Data declarations will always be used when you access public variables from separate
ASM source modules. Dynamic Link Libraries will not contain data due to re-entrancy
requirements.

EXTRN NEAR code declarations will always be used when you access code labels as CALL or
JMP targets from separate ASM source modules or Dynamic Link Libraries. The targets must be
declared PUBLIC in the separate modules.

MMURTL V1.0 Page 630 of 667

EXTRN FAR code declarations will only be used to access operating system calls (procedures).
Each external label must be declared on a single line with the keyword EXTRN, the name, and
the type.

Examples of External declarations:

.DATA
 ;External variables in another module you created
EXTRN MyVar1 DD
EXTRN bOne DB
EXTRN bTwo DB
EXTRN wOne DW
EXTRN array DB ;With external arrays you need
 ;only specify the size of the
 ;elements of the array
.CODE
 ;Far procedures with absolute addresses
 ;resolved at link time are declared in the CODE segment

EXTRN FAR AllocExch
EXTRN FAR DeAllocExch
EXTRN FAR SendMsg
EXTRN FAR Sleep

 ;Near code direct calls to one of your module or a
 ;routine in an object module from a library

EXTRN NEAR MyProc1, MyProc2
.END

Note that is also a little different than most DOS assemblers. They usually require the EXTRN
declaration on a separate line.

Labels and Address

In the following sections, I’ll cover certain instructions and how they are used. An introduction to
the instruction comes first, followed by a discussion, then finally a coding example.

Segment and Instruction Prefixes

With the 386 processor, memory references refer to the data segment by default, which is the
value contained in the DS register. There are only two exceptions:

1. Those using the EBP and ESP registers (Frame and Stack pointers) which use the SS
segment register, and,

2. String instructions using the EDI register which uses the ES segment register.

The 386 allows you to specify a different segment for each of your memory references. By
default, MMURTL makes DS = ES = SS = FS = GS, and all are set to your data segment.
Chances are slim that you will require segment prefixes, unless you want to access data
contained in your code segment or you want make use of the two additional segment registers

MMURTL V1.0 Page 631 of 667

(FS and GS) on the 386. MMURTL uses the FS and GS registers internally, and quite frankly I
can’t imagine why you would need them with flat memory space, but they are supported in
DASM for OS use. To use the segment prefix in a memory reference, simply place the register
name with a colon (:) after it before the open square bracket of the memory reference; and the
segment prefix will be properly coded in the instruction. Examples:

 MOV EAX, CS:[MyProc+10]
 MOV AL, CS:[AppCodeLabel+EBX]

Instruction prefixes such as LOCK and REPNE which may precede some instructions are coded
on the same line as the instruction they affect. The REP (Repeat) series of prefixes deal
specifically with the string instructions such as REP MOVSB, which is typical of most 386/486
assemblers.

CALL and JUMP Addresses

The CALL and JMP instructions (including JMP on Condition) may make forward references
into the local module’s code segment. This section describes all the address types for calls and
jumps, and explains what DASM assumes about them. Coding examples are provided for clarity.

CALL LabelName - Call to Near Pointer
JMP LabelName - Jump to Near Pointer
Jc LabelName - Jump on Condition to Near Pointer

These indicate a call or jump to a label anywhere in your program regardless of the module. All
calls to code labels are considered NEAR and local to the current module unless previously
defined EXTRN. This means they are assumed to be within a 32-bit offset from the call or jump
instruction itself. If the called label were in a different module and not previously defined as
external, then DASM assumes it is a forward reference and codes it as such, filling in the
address/offset when it finds it. If the end of the module is reached and the label has not been
found in the code segment then an error is generated. If the label is defined EXTRN, then the
label in the other module should have been defined as PUBLIC (e.g., PUBLIC MyLabel:) A 32-
bit offset relative to the next instruction is encoded as part of the instruction itself.
Examples:

 .CODE
 EXTRN MyLabel ;Needed if in a different module

 CALL MyLabel ;NEAR PTR is default if left out
 JMP MyLabel
 JZ MyLabel
 CALL MyLabel
 JMP MyLabel
 JNZ MyLabel
;--
The next is a SHORT Jump.

JMP SHORT - Jump Short (+/- 127 bytes)

MMURTL V1.0 Page 632 of 667

Jc SHORT - Jump on Condition (+/- 127 bytes)

These are a special case for jump instructions; they tell the assembler that the target label for the
jump is less than 128 bytes away from the Jump instruction. This form is three or four bytes
smaller, and executes faster. If the label was already defined (precedes the Jump instruction),
DASM will use the short form of the instruction if possible without the SHORT modifier being
present. The SHORT modifier would be used if you were jumping to a label that is defined after
the jump, but known to be close enough to be a short jump. If you use the SHORT modifier and
the label turns out to be farther than 127 bytes, then an error is generated. An 8-bit offset relative
to the next instruction is encoded as part of the instruction itself. The instructions are:
Coding Example:

 JMP SHORT MyLabel
 JZ SHORT MyLabel
;--

Far code declarations are completely different than most other assembler. The only far code you
have is the operating system itself.

CALL FAR PTR - Call to a Far Pointer
JMP FAR PTR - Jump to a Far Pointer

The FAR modifier indicates a call or jump to a far address. With the MMURTL OS, this would
be a call to the OS itself. With MMURTL there is no need for a FAR jump as all labels in a
program are near (within a 32-bit offset). The FAR jump is included in DASM for OS use only.

NOTE: The 48-bit address is encoded as part of the instruction.

Because the only time you need a FAR call is to reach the operating system, and because you
will not actually be linking with a library to resolve these addresses, DASM encodes this as an
immediate FWORD value in the instruction. You must define the values for each of the OS calls
you make in this fashion, with the EQU statement as follows:

WaitMsg EQU 00000000h:40h
SendMsg EQU 00000000h:48h

 NOTE: The indirect addresses for MMURTL public calls are listed in the file
MPUBLICS.ASM in the same directory as the operating source code on the CD-ROM.

To use this type of call in DASM, a FAR declaration should have been made previously in the
code segment of this module. The following example shows the external declaration. If the label
was not previously defined as FAR then an error is generated.

.CODE

WaitMsg EQU 00000000h:40h
SendMsg EQU 00000000h:48h

 CALL FAR PTR WaitMsg

MMURTL V1.0 Page 633 of 667

 CALL FAR PTR SendMsg
;--
Calling Indirectly:

CALL DWORD PTR - Call to a Near Indirect address
JMP DWORD PTR - Jump to a Near Indirect address

This indicates an indirect call or jump to a near address. A DWORD variable in DSeg contains
the address you are calling or jumping to. The examples below show the external declaration
which would be in your data segment if required. If the label was not previously defined either as
a local DD or external DD, then an error is generated.
NOTE: The offset in the program’s data segment of the variable containing the address is
encoded as part of the instruction. External are fully resolved at assemble time.
Example:

.DATA ;In data segment
 EXTRN DD pMyProc ;If not in this module
 pMyLabel DD OFFSET MyLabel ;Needed if it IS local

.CODE ;In code segment
 CALL DWORD PTR MyLabel
 JMP DWORD PTR MyLabel

You may also call far addresses indirectly. In fact, this is the preferred way to call MMURTL
procedures.

CALL FWORD PTR - Call a Far address indirectly
JMP FWORD PTR - Jump to Far address indirectly

This indicates an indirect call or jump to a far address. This means that a FWORD variable
contains the address we are calling (4-byte offset, 2-byte segment). The following example
shows an external declaration and two ways to define a local declaration which would be in your
data segment. If the label was not previously defined as a local DF, a DD/DW, or external DF,
then an error is generated. In MMURTL, CALL FWORD PTR is yet another way to reach the
OS calls. A register pointing to, or the memory address of the FWORD variable containing the
target 48-bit address is encoded as part of the instruction.

Example:

.DATA ;Somewhere in data segment
 EXTRN DF pFarProc ;Needed if not in this module

 pFarProc DF 00000000:0000

 pFarProc DD Offset MyLabel
 DW CodeSeg ;Code Seg is a constant

.CODE ;Somewhere in code segment
 CALL FWORD PTR pFarProc

 JMP FWORD PTR pFarProc ;Not used in MMURTL Apps

MMURTL V1.0 Page 634 of 667

386 Instruction Set

DASM supports all 32-bit 80386 instructions. The 386 instruction set is a subset of the 80486
and Pentium processors. Table 28.2 is an alphabetical listing of the instructions that DASM
supports.

If you want the actual binary encoding for the instruction and timing information, you should
refer to the documentation for the processor you are working with. Examples of almost all of
these instructions can be found in the accompanying source code.

Table 28.2 - Supported Instructions

Instruction Description
AAA ACSII Adjust after Addition
AAD ASCII Adjust AX before Division
AAM ASCII Adjust AX after Multiply
AAS ASCII Adjust AL after Subtraction
ADC Add w/ Carry
ADD Add
AND AND logically
ARPL Adjust RPL field of selector
BOUND Check Array Index against Bounds
BSF Bit Scan Forward
BSR Bit Scan Reverse
BT Bit Test
BTC Bit Test & Clear
BTR Bit Test & Reverse
BTS Bit Test & Set
CALL Call a routine
CBW Convert Byte to Word
CWDE Convert Word to DWord (Extend)
CLC Clear Carry
CLD Clear Direction
CLI Clear Interrupts
CLTS Clear Task Switch Flag in CR0
CMC Compliment Carry Flag
CMP Compare
CMPSB Compare Strings of Bytes
CMPSW Compare Strings of Words
CMPSD Compare Strings of DWords
CWD Convert Word to DWord
CDQ Convert DWord to Quad

MMURTL V1.0 Page 635 of 667

DAA Decimal Adjust Accumulator
DAS Decimal Adjust AL after Subtract
DEC Decrement
DIV Divide
ENTER Make Stack Frame for Procedure
HLT Halt Processor
IDIV Integer Divide
IMUL Integer Multiply
IN Reads form port into AL,AX,EAX
INC Increment
INSB Read byte(s) from a port
INSW Read Word(s) from a port
INSD Read DWord(s) from a port
INT Call to Interrupt
INTO Call to Interrupt 4 if Overflow
IRET Return from interrupt 16 bit
IRETD Return From Interrupt 32 bit
JA Jump if Above
JNBE Jump Not below or equal
JAE Jump above or equal
JNB Jump Not Below (Same as JAE)
JNC Jump No Carry
JB Jump Below
JBE Jump Below or Equal
JNA Jump Not Above
JC Jump if Carry
JNAE Jump Not Above or Equal
JCXZ Jump if CX=0 (Short only)
JECXZ Jump if Equal or CX=0 (Short only)
JE Jump if Equal (Same as JZ)
JZ Jump if Zero
JG Jump if Greater
JGE Jump if Greater or Equal
JNL Jump Not Less than
JL Jump if Less
JNGE Jump Not Greater or Equal
JLE Jump Less or Equal
JNG Jump if Not Greater
JNE Jump if Not Equal (Same as JNZ)
JNZ Jump if Not Zero
JNLE Jump Not Less or Equal
JNO Jump Not Odd
JNP Jump Not Parity
JPO Jump Parity Odd
JNS Jump Not Signed
JO Jump Parity Odd

MMURTL V1.0 Page 636 of 667

JP Jump if Parity
JPE Jump Parity Even
JS Jump if Signed
JMP Jump unconditionally
LAHF (no params)
LAR Load Access Rights (rRGW, rRMW)
LEA Load Effective Address (rRGW, mem)
LEAVE (no params)
LGDT Load Global Descriptor Table register
LIDT Load Interrupt Descriptor Table register
LDS Load Far Ptr into DS:General Register
LSS Load Far Ptr into SS:General Register
LES Load Far Ptr into ES:General Register
LFS Load Far Ptr into FS:General Register
LGS Load Far Ptr into GS:General Register
LLDT Load Local Descriptor Table Register
LMSW Load Machine Status Word (obsolete)
LOCK Lock Bus (prefix)
LODSB Load String Byte
LODSW Load String Word
LODSD Load String DWord
LOOP Loop to Label if CX <> 0
LOOPE Loop to Label if CX <> 0 and Zero bit set
LOOPZ Same as LOOPE
LOOPNE Loop to Label if CX <> 0 and Zero bit set
LOOPNZ Same as LOOPE
LSL Load Segment Limit (rRGW, rRMW)
LTR1 Load Task Register (rm16)
MOV Move value into Register or Memory
MOV Segment into 16 Bit Register
MOV 16 Register into Segment
MOV Move 32 bit Register into Control Register
MOV Move Control Register into 32 bit register
MOV Move 32 bit register into Debug register
MOV Move Debug register into 32 bit register
MOV Move 32 bit register into Test register
MOV Move Test register into 32 bit register
MOVSB Move Byte(s)
MOVSW Move Word(s)
MOVSD Move DWord(s)
MOVSX Move Byte or Word to DWord and Sign extend
MOVZX Move Byte or Word to DWord and Zero extend
MUL Multiply
NEG Negate
NOP No Operation (Same as XCHG EAX,EAX)
NOT Logical NOT

MMURTL V1.0 Page 637 of 667

OR Logical OR
OUT Output byte/Word/DWord to Port
OUTSB Out String Bytes
OUTSW Out String Words
OUTSD Out String DWords
POP Pop a value from the stack (32 bit only)
POPAD Pop all registers from stack
POPFD Pop 32 bit flags from stack
PUSH Push a value onto the stack
PUSHAD Push all registers
PUSHFD Push 32 bit flag register onto stack
RCL Logical Roll w/Carry Left
RCR Logical Roll w/Carry Right
ROL Logical Roll Left
ROR Logical Roll Right
REP Repeat Prefix (used with string instructions)
REPE Repeat if Equal
REPNE Repeat if Not Equal
RETN Return from NEAR call
RETF Return from FAR call
SAL Logical Shift Accumulator Left
SAR Logical Shift Accumulator Right
SHL Logical Shift left
SHR Logical Shift Right
SBB Subtract w/Borrow
SCASB String Compare and Scan Byte
SCASW String Compare and Scan Word
SCASD String Compare and Scan DWord
SETA Set if Above
SETAE Set if Above or Equal
SETB Set if Below
SETBE Set if Below or Equal
SETC Set if Carry
SETE Set if Equal
SETG Set if Greater than
SETGE Set if Greater than or Equal
SETL Set if Less than
SETLE Set if Less than or Equal
SETNA Set if Not Above
SETNAE Set if Not Above or Equal
SETNB Set if Not Below
SETNBE Set if Not Below or Equal
SETNC Set if No Carry
SETNE Set if Not Equal
SETNG Set if Not Greaten than
SETNGE Set if Greater than or Equal

MMURTL V1.0 Page 638 of 667

SETNL Set if Not Less than
SETNLE Set if Not less than or Equal
SETNO Set if Not Odd
SETNP Set if Not Parity
SETNS Set if Not Signed
SETNZ Set if Not Zero
SETO Set if Odd
SETP Set if Parity
SETPE Set if Parity Even
SETPO Set if parity Odd
SETS Set if Signed
SETZ Set if Zero
SGDT Store Global Descriptor Table
SIDT Store Interrupt Descriptor Table
SHLD Shift Left DWord
SHRD Shift Right DWord
SLDT Store Local Descriptor Table (Not used in MMURTL)
SMSW Store machine Status Word (Obsolete)
STC Set Carry Flag
STI Set Interrupt Flag
STD Set Direction Flag
STOSB Store String of Bytes
STOSW Store String of Words
STOSD Store String of DWords
STR Store Task Register
SUB Subtract
TEST Logical Test (AND w results in flags)
VERR Verify
VERW Verify Word
WAIT Wait for NCP
XCHG Exchange reg/reg or reg/mem
XLAT Translate
XLATB Translate BL
XOR Logical XOR

Executable File Format

The MMURTL RUN file is one of three types of executable files supported by the MMURTL
OS. The three types are:

• RUN - A MMURTL standard executable
• DLL - A MMURTL Dynamic Link Library
• DDR - A MMURTL Device Driver executable

MMURTL V1.0 Page 639 of 667

The files for all three types of loadable or executable files are essentially the same. The files are
composed of tagged fields. The fields are in TLV format (Tag, Length, Value).

The format for the file is not fixed (meaning it has no header with fixed-length fields) and is
therefore expandable for future requirements. Also, programs can read the file and look for only
the information they need and understand. Some fields are mandatory, while others are optional.

The tags are single, unsigned bytes with values 80H and above. This allows 128 individual
pieces of information in the RUN file; which is far more than YOU should ever need for an
executable file in MMURTL (remember, simplicity is was the goal from the beginning).

The length is a 4-byte (32-bit) unsigned number. It is always included after each tag and contains
the length of the data that follows it.

For example, the first tag in all RUN files is the begin tag (80h). It is followed by a 4-byte length
with a value of 1 (00000001h). A single byte follows the length as indicated by the value of 1.
The byte describes the file type (RUN, DLL, or DDR).
If the file type value were 1 and you did a HEX dump of the RUN file, the first seven bytes
would look like this:

80h 01h 00h 00h 00h 00h 01h

The tagged fields must be included in numeric order in the file. This is mandatory and is for the
benefit of the tag reader (the OS loader or applications that read these files). It is also used for a
consistency check. If the loader detects tags that are out of order, it will not load the file. Table
28.3 describes each of the tags.

Table 28.3 - Tag Usage

Tag Description Use
80h FILE ID Mandatory
82h VERSION STRING Optional
83h DATE/TIME STRING Optional
84h COMMENT Optional
90h INITIAL SEGMENT SIZES Mandatory
92h ASSUMED DATA OFFSET Optional
94h ASSUMED CODE OFFSET Optional
96h STARTING OFFSET Mandatory
A0h DLL IDENTIFIER As Required
B0h CODE SEGMENT Mandatory
B2h DATA SEGMENT Mandatory
C0h CSEG DATA ADDRESS FIXUP As Required
C1h CSEG CODE ADDRESS FIXUP As Required
C2h DSEG DATA ADDRESS FIXUP As Required
C3h DSEG CODE ADDRESS FIXUP As Required

MMURTL V1.0 Page 640 of 667

C5h DLL ADDRESS FIXUP As Required
C8h DLL PUBLIC As Required
FFh FILE END/CHECKSUM Mandatory

Each of the tag types, length field use and the values for each tag are discussed in detail in the
following sections.

Tag Descriptions

TAG 80h FILE ID (Mandatory)
LEN 1
VAL - 1 indicates a RUN file (standard executable)
 2 indicates a DLL (Dynamic Link Library)
 3 indicates a DDR (Device Driver)

TAG 82h VERSION STRING (Optional)
LEN Length of version string
VAL Version string

TAG 83h DATE/TIME STRING (Optional)
LEN Length of string
VAL Date/Time string

TAG 84h COMMENT (Optional)
LEN Length of string
VAL Comment string

TAG 90h INITIAL SEGMENT SIZES (Mandatory)
LEN 12
VAL Three unsigned dwords that contain the sizes of the initial stack, code segment, and data
segment in that order. The values for Code and Data should match the totals found in tags B0
and B2 (code and data)segments.

TAG 92h ASSUMED DATA OFFSET (Optional)
LEN 4
VAL An unsigned 32-bit number containing the value the assembler assumed for the DSEG
offset. If VAL is not included, the loader assumes 0.

TAG 94h ASSUMED CODE OFFSET (Optional)
LEN 4
VAL An unsigned 32-bit number containing the value the assembler assumed for the CSEG
offset. If not included, the loader assumes 0.

TAG 96h STARTING OFFSET (Mandatory)
LEN 4

MMURTL V1.0 Page 641 of 667

VAL An unsigned 32-bit number containing the offset in the code segment of the first
instruction to execute after loading.

TAG A0h DLL IDENTIFIER (As Required)
LEN Length of DLL File Name
VAL Full file specification of a DLL file, which may have to be loaded if not already resident.
This must be included if you call public DLL procedures from this DLL in your program.

TAG B0h CODE SEGMENT (Mandatory)
LEN length of code segment
VAL Binary executable code of the length expressed in LEN. There may be one or more of
these in a RUN file. If more than one is used, the order of the tags must be in the instruction
sequence as required in the code segment.

TAG B2h DATA SEGMENT (Mandatory)
LEN length of data segment
VAL Binary data of the length expressed in LEN. For DLLs, the LEN must be 0, and no data
will follow it. There may be one or more of these in a RUN file. If more than one is used, the
order of the tags must be in the data sequence as required in the data segment.

TAG C0h CSEG DATA ADDRESS FIXUP (As Required)
LEN Multiple of 4
VAL One or more Offset addresses (each address is 32 bits) in the Code Segment of a 32-bit
value that refers to an address in the data segment that may change when the data segment is
loaded (relocated). There may be one or more of these tags in a single executable file. One tag
may contain all the fixups, or multiple tags may be used. For example, MOV EAX, MyVar
encodes the address of MyVar in the data segment as part of the instruction. This address is an
offset from zero or the value specified by the VIRTUAL command. The data segment may not be
located at that address. So, the MMURTL loader has to know how to change the value in the
instruction.

TAG C1h CSEG CODE ADDRESS FIXUP (As Required)
LEN Multiple of 4
VAL Offset of one or more addresses in the Code Segment of a 32-bit value that refers to an
address in the code segment that may change when the code segment is loaded (relocated). As
with TAG C0 there may be one or more of these tags.
Example of what would cause this:
MOV EAX, OFFSET MyCodeLabel
This encodes the address of MyCodelabel as part of the instruction. This address is an offset
from the beginning of the code segment as understood by DASM. The code segment may not be
located at that address. So, the MMURTL loader has to know how to change the value in the
instruction.

TAG C2h DSEG DATA ADDRESS FIXUP (As Required)
LEN Multiple of 4

MMURTL V1.0 Page 642 of 667

VAL One or more offset addresses in the data segment of a 32-bit value that refers to an address
in the data segment that may change when the data segment is loaded (relocated). As with TAG
C0 there may be one or more of these tags.
Example: pMyData DD OFFSET MyVar
This places the offset of a variable into another variable in the data segment. Once again, if the
data segment is not located at the address DASM assumed, it must be changed after loading.

TAG C3h DSEG CODE ADDRESS FIXUP (As Required)
LEN 4
VAL Offset address in Data Segment of a 32-bit value that refers to an address in the code
segment that may change when the code segment is loaded (relocated). As with TAG C0 there
may be one or more of these tags.
Example: pMyCode DD OFFSET MyCodelabel
This places the offset of a code label (a procedure or function) into a variable in the data
segment. Once again, if the code segment is not located at the address DASM assumed, it must
be changed after loading.

TAG C5h DLL ADDRESS FIXUP (As Required)
LEN 4 + length of DLL Public name
VAL Offset address in code segment of a 32-bit value that refers to a DLL PUBLIC procedure,
followed by the DLL public name. DLL code references are near 32-bit calls. The value in the
code segment will be zero until the loader resolves it. All DLL public names must be unique in
MMURTL. See Chapter 10, “Systems Programming”, for details on DLLs.

TAG C8h DLL PUBLIC (As Required)
LEN 4 + length of DLL Public name
VAL Offset address in code segment of the entry point for a DLL public procedure, followed by
the DLL public name. This tag type should only appear in DLL files. All DLL public names
must be unique in MMURTL. See Chapter 10,”Systems Programming”, for details on DLLs.

TAG FFh FILE END/CHECKSUM (Mandatory)
LEN 4
VAL 32-bit simple check sum of the entire file prior to this tag. This means you simply add up
the value of each byte in a 32-bit variable while ignoring overflow. This value should match your
total. If not, you can assume the file is corrupt.

Error Codes from DASM

The following errors can be returned from DASM. Each is assigned a number, followed by text
that may be displayed, and finally a description of what may have caused it.

1: Invalid expression, ’)’ expected -- You have unbalanced parenthesis in an expression.
2: Invalid expression, value expected -- You are attempting a math operation on a non-
numeric.
3: Value expected after unary ’-’ -- a numeric value is expected after a single minus sign.

MMURTL V1.0 Page 643 of 667

4: Too many digits for numeric radix -- 32 digits are allowed for base 2, 9 for base 10, and
8 for base 16.
5: Invalid character in a number -- you have probably left off the "h" to indicate a hex
number and a letter was found in it.
6: Unterminated string -- You have omitted the trailing quotes in a data storage statement.
7: Unrecognized character -- more than likely, a letter was found in a number that doesn’t
fit its radix.
8: Invalid Alignment specified -- only WORD and DWORD are allowed in the .ALIGN
statement.
9: Start command only allowed in CSEG - .START was found in DSEG.
10: Virtual command must be first in segment -- It must also be in the first occurrence of
that segment (check your ATF file).
11: Invalid Virtual value -- 0h to 7FFFFFFFh is the limit.
12: Starting address not found -- You must have a .START statement somewhere in your
code (or included library files).
13: Reserved
14: Invalid command -- DOT What??
The following errors all deal with instruction format. You should look at the section of this
manual dealing with memory references to help understand the specific error.
15: Invalid operand
16: Invalid segment register use
17: Invalid scale value ’Reg*?’
18: Scale value expected (*2,*4,*8)
19: Too many address scale values
20: Invalid register for memory operand
21: Invalid memory operand
22: Offset must be from data segment
23: Nested brackets
24: Unbalanced brackets
25: Invalid operand size attribute
26 - 31: Reserved
32: Unknown token in operand array
33: Too many operands or extra character
34: Reserved
35: Invalid expression or numeric value
36: Operand expected before comma
37: Reserved
38: Invalid character or reserved word in operand
39: Relative jump out of range
40: Operand size NOT specified or implied
41: Instructions not allowed in data segment
42: Instruction expected after prefix
43: Mismatched sizes in operands. This indicates you have specified a size of an operand
and it didn’t match the source or destination operand size. Such as MOV EAX, BYTE PTR
Variable
44: Wrong operand type for instruction

MMURTL V1.0 Page 644 of 667

45: Incorrect format for memory operand

The following errors all deal with Data Storage:

46: Strings only valid for DB storage -- DW "xxx" is not allowed.
47: Expected ’(’ after ’DUP’ -- Duplicated storage values must be parenthesized
48: Storage expected between commas -- DB 23,34,??,
49: ’:’ not expected -- A colon is not allowed between data segment labels and storage
definitions
50: DWord storage required for OFFSET -- All segment offsets are 32-bit in MMURTL.
51: Invalid storage value
52-53: Reserved
54: ’:’ expected after last label -- A semicolon is required after a label in the code segment
55: Macro not allowed in lexical level 0
56: EQU or Storage expected
57 - 62: Reserved
63: Instruction expected before register name
64: Public Symbol already defined
65: Local symbol already defined
66: Number not expected
67: New symbol must follow PUBLIC keyword
68: Label, Command, Instruction, or Storage expected -- Can’t understand what’s on the
line!
69: Inconsistent redeclaration -- This label or variable is defined elsewhere differently.
Usually caused by an Extern not being the same as the Public when it’s found.

Your Own Assembler?

If you’re not using the Intel processors, this assembler won’t do you much good, I’m afraid. On
the other hand, you don’t need to write one from scratch anyway. Cross-development is always
an option for you. Cross-development is developing programs with tools and compilers under
one operating system, targeted to run under a different operating system. This is really what you
are doing with the DOS versions of the CM32 compiler and DASM.

If you want to build a complete environment as I did, you will have to think about an assembler,
a compiler, and all the utilities to go with them.

One final note about the DASM assembler: The documentation was almost as difficult to write
as the assembler. I recommend that you keep that in mind.

MMURTL V1.0 Page 645 of 667

Chapter 29, CM32; A 32-Bit C Compiler

Introduction

CM stands for C-Minus. CM32 was written specifically to use while I was building the
MMURTL computer operating system. Every change and fix that was made to it, and
some of the nonstandard extensions are there specifically to support the operating system.
I will not apologize for it’s incomplete state, because my real goal was to build an
operating system. CM32 was a necessary detour.

As the name implies, this version of the C language is missing some pieces. It was a cold,
calculated quickie. CM32 started life as an early version of Dave Dunfield’s Micro-C. I
liked Mr. Dunfield’s style, and I learned a lot from his code. The compiler is not very
portable now, but portability wasn’t my goal. He has given permission to include the
source code on the CD-ROM. Permission is required from the authors as listed in the
source code in order to use the compiler for any commercial purposes.

Mr. Dunfield also let me include his introductory document on the C language
(Cintro.doc in the \Dunfield directory on the CD-ROM). If you are not familiar with the
C programming language, Cintro.doc is a very good introduction. It is geared to a subset
of the C language, but CM32 is also a subset, so it should be valuable if you need to learn
or brush-up on C. All of Mr. Dunfield’s demo products are also included in the \Dunfield
directory on the CD-ROM. If you, or someone you know, does embedded systems work
on 8- and 16-bit processors, you should take a look at these products. There are complete
working tools included, along with a catalog of all his other goodies.

The extensions I make to Micro-C all follow the guidelines presented in The C
Programming Language, Second Edition (ANSI C), by Brian W.Kernighan and Dennis
M.Ritchie. You don’t need this book to use CM32, but it was my guide for modifications
to the compiler. After all, Kernighan and Ritchie (K&R)invented the language. There is a
small amount of irony here, however, as CM32 does not support the K&R style of
function declarations. ANSI function prototypes are required.

To write an operating system with a complete development environment, you have to
start somewhere. I started with the Microsoft 5.1 Assembler, eventually gravitated to the
Borland Turbo Assembler, still using MASM conventions, and eventually ended up using
DASM, our own assembler. All of the MMURTL kernel and hardware handling code is
done in hand-coded assembler. Once the kernel was done, and I started on the device
drivers, I knew I would need a 32-bit compiler to cut down development time on the rest
of software. Several companies make excellent 32-bit compilers, but I also wanted to
eventually port the compiler to the MMURTL environment. Quite frankly, the cost of the
source code would be exorbitant. So I took a user-supported 16-bit compiler that
generated assembler and worked from there (talk about reinventing the wheel). This set

MMURTL V1.0 Page 646 of 667

the MMURTL development effort back about four months, but what the heck, I certainly
learned a whole lot.

CM32 produces assembly language that is compatible with DASM (my assembler).

Memory Usage and Addressing

The code and library source are set up for the MMURTL OS. MMURTL’s memory
model allows 2 Gigabyte segment addressing with 32-bit flat pointers. For compatibility
with MS-DOS programming tools and source code, I went with the following
conventions in CM32:

char = 8 Bits (Byte)
short = 16 Bits (Word)
int = 16 Bits (Word)
long = 32 Bits (DWord)

I did this because of the wealth of source code that is available for MS-DOS. There is
also a wealth of code available for UNIX, and in most UNIX compilers an int is 32-bits.
But far too much of it so heavily UNIX specific, that rewriting it would be almost as fast
porting some of it.

Important Internal Differences

As you may know, C started out on a machine with a flat memory architecture. The Intel
32-bit processors are built on a segmented architecture even though you can choose to
ignore the segmentation. As described in the previous chapters, MMURTL pretty much
ignores the segmentation capabilities, with one exception. The code and data segments
are different even though they share the same linear address space in the operating
system. This is why CM32 has support for 48-bit far calls, 16-bit selector, and 32-bit
offsets.

Something that has given the Intel world a fit is C stack handling, especially Pascal and
PLM-86 users. The Intel-32 bit processors have certain instructions to make stack
operations easier, as well as making function-handling almost a pleasure. One such
instruction is the RET XX where XX is the number of bytes to remove from the stack
prior to returning from the call. The UNIX/C convention has always been to have the
caller remove his parameters (args) from the stack after the return. This allows for
variable length argument lists. I didn’t need this in MMURTL, as all the parameter lists to
operating system calls are fixed length. This is a waste of good time-saving instructions.
The MMURTL OS uses the RET XX, and removes the bytes before returning from all
calls, so that’s how I wrote the compiler.

MMURTL V1.0 Page 647 of 667

Variable Length Argument Lists

CM32 does allow you to prototype a function with an ellipse (,...), in which case CM32
will build the calling function to remove the arguments. The included stdarg.h, along
with the supporting library code, handles variable length arguments. Please follow the
conventions for variable arguments documented in The C Programming Language,
second Edition. Details can be found in the in stdarg.h file with the included library
source code.

Some early C compilers were a little goofy when it came to retrieving parameters from
the stack. They pop, pop, pop, until they get the parameter they want, or pop CX forever
to remove them on return. Intel gave us a real clean way to get at stack parameters, and I
use it (the Frame Pointer - EBP). Other C compilers also save certain registers before the
call, and restore them after. CM32 saves none.

One last stack-related point, and probably the most notorious, is the order in which
parameters are pushed on the stack. The C convention has been from right to left. I opted
for left to right. This is called the PLM or Pascal calling convention. Remember, if you
use C in the recommended portable fashion none of this will bother or concern you, I just
thought you’d like to know. Of course, if you intend to add additional library support for
CM32, you will have to know and understand it all.

CM32 Language Specifics

The CM32 compiler is a subset of the full ANSI-C language. It has several extensions, as
well as short-comings. These are documented in the following sections.

FAR Calls

One important extension CM32 has made to the C language is for the far function calls.
All C compilers that work on Intel platforms usually have some type of far extensions.

CM32 supports 48-Bit far calls and RETF XX instructions for local functions designated
as far, that will be called from outside your current segment. See the section below, FAR
External Functions, for specifics on how to use the far storage class modifier with
functions.

Because MMURTL uses a separate virtual memory space for each program, we don’t
need far data pointers and don’t support them. The only reason far calls are supported is
to allow access to the MMURTL OS through 386/486 call gates.

MMURTL V1.0 Page 648 of 667

Interrupt Functions

The interrupt class is used to designate the function as an interrupt service routine. It
changes the standard entry and exit code for a function to produce the following:

 PUSHAD
 ;Your code
 POPAD
 IRETD

Needless to say, don’t call an interrupt function from your program. The results would be
rather nasty. The PUSHAD and POPAD instructions save all registers and flags and
restore them.

Supported C Language Features

The following C statements are supported by CM-32:

if/else
while
do/while
for
break
continue
return
goto
switch/case/default
{}
;

The following operators are supported:

+ += ++
- -= --
* *=
/ /=
% %=
^ ^=
~
& &=
| |=
&& ||
<< <<= >> >>=
> >= < <=
= ==
! !=

MMURTL V1.0 Page 649 of 667

?: (tertiary operators)
, (comma)
()
[] (array indexing)
. -> (structure field access operators)
sizeof()
* for Indirection up to 7 levels
& for "ADDRESS OF" including structures

The following data types and modifiers are supported:

struct (all members are packed)
char (signed and unsigned) 8 bits
short (signed and unsigned) 16 bits
int (signed and unsigned) 16 bits
long (signed and unsigned) 32 bits
arrays (single and multidimensional)
pointers (to all types including pointers)
void

The following storage classes, or modifiers to classes, are supported:

signed (the default as per ANSI)
unsigned
extern
static
const
register
far (for functions only)
interrupt (for functions only)

The following character constants are supported:

Decimal, octal and hex constants are supported as character constants in expressions
(e.g., 127, 0177, 0x7f, ’\n’ or "Some Text\t")

\n Newline
\r Carriage return
\t Tab
\b Backspace
\f Formfeed
\v Vertical Tab
\177 Octal constants
\x7f Hexadecimal constants
\0 Null

The following preprocessor commands are supported:

MMURTL V1.0 Page 650 of 667

#define (fully parameterized)
#undef
#include (nested to 5 levels)
#ifdef
#ifndef
#else
#endif
#asm/#endasm (for inline assembly language)
#pragma (properly ignored)

Inline assembly code is supported with the #asm operator as defined above. It is simply
placed line-for-line into the generated assembly language output file.

Library Header File Access

The standard include files which are listed inside of angle brackets (e.g., <stdio.h>)
should be located in the \CM32\INCLUDE directory on your current disk.

Quoted includes (e.g., "MyHeader.h") should specify the full path if the file is not located
in the current directory.

Limitations (compared to ANSI)

The following items are not supported:
Real numbers
unions
enumerated types
bit fields
type casts
#if (with separate defined)
#elif

Structure Limitations

Structures are supported including tags. Structure arrays are also supported, but the
following limitations apply:

1. Structures can not be passed as arguments to functions.
2. They can not be returned from functions.
3. They can not be assigned to each other.
4. Structures can not be nested.

MMURTL V1.0 Page 651 of 667

The use of pointers to structures gets around all of these problems except the lack of
nested structures.

The length of a structure is exactly the sum of each member’s size (1 byte alignment).
The register class modifier doesn't do a lot, but it's recognized for compatibility.
Automatic variables, variables local to functions cannot be initialized automatically.

Far External Functions

The far type modifier can be quite confusing to someone that has always worked on a
machine with a flat memory architecture. If you are one of those people, the best analogy
of far is that you are actually working on several machines, each with their own large flat
memory space. Any time you want to access a function to some other machine's memory,
you need the far modifier.

For example, if you are calling a function that is not in your code segment in your
machine's memory space, if you will, you will have to tell the compiler that it is a far
function.

Far functions are those that you must call in another segment, or those in your segment
that must be called from outside your segment. For example, the function GetMoney, a
fictitious but useful system call that resides outside your current code segment, would
have to be defined as being far in it's function prototype in order for the compiler to
generate a far call in assembler. Example of a prototype for a far call outside your
segment:

 extern long far GetMoney(void);
 /* a useful but ficticious function */

Far functions cannot return far pointers. This is an intentional limitation of CM32
compiler. In fact, the only reason CM32 supports far calls is because MMURTL calls are
made through call gates which require a unique selector to identify each call.

This means that if you defined GetMoney as:

 extern far long GetMoney(void);

the far modifier still applies to the function and not the long returned variable.

Type Conversion and Pointers

As mentioned above, CM32 does not support type casts. Consequently, type checking is
relaxed with pointer assignments. Also, type conversions are automatic and follow these
rules, which are ANSI compatible:

MMURTL V1.0 Page 652 of 667

8 Bit var = 16 bit var - The low-order eight bits of the 16-bit variable will be placed in the
8-bit variable.

16 Bit var = 32 bit var - The low order 16 bits of the 32-bit variable will be placed in the
16-bit variable.

32 bit var = 16 bit var and 16 bit var = 8 bit var - The value is properly sign or zero
extended before assignment.

unsigned var = signed var - Signed variable is sign or zero extended if required, and
placed into the unsigned variable. A char with the value of -1 assigned to an unsigned
long will result in 0xffffffff as you would expect (-1 equals -1 through the conversion).

All pointers are 32 bit and may assigned, manipulated, and compared as unsigned long
integers.

Initialization of Static Variables

CM32 supports bracketed initialization with braces ({}), as specified by ANSI. I have
seen some compilers that simply can’t seem to get it right. The following examples show
my implementation so there should be no confusion. If I’m doing it wrong, at least you'll
how I do it.

Examples of initialization ANSI style as defined in Kernighan and Ritchie’s book:

The following example defines a 3x5 array of characters:

char c[][5] = { {"abc"}, {"def"}, {"ghi"} };

Stored in memory it looks like this (15 bytes):

’a’ ’b’ ’c’ 0 0
’d’ ’e’ ’f’ 0 0
’g’ ’h’ ’i’ 0 0

The next example defines a 3x1 array of integers.

int x[] = {1,3,5};

Stored in memory it looks like this (three integers) :

1 3 5

Both of the following examples define a 4x3 array of integers. Note the inside braces are
optional, but serve a purpose if you can't define all the elements in each sub-array:

int y1[4][3] = {1, 3, 5, 2, 4, 6, 3, 5, 7};

MMURTL V1.0 Page 653 of 667

int y[4][3] = {
 { 1, 3, 5 },
 { 2, 4, 6 },
 { 3, 5, 7 },
 };

Both look like this stored in memory (12 integers) :

1 3 5
2 4 6
3 5 7
0 0 0 (Last index zeroed automatically)

The following example is also a 4x3 array, but only the first value of each of the first
indexes is initialized. This is where the inside braces are required:

int y2[4][3] = { {1}, {2}, {3}, {4} };

Stored in memory it looks like this (three integers) :

1 0 0
2 0 0
3 0 0
4 0 0

Both of the following examples are 3x7 character arrays. They can be defined either way.
 The first dimension of the array is determined by how many initializers there are:

char rgReserved[][7] = {
 {"THE"},
 {"BIG"},
 {"DOGS"},
 };

char rgTest[][7] = {
 "THE",
 "BIG",
 "DOGS",
 };

In memory, each of the strings is zero filled out to the length specified in the second
dimension:

’T’ ’H’ ’E’ 0 0 0 0
’B’ ’I’ ’G’ 0 0 0 0
’D’ ’O’ ’G’ ’S’ 0 0 0

The following is a 3x3 array of pointers. They point to literal strings that are stored in
another location in memory:

MMURTL V1.0 Page 654 of 667

char *paTest[3][3] = {
 {"ALIGN", "TEST",},
 {"BYTE"},
 {"CODE"},
 };

In memory, this declaration stores an array of pointers, plus stores the strings that they
point to. The undefined pointers in the array will be 0 (Null). This is how it looks in
memory, where paTest[X] are points to the null-terminated strings stored in memory:

p1 p2 0
p3 0 0
p4 0 0

The next example stores a string. Note that with single character arrays, braces ({}) are
not needed. The characters are stored in memory terminated with a null. The dimension
(size) of the string is determined by how many characters there are in the string. One null
is added to the length.

char testc[] = "This is a test! ";

The following is also stored in memory as an array of characters except the string is zero
padded out to the length specified in the index, which is 17. It is null terminated and the
null is included in it’s length.

char testc1[17] = "This is a test! ";

Other Implementation Dependent Information

The shift right function zero fills on all operations.
Structures are packed. There are no fills for word or double word alignment. This means
you can use a memory copy function to make copies of structures. You may not assign
structures and they may not be passed as parameters.

Using CM32

To compile a C program with CM32 you enter the name of the source file first, and
optionally, the name of the destination ASM file next, then any command line options
(switches). Example:

CM32 MyFile.c MyFile.asm /L /3 /S

The compiler will then process the file and produce the Assembly language file you
specified. If you left out the destination assembly file name it will use the source file
name with .ASM as the output file.

Errors will be sent to stdout, which is the screen, unless you use the /L switch which
directs all errors to a list file named SourceFile.LST.

MMURTL V1.0 Page 655 of 667

Command Line Options

CM32 has the following command line options available. They are not case sensitive
(e.g., /s = /S):

/6 (16 Bit ON) This switch tells CM32 to generate code for a 16 bit segment. This is
only useful if you intend to assemble the code with TASM or MASM under MS-DOS.
This causes the compiler to compute a 2 byte stack. This means each stack parameter is 2
bytes in size. The value (XX) computed for the RET XX instruction as well as all
references to parameters on the stack are changed by this switch. You should use this
only when generating code for MS-DOS. This is used in conjunction with the /M (MS-
DOS) switch. The default is full 32 bit processing.

/M (MS-DOS Assembler compatible). This forces DASM to output all the segment text
required for MS-DOS assemblers such as MASM or TASM. The default is DASM
compatible (much simpler).

/E (Embedded source mode) This will embed the C source code in the assembly
language output. The data declarations from your source will all be packed after the ASM
data declarations, while each line of code precedes the assembly language statements that
it translates into. Using this option helps to see how the compiler handles things, which is
good for additional hand optimization.

/G (Generate separate files) This tells the compiler to generate a separate code and
data assembly language file as the output. This is useful if you are including the compiler
output into other assembly language files. Output of all segment definition and all
assume statements is suppressed with this option. The files are named .DAS and .CAS
(data and code respectively).

/L (List file) This tells the compiler to direct all errors to a file. The filename is the
same as your source file except the file extension is .LST.

/N (No Optimization) This tells the compiler to skip the optimizer phase of the
compilation. I recommend you always optimize. This optimization is for both speed and
size and to be honest, the generated code stinks without it. It is just barely acceptable
with it.

/S (Suppress herald) This suppresses the compiler name and version herald that is
displayed when the compiler is first executed. If you use the /L option, the only text
displayed on the standard output device, the screen, will be fatal compiler errors.

/W (Warnings ON) This causes to compiler to output warnings for certain practices
such as variables that are never referenced, and type conversions that look odd.
CM32 searches the \CM32\INCLUDE directory on your current disk path for standard
#include <xxx.h> files.

MMURTL V1.0 Page 656 of 667

Library Functions

CM32 is limited in the library functions that are provided. The implementation is closer
to a free-standing version than a hosted version. You can add library functions if you
like. The supported functions and macros are listed under each header file in listing 29.1.

Listing 29.1 - Supported Library Functions

<stdio.h>

extern FILE *fopen(char *name, char *mode);
extern long *fclose(FILE *stream);
extern long fgetc(FILE *stream);
extern char *fgets(char *s, long n, FILE *stream);
extern long fputc(long c, FILE *stream);
extern long fputs(const char *s, FILE *stream);
extern long printf(char *fmt, ...);
extern long sprintf(char *s, char *fmt, ...);
extern long fprintf(FILE *stream, char *fmt, ...);
extern long fread(void pData, size_t
 objsize, site_t nobj, FILE *stream);
extern long fwrite(void pData, size_t
 objsize, site_t nobj, FILE *stream);

<ctype.h>

extern long iscntrl(long c);
extern long isspace(long c);
extern long isdigit(long c);
extern long isupper(long c);
extern long islower(long c);
extern long ispunct(long c);
extern long isalpha(long c);
extern long isxdigit(long c);
extern long isalnum(long c);
extern long isgraph(long c);
extern long toupper(long c);
extern long tolower(long c);

<string.h>

extern char *strcpy(char *s, const char *ct);
extern char *strncpy(char *s, const char *ct, long n);
extern char *strcat(char *s, const char *ct);
extern char *strncat(char *s, const char *ct, long n);
extern long strcmp(const char *cs, const char *ct);

MMURTL V1.0 Page 657 of 667

extern long strncmp(const char *cs, const char *ct, long n);
extern long strlen(char *cs);
extern char *strchr(const char *cs, int *c, long n);

<stdarg.h>

(The following are macros in stdarg.h)

va_list unsigned long *
va_start(ap,arg)
va_arg(ap,type)
va_end(ap)

<stdlib.h>

extern void exit(long error);
extern void stdentry(void);

Library Code Examples

Two samples of the library code are shown below to demonstrate the interface with the
MMURTL operating system.

Fileio.c implements many of the file calls in stdio.h. It is a good example of the proper
use of the MMURTL file system service. See listing 29.2.

Listing 29.2 - Standard file I/O for MMURTL

/* fileio.c

#include <string.h>
#include <stdio.h>

#include "C:\OSSource\MFiles.h"
#define ErcDupName 226 /* Name exists as a file or dir already */

static long error_num = 0;

/*************** fopen ***************
 opens a file in stream mode for reading,
 or reading and writing (modify mode).
*************************************/

FILE *fopen(char *name, char *mode)
{
long handle, lmode, fcreate, fdiscard, erc, fappend;

 erc = 0;

MMURTL V1.0 Page 658 of 667

 handle = 0;
 fappend = 0;
 fcreate = 0;
 fdiscard = 0;

 if (*mode==’r’)
 lmode = 0;
 else if (*mode==’w’)
 {
 lmode = 1;
 fcreate = 1;
 fdiscard = 1;
 }
 else if (*mode==’a’) {
 fappend = 1;
 fcreate = 1;
 lmode = 1;
 }
 else
 return (0);

 /* see if they want to update also */

 if ((mode[1] == ’+’) || (mode[2] == ’+’))
 lmode = 1;

 if (fcreate) /* try to create with archive bit set */
 erc = CreateFile(name, strlen(name), 0x20);

 if (erc == ErcDupName)
 erc = 0;

 if (!erc)
 erc = OpenFile(name, strlen(name), lmode, 1, &handle);
 if (erc)
 {
 error_num = erc;
 handle = 0;
 }
 if ((!erc) && (fappend))
 {
 erc = SetFileLFA(handle, 0xffffffff); /* EOF */
 }
 if ((!erc) && (fdiscard))
 {
 erc = SetFileSize(handle, 0); /* */
 }

 return (handle);
}

/*************** rename ***************/

int rename(char *oldname, char *newname)
{
long erc;

MMURTL V1.0 Page 659 of 667

 erc = RenameFile(oldname, strlen(oldname), newname,
strlen(newname));
 if (erc) {
 error_num = erc;
 return(-1);
 }
 return(0);
}

/*************** remove ***************/

int remove(char *name)
{
long handle, erc;

 erc = OpenFile(name, strlen(name), 1, 0, &handle);
 if (erc)
 {
 error_num = erc;
 return(-1);
 }
 erc = DeleteFile(handle);
 if (erc)
 {
 error_num = erc;
 CloseFile(handle);
 return(-1);
 }
 return(0);
}

/*************** fclose ***************/

long fclose(FILE *stream)
{
long erc, i;
erc = CloseFile(stream);
if (erc) {
 error_num = erc;
 i = EOF;
 }
else
 i = 0;
return stream;
}

/********** fgetc ***************************************
* Read a char and return from function. Return EOF (-1)
* If EOF. This returns char as an int.
**/

long fgetc(FILE *stream)
{
long erc, i, chl;
unsigned char ch;

 erc = ReadBytes (stream, &ch, 1, &i);

MMURTL V1.0 Page 660 of 667

 if (erc)
 return EOF;
 else
 chl = ch;
 return (chl);
}

/******** fgets ***
 Read chars into string (s) until we get a LF or n-1=0.
 Null terminate the string.
**/

char *fgets(char *s, long n, FILE *stream)
{
long ch;
char *ss, c;
 ss = s;
 while (n > 1)
 {
 ch = fgetc(stream);
 if (ch == EOF)
 {
 s = 0; / null terminate */
 return(0);
 }
 else
 {
 c = ch;
 *s = c;
 n--;
 if (c == 0x0A)
 n = 0;
 s++;
 }
 }
 *s = 0;
 return (ss);
}

/*************** fputc ***************/

/* writes the char (int) in c to the stream.
 No translation is done to the char.
*/

long fputc(long c, FILE *stream)
{
long erc, i, ch;
 erc = WriteBytes (stream, &c, 1, &i);
 if (erc)
 ch = EOF;
 else
 ch = c;
 return (ch);
}

MMURTL V1.0 Page 661 of 667

/********************* fputs *************************
 Writes the string pointed to by *s to file *stream
 No EOL translation is done. The terminating NULL is
 not placed in the file.
**/

long fputs(const char *s, FILE *stream)
{
long erc, i, ch;

 erc = 0;
 while ((*s) && (!erc))
 {
 erc = WriteBytes (stream, s++, 1, &i);
 }
 if (erc)
 ch = EOF;
 else
 ch = 0;
 return (ch);
}

/*************** ftell ******************************/
/* returns the file pointer (Logical File Address) */
/* of stream. */

long ftell(FILE *stream)
{
long erc, i;
 erc = GetFileLFA(stream, &i);
 if (erc)
 i = EOF;
 return (i);
}

/*************** rewind *****************************/
/* Set file LFA to 0. */

void rewind(FILE *stream)
{
long erc;
 erc = SetFileLFA(stream, 0);
}

/*************** fseek *****************************/
/* Set file LFA to desired position. */

void fseek(FILE *stream, long offset, long origin)
{
long erc, crnt;

 if (origin==SEEK_CUR)
 erc = GetFileLFA(stream, &crnt);
 else if (origin==SEEK_END) {
 offset = 0;
 crnt = -1; /* MMURTL Seeks to EOF */
 }

MMURTL V1.0 Page 662 of 667

 else if (origin==SEEK_SET)
 crnt = 0;
 else
 return 1;

 erc = SetFileLFA(stream, offset+crnt);
 if (erc)
 return (1);
 else
 return (0);
}

/********** fread ***************************************
* reads nobjects of nsize from stream and returns them
* to ptr.
**/

long fread(char *ptr, long size, long nobj, FILE *stream)
{
long erc, i, j;

 erc = ReadBytes (stream, ptr, size*nobj, &i);
 if (erc < 2)
 j = i/size; /* number of objects of size */
 else
 j = 0; /* nothing! */
 return (j);
}

/********** fwrite ***************************************
* writes nobjects of nsize to stream from ptr.
**/

long fwrite(char *ptr, long size, long nobj, FILE *stream)
{
long erc, i, j;

 erc = WriteBytes (stream, ptr, size*nobj, &i);
 if (!erc)
 j = i/size; /* number of objects of size */
 else {
 error_num = erc;
 j = 0; /* nothing! */
 }
 return (j);
}

/******************* End of FileIO.c **************/

String.c implements the supported string functions. Listing 29.3 provides a good
example of how to use an assembly language interface with MMURTL.

Listing 29.3 - Standard String Functions for MMURTL

/**
* The most commonly used string functions

MMURTL V1.0 Page 663 of 667

* are contained in this libarary source file.
* strcmp strncmp strcpy strncpy, strlen,
* strncat, strchr
*/

long strcmp(char *str1, char *str2)
{
;
#asm
 MOV ESI,[EBP+12]
 MOV EDI,[EBP+8]
strcmp0:
 MOV AL,[ESI]
 CMP AL,BYTE PTR [EDI]
 JG strcmp1
 JL strcmp2
 CMP AL, 0
 JE strcmp3
 INC DI
 INC SI
 JMP SHORT strcmp0
strcmp1:
 MOV EAX, 1
 JMP SHORT strcmp4
strcmp2:
 MOV EAX, -1
 JMP SHORT strcmp4
strcmp3:
 XOR EAX,EAX
strcmp4:

#endasm
}

/* same as strcmp except only compares up
 to set length */

long strncmp(char *str1, char *str2, long n)
{
;
#asm
 MOV ESI,[EBP+16] ;str1
 MOV EDI,[EBP+12] ;str2
 MOV ECX,[EBP+8] ;n
strncmp0:
 CMP ECX, 0 ;Equal so far?
 JE strncmp3 ;Yes, we’re done
 DEC ECX ;One less
 MOV AL,[ESI] ;
 CMP AL,BYTE PTR [EDI]
 JG strncmp1
 JL strncmp2
 CMP AL, 0 ;End of String?
 JE strncmp3 ;Equal up to here!
 INC EDI ;Next chars
 INC ESI
 JMP SHORT strncmp0 ;Back again

MMURTL V1.0 Page 664 of 667

strncmp1:
 MOV EAX, 1
 JMP SHORT strncmp4
strncmp2:
 MOV EAX, -1
 JMP SHORT strncmp4
strncmp3:
 XOR EAX,EAX
strncmp4:

#endasm
}

/* strcpy - String Copy ct to s */
/* including null, return s */

char *strcpy(char *s, char *ct)
{
;
#asm
 MOV EDI,[EBP+12] ;destination s
 MOV ESI,[EBP+8] ;source ct
 CLD
strcpy0:
 MOVSB
 CMP BYTE PTR [ESI], 0
 JNZ strcpy0
 MOV EAX,[EBP+12] ;return s
#endasm
}

/* strncpy - String Copy ct to s */
/* upto max of n chars, pad with */
/* nulls if s < ct, return s */

char *strncpy(char *s, char *ct, long n)
{
;
#asm
 MOV EDI,[EBP+16] ;destination *s
 MOV ESI,[EBP+12] ;source *ct
 MOV ECX,[EBP+8] ;max mov n
 CLD
strncpy0:
 CMP ECX, 0 ;End yet??
 JE strncpy2 ;Yes
 DEC ECX ;One less
 MOVSB ;Move it
 CMP BYTE PTR [ESI], 0 ;End of Source?
 JNZ strncpy0 ;No, go back
strncpy1:
 CMP ECX,0
 JE strncpy2
 INC EDI
 MOV BYTE PTR [EDI], 0
 DEC ECX
 JMP SHORT strncpy1

MMURTL V1.0 Page 665 of 667

strncpy2:
 MOV EAX,[EBP+16]

#endasm
}

long strlen(char *cs)
{
;
#asm
 XOR EAX, EAX
 MOV ESI,[EBP+8]
_strlen0:
 CMP BYTE PTR [ESI],0
 JE _strlen1
 INC ESI
 INC EAX
 JMP SHORT _strlen0
_strlen1:
#endasm
}

char *strncat(char *s, char *ct, long n)
{
;
#asm
 MOV EDI,[EBP+16] ;destination *s
 MOV ESI,[EBP+12] ;source *ct
 MOV ECX,[EBP+8] ;max mov n
 CLD
strncat00: ;get to end of s
 CMP BYTE PTR [EDI], 0
 JE strncat0
 INC EDI
 JMP SHORT strncat00
strncat0:
 CMP ECX, 0 ;End yet??
 JE strncat2 ;Yes
 DEC ECX ;One less
 MOVSB ;Move it
 CMP BYTE PTR [ESI], 0 ;End of Source?
 JNZ strncat0 ;No, go back
strncat1:
 CMP ECX,0
 JE strncat2
 INC EDI
 MOV BYTE PTR [EDI], 0
 DEC ECX
 JMP SHORT strncat1
strncat2:
 MOV EAX,[EBP+16] ;Return s

#endasm
}

char *strcat(char *s, char *ct)
{

MMURTL V1.0 Page 666 of 667

;
#asm
 MOV EDI,[EBP+12] ;destination *s
 MOV ESI,[EBP+8] ;source *ct
 CLD
strcat0: ;get to end of s
 CMP BYTE PTR [EDI], 0
 JE strcat1
 INC EDI
 JMP SHORT strcat0
strcat1:
 MOVSB ;Move it
 CMP BYTE PTR [ESI], 0 ;End of Source?
 JNZ strcat1 ;No, go back for more
 MOVSB ;Yes, Null terminte
 MOV EAX,[EBP+12] ;Return s
#endasm
}

/****************** strchr *******************/
/* Find first occurence of ’chr’ in ’string’ */

char *strchr(char *string, char chr)
{
 do
 if(*string == chr)
 return string;
 while(*string++);
 return 0;
}

MMURTL V1.0 Page 667 of 667

THE END

	Chapter 1, Introduction
	Overview
	What This Book Is About
	Who Should Use This Book
	My Basic Design Goals (yours may vary)
	A Brief Description of MMURTL
	Uses for MMURTL
	Similarities to Other Operating Systems
	Hardware Requirements

	Chapter 2, General Discussion and Background
	Where Does One Begin?
	You Are Where You Were When
	The Development Platform and the Tools
	The Chicken and the Egg
	Early Hardware Investigation
	The Real Task at Hand (Pun intended)
	A Starting Point
	The Critical Path
	Working Attitude

	Chapter 3, The Tasking Model
	Terms We Should Agree On
	TASK
	KERNEL
	PREEMPTIVE MULTITASKING

	Resource Management
	Task Management
	Single vs. Multi User
	The Hardware State
	The Software State
	CPU Time
	Single Tasking
	Multitasking
	Cooperative Multitasking
	Preemptive Multitasking
	Task Scheduling
	Who, When, and How Long?
	Scheduling Techniques
	Time Slicing
	Simple Cooperative Queuing
	Prioritized Cooperative Scheduling
	Variable Time Slicing

	Other Scheduling Factors
	Mixed Scheduling Techniques
	Fully Time Sliced, Some Cooperation
	Time Sliced, More Cooperative
	Primarily Cooperative, Limited Time Slicing
	Primarily Cooperative, More Time Slicing

	The Tasking Model I Chose
	Interrupt Handling

	Chapter 4, Interprocess Communications
	Introduction
	Messaging and Tasks
	Synchronization
	Semaphores
	Pipes
	Messages
	Send and Wait
	Request()
	Respond()
	Link Blocks

	Reentrancy Issues
	Interrupt Latency
	Memory Management Issues

	Chapter 5, Memory Management
	Introduction
	Basic Terms
	Memory Model
	Simple Flat Memory
	Figure 5.1, Simple Flat Memory

	Paged Flat Memory
	Figure 5.2 - Paged Flat Memory

	Demand-Paged Flat Memory
	Figure 5.3 - Demand Paged Flat Memory

	Virtual Paged Memory
	Figure 5.4 - Virtual Paged Memory

	Demand Paged Virtual Memory
	Demand-Paged Memory Management
	Segmented Memory

	Memory Management
	Tracking Linear Memory Allocation
	Basic Memory Allocation Unit
	Linked List Management
	Memory Management With Tables
	Tracking Physical Memory
	Initialization of Memory Management
	Memory Protection
	An Intel Based Memory Management Implementation
	A Few More Words On Segmentation

	How MMURTL Uses Paging
	Page Tables (PTs)
	Page Directories (PDs)
	The Memory Map
	Table 5.1 - MMURTL Memory Map

	Page Directory Entries (PDEs)
	Table 5.2 Page Directory Example

	Allocation of Linear Memory
	Deallocation of Linear Memory
	Allocation of Physical Memory
	Loading Things Into Memory
	Messaging and Address Aliases
	Memory and Pointer Management for Messaging
	Summary of MMURTL Memory Management

	Chapter 6, Hardware Interface
	Hardware Isolation
	The CPU
	The Bus Structure
	Serial I/O
	Parallel I/O
	Block-Oriented Devices
	Keyboard
	Video
	Direct Memory Access (DMA)
	Timers
	Priority Interrupt Controller Unit (PICU)

	Chapter 7, OS Initialization
	Getting Booted
	Boot ROM
	The Boot Sector
	Operating System Boot Image
	Other Boot Options
	Basic Hardware Initialization
	Static Tables and Structures
	Initialization of Task Management
	Initialization of Memory
	Dynamic Tables and Structures

	Chapter 8, Programming Interfaces
	Application Programming Interface
	Documenting Your API
	Procedural Interfaces
	Calling Conventions

	Mechanical Details
	Portability Considerations
	Error Handling and Reporting
	Systems Programming Interface
	Internal Cooperation
	Device Driver Interfaces
	A Device-Driver Interface Example
	Announcing the Driver to the OS
	A Call to the driver

	Chapter 9, Application Programming
	Introduction
	Terminology
	Understanding 32-BIT Software
	Table 9.1 - Memory Alignment

	Operating System Calling Conventions
	Stack Usage
	Memory Management
	Table 9.2 - Basic Memory Map

	Operating System Protection
	Application Messaging
	Starting a New Thread
	Job Control Block
	Basic Keyboard
	Basic Video
	Table 9.3 - Foreground Colors (Low nibble)
	Table 9.4 - Background Colors (High nibble)

	Terminating Your Application
	Replacing Your Application

	Chapter 10, Systems Programming
	Introduction
	Writing Message-Based System Services
	Initializing Your System Service
	A Simple System Service Example
	Listing 10.1 - A System Service.

	The Request Block
	Items In the Request Block
	The Service Code
	Caller Information in a Request
	Asynchronous Services
	System Service Error Handling
	Writing Device Drivers
	Device Driver Theory
	Building Device Drivers
	How Callers Reach Your Driver
	Device Driver Setup and Installation
	System Resources For Device Drivers
	Interrupts
	Direct Memory Access Device (DMA)
	Timer Facilities

	Message Facilities for Device Drivers
	Detailed Device Interface Specification
	Device Control Block Setup and Use
	Table 10.1-. Device control block definition

	Standard Device Call Definitions
	DeviceOp Function Implementation
	DeviceStat Function Implementation
	DeviceInit Function Implementation

	Initializing Your Driver
	OS Functions for Device Drivers
	Standard Device Error Codes

	Chapter 11, The Monitor Program
	Introduction
	Active Job (Video & keyboard)
	Initial Jobs
	Listing 11.1. Sample Initial.Job file.

	Monitor Function Keys
	Table 11.1. Monitor Function Keys

	Monitor Program Theory
	Performance Monitoring
	Monitor Source Listing
	Listing 11.2.Monitor program source listing.

	Chapter 12, Debugger
	Introduction
	Using the Debugger
	Entering the Debugger
	Exiting the Debugger
	Debugger Display
	Debugger Function Keys

	Debugging Your Application
	Debugger Theory
	Table 12.1.Processor exceptions.

	Chapter 13, Keyboard Service
	Introduction
	Available Services
	Table 13.1.Available Keyboard Services
	Read Keyboard
	Notify On Global Keys
	Cancel Notify On Global Keys
	Assign Keyboard

	Key codes and Status
	Alpha-Numeric Key Values
	Table 13.2 - .Shift State Bits
	Lock-State Byte (third byte)
	Table 13.3 - Lock State Bits
	Numeric Pad Indicator

	Key Codes
	Table 13.4 - .Keys Values
	Function Strip Key Codes
	Table 13.5 - Function Key Strip Codes
	Numeric Pad Key Codes
	Table 13.6 - Numeric Pad Key Codes
	Cursor, Edit, and Special Pad Key Codes
	13.7.Additional Key Codes

	Your Keyboard Implementation

	Chapter 14, The File System Service
	Introduction
	File Specifications
	Network File Request Routing
	File Handles
	File Open Modes
	File Access Type
	Block Mode
	Stream Mode

	Logical File Address
	File System Requests
	Listing 14.1 - Openfile request in C
	Table 14.1 - File System Service Codes

	Procedural Interfaces
	Device Access Through the File System
	Table 14.2 - Device Stream Access

	File System Functions in Detail
	OpenFile
	CloseFile
	ReadBlock
	WriteBlock
	ReadBytes
	WriteBytes
	GetFileLFA
	SetFileLFA
	GetFileSize
	SetFileSize
	CreateFile
	RenameFile
	DeleteFile
	CreateDirectory
	DeleteDirectory
	GetDirSector

	File System Theory
	Internal File System Structures
	File Control Blocks
	File User Blocks
	FAT Buffers

	File Operations
	Read
	Write
	Close

	Chapter 15, API Specification
	Introduction
	Public Calls
	Parameters to Calls (Args)
	Table 15.1 - Size and Type Prefixes
	Table 15.2 - Additional Prefixes
	Table1 5.3 - Compound Prefixes

	Stack Conventions
	Calls Grouped by Functionality

	Alphabetical Call Listing
	AddCallGate
	AddIDTGate
	Alarm
	AliasMem
	AllocDMAPage
	AllocExch
	AllocOSPage
	AllocPage
	Beep
	Chain
	CheckMsg
	ClrScr
	Compare
	CompareNCS
	CopyData
	CopyDataR
	DeAliasMem
	DeAllocExch
	DeAllocPage
	DeviceInit
	DeviceOp
	DeviceStat
	DMASetUp
	EditLine
	EndOfIRQ
	ExitJob
	FillData
	GetCmdLine
	GetCMOSTime
	GetCMOSDate
	GetDMACount
	GetExitJob
	GetIRQVector
	GetJobNum
	GetNormVid
	GetPath
	GetPhyAdd
	GetpJCB
	GetSysIn
	GetSysOut
	GetTimerTick
	GetTSSExch
	GetUserName
	GetVidChar
	GetVidOwner
	GetXY
	InByte
	InDWord
	InWord
	InWords
	InitDevDr
	ISendMsg
	KillAlarm
	LoadNewJob
	MaskIRQ
	MicroDelay
	MoveRequest
	NewTask
	OutByte
	OutDWord
	OutWord
	OutWords
	PutVidAttrs
	PutVidChars
	QueryPages
	ReadCMOS
	ReadKbd
	RegisterSvc
	Request
	Respond
	ScrollVid
	SendMsg
	SetCmdLine
	SetExitJob
	SetIRQVector
	Table 15.4 - Hardware IRQs

	SetJobName
	SetNormVid
	SetPath
	SetPriority
	SetSysIn
	SetSysOut
	SetUserName
	SetVidOwner
	SetXY
	Sleep
	SpawnTask
	Tone
	TTYOut
	UnMaskIRQ
	UnRegisterSvc
	WaitMsg

	Chapter 16, MMURTL Sample Software
	Introduction
	Command Line Interpreter (CLI)
	Internal Commands
	Cls (Clear Screen)
	Copy (Copy a file)
	Dir (Directory listing)
	Debug (Enter Debugger)
	Del (Delete a File)
	Dump (Hex dump of a file)
	Exit (Exit the CLI)
	Help (List internal commands)
	Monitor (Return to Monitor)
	MD (Make Directory)
	Path (Set file access path)
	RD (Remove Directory)
	Rename (Rename a file)
	Run (Execute a .RUN file)
	Type (View a text file on the screen)

	External Commands
	Commands.CLI File
	Global "Hot Keys"

	CLI Source Listing
	Listing 16.1.CLI Source Code Listing Ver. 1.0.

	A Simple Editor
	Editor Screen
	Editor Commands
	Table 16.1 - File Management and General Commands
	Table 16.2 - Cursor and Screen Management Commands
	Listing 16.2.Editor Source Code.

	DumbTerm
	Listing 16.3 - DumbTerm source code.

	Print
	Listing 16.4.Print source code.

	System Service Example
	Service.C Listing
	Listing 16.5 - Simple Service Source Code.

	TestSvc.C Listing
	Listing 16.6 - TestSvc.C.

	Chapter 17, Introduction to the Source Code
	Comments In the Code
	Calling Conventions
	Organization
	Building MMURTL
	Listing 17.1 – Assembler Template File

	Using Pieces of MMURTL in Your OS
	Using Pieces of MMURTL in Other Projects

	Chapter 18, The Kernel
	Introduction
	Naming Conventions

	Kernel Data
	Listing 18.1.Kernel data segment source.

	Local Kernel Helper Functions
	enQueueMsg
	Listing 18.2.Queueing for messages at an exchange.

	deQueueMsg
	Listing 18.3.De-queueing a message from an exchange.

	deQueueTSS
	Listing 18.4.De-queueing a task from an exchange.

	enQueueRdy
	Listing 18.5.Adding a task to the ready queue.

	deQueueRdy
	Listing 18.6.De-queueing the highest priority task.

	ChkRdyQ
	Listing 18.7.Finding the highest priority task

	Internal Public Helper Functions
	RemoveRdyJob
	Listing 18.8.Removing a terminated task from the ready queue.

	GetExchOwner
	Listing 18.9.Finding the owner of an exchange.

	SetExchOwner
	Listing 18.10.Changing the owner of an exchange.

	SendAbort
	Listing 18.11.Notifying services of a job’s demise.

	Public Kernel Functions
	Request()
	Listing 18.12.Request kernel primitive code.

	Respond()
	Listing 18.13.Respond kernel primitive code.

	MoveRequest()
	Listing 18.14, MoveRequest kernel primitive code.

	SendMsg()
	Listing 18.15.SendMsg kernel primitive code.

	ISendMsg()
	Listing 18.16.IsendMsg kernel primitive code.

	WaitMsg()
	Listing 18.17.WaitMsg kernel primitive code.

	CheckMsg()
	Listing 18.18 -CheckMsg kernel primitive code.

	NewTask()
	Listing 18.19.NewTaskkernel primitive code.

	SpawnTask()
	Listing 18.20.SpawnTask kernel primitive code

	AllocExch()
	Listing 18.21.Allocate exchange code

	DeAllocExch()
	Listing 18.22.Deallocate exchange code

	GetTSSExch()
	Listing 18.23.GetTSS exchange code.

	SetPriority()
	Listing 18.24.Set priority code.

	GetPriority()
	Listing 18.25.Get priority code.

	Chapter 19, Memory Management Code
	Introduction
	Memory Management Data
	Listing 19.1.Memory management constants and data

	Internal Code
	InitMemMgmt
	Listing 19.2.Memory management initialization code
	Listing 19.3.Continuation of memory management init.
	Listing 19.4.Continuation of memory management init.
	Listing 19.5.Turning on paged memory management
	Listing 19.6.Allocation of memory management exchange.
	Listing 19.7.Finishing memory management initi.

	FindHiPage
	Listing 19.8.Find highest physical page code.

	FindLoPage
	Listing 19.9.Find lowest physical page code.

	MarkPage
	Listing 19.10.Code to mark a physical page in use.

	UnMarkPage
	Listing 19.11.Code to free a physical page ofr reuse.

	LinToPhy
	Listing 19.12.Code to convert linear to physical addresses.

	FindRun
	Listing 19.13.Code to find a free run of linear memory

	AddRun
	Listing 19.14.Adding a run of linear memory.

	AddAliasRun
	Listing 19.15.Adding an aliased run of linear memory.

	AddUserPT
	Listing 19.16.Adding a page table for user memory

	AddOSPT
	Listing 19.17.Adding an operating system page table.

	Public Memory Management Calls
	AddGDTCallGate
	Listing 19.18.Adding a call gate to the GDT.

	AddIDTGate
	Listing 19.19.Adding entries to the IDT.

	AllocOSPage
	Listing 19.20.Allocating a page of linear memory.

	AliasMem
	Listing 19.21.Code to alias memory.

	DeAliasMem
	Listing 19.22.Code to remove alias PTEs.

	DeAllocPage
	Listing 19.23.Deallocating linear memory.

	QueryMemPages
	Listing 19.24.Code to find number of free pages

	GetPhyAdd
	Listing 19.25.Public for linear to physical conversion.

	Chapter 20, Timer Management Source Code
	Introduction
	Choosing a Standard Interval
	Listing 20.1.Loop in timer ISR

	Timer Data
	Listing 20.2 - Data and constants for timer code

	Timer Code
	Listing 20.3 - External functions for timer code
	The Timer Interrupt
	Listing 20.4 - The timer interrupt service routine

	Sleep()
	Listing 20.5 - Code for the Sleep function

	Alarm()
	Listing 20.6 - Code for the Alarm function

	KillAlarm()
	Listing 20.7 - Code for the KillAlarm function

	MicroDelay()
	Listing 20.8 - Code for the MicrDelay function

	GetCMOSTime()
	Listing 20.9.Code to read the CMOS time

	GetCMOSDate()
	Listing 20.10 - Code to read the CMOS date

	GetTimerTick()
	Listing 20.11.Code to return the timer tick

	Beep_Work()
	Listing 20.12.Helper function for Beep() and Tone()

	Beep()
	Listing 20.13.Code to produce a beep.

	Tone()
	Listing 20.14 - Code to produce a tone

	Chapter 21, Initialization Code
	Introduction
	OS Global Data
	Listing 21.1 - Main Operating System Data

	Operating System Entry Point
	Listing 21.2 - OS Initialization Code and Entry Point
	Listing 21.3.Continuation of OS initialization.
	Listing 21.4.Continuation of OS initialization
	Listing 21.5 - End of Initialization Code

	Initialization Helpers
	Listing 21.6 - Initialization Subroutines
	Listing 21.7 - Initialize call gates amd the IDT

	Chapter 22, Job Management Code
	Introduction
	Reclamation of Resources
	Job Management Helpers
	Listing 22.1 - Job Management Subroutines

	Job Management Listing
	Listing 22.2 – Jobc.c Source code

	Chapter 23, Debugger Code
	Introduction
	Debugger Interrupt Procedure
	Listing 23.1 - Exception Handlers for Entering Debugger

	Debugger Source Listing
	Listing 23.2 – Debugger Data and Code

	Chapter 24, Selected Device Driver Code
	Introduction
	IDE Disk Device Driver
	Listing 24.1 - IDE Device Driver Data (Defines and Externs)
	Listing 24.2 - Continuation of IDE Driver Data (protos and defines)
	Listing 24.3 - Continuation of IDE Driver Data (data structures)
	Listing 24.4 - IDE Device Driver Code (Initialization)
	Listing 24.5 - Continuation of IDE Driver Code (code)
	Listing 24.6 - Continuation of IDE Driver Code (Device Interface)

	The RS-232 Asynchronous Device Driver
	Listing 24.7 - RS-232.h Header File
	Listing 24.8 - RS-232 Device Driver Code (defines and externs)
	Listing 24.9 - RS-232 Device Driver Code Continued (Register bits)
	Listing 24.10 - RS-232 Device Driver Code Continued (status record)
	Listing 24.11 - RS-232 Device Driver Code Continued (DCB)
	Listing 24.12 - RS-232 Device Driver Code Continued (DCB Init)
	Listing 24.13 - RS-232 Device Driver Code Continued (ISR and code)
	Listing 24.14 - RS-232 Device Driver Code Continued (Interface)

	Chapter 25, Keyboard Source Code
	Introduction
	Keyboard Data
	Listing 25.1 - Keyboard Data and Tables

	Keyboard Code
	Keyboard ISR
	Listing 25.2 - Keyboard ISR Code

	Keyboard Translation
	Listing 25.3 - Keyboard Translation Code

	Reading the Final Buffer
	Listing 25.4.Read Keyboard Buffer Code

	The Keyboard Service
	Listing 25.5.Keyboard system service code.

	Keyboard Procedural Interface
	Listing 25.6 - Code for Blocking Read Keyboard Call

	Debugger Keyboard
	Listing 25.7 - Debugger Read Keyboard Code

	Keyboard Hardware Set Up
	Listing 25.8 - Code to Initialize the Keyboard Hardware

	Keyboard Service Initialization
	Listing 25.9 - Keyboard Service Initialization

	Hardware Helpers
	Listing 25.10 - Low-level Keyboard Control Code

	Chapter 26, Video Code
	Introduction
	Virtual Video Concept
	VGA Text Video
	The Video Code
	Listing 26.1.Video constants and data
	Listing 26.2 - Code to Initialize Video
	Listing 26.3 - Code to Set the Video Owner.
	Listing 26.4 - Code to set Normal Video Attribute.
	Listing 26.5 - Code to get the Normal Video Attribute
	Listing 26.6 - Code to Get the Current Video Owner
	Listing 26.7 - Code to Clear the Screen
	Listing 26.8 - Code for TTY Stream Output to Screen.
	Listing 26.9.Code to Screen Video Attributes
	Listing 26.10 - Code to Place Video chars Anywhere on the Screen
	Listing 26.11.Code to Get a Character and Attribute.
	Listing 26.12.Code to Scroll an Area of the Screen
	Listing 26.13 - Support Code to Set Hardware Cursor Position.
	Listing 26.14.Code to Set Cursor Position
	Listing 26.15.Code to Return Current Cursor Position
	Listing 26.16 - Code to Edit a Line on the Screen

	Relating MMURTL’s Video Code to Your Operating System

	Chapter 27, File System Code
	Introduction
	How MMURTL Handles FAT
	Physical (Absolute) Sector Numbers
	Hidden Sectors
	Logical Block Address (LBA)
	MS-DOS Boot Sector
	File System Initialization

	File System Listing
	Listing 27.1 - MS-DOS FAT-Compatible File System Code

	Chapter 28, DASM; A 32-Bit Intel-Based Assembler
	Introduction
	DASM Concepts
	Using DASM
	Application Template File
	Listing 28.1 - Simple Application Template File
	Listing 28.2 - A More Complicated Template File

	Command Line Options
	List File Option
	Errors Only Option
	Dynamic Link Libraries
	Device Drivers

	DASM Source Files
	Local (Non-Public) Declarations

	Memory Model
	DASM Program Structure
	Listing 28.3 - Alternating data and code in a template file

	DOT Commands
	DASM versus DOS Assemblers
	DASM Addressing Modes
	Table 28.1 - .Specifying Memory Operands

	Storage Declarations
	DB (Define Byte)
	DW (Define Word)
	DD (Define Double Word)
	DF (Define Far Word)

	DASM Peculiar Syntax
	PUBLIC Declarations
	EXTRN Declarations
	Labels and Address
	Segment and Instruction Prefixes
	CALL and JUMP Addresses

	386 Instruction Set
	Table 28.2 - Supported Instructions

	Executable File Format
	Table 28.3 - Tag Usage
	Tag Descriptions

	Error Codes from DASM
	Your Own Assembler?

	Chapter 29, CM32; A 32-Bit C Compiler
	Introduction
	Memory Usage and Addressing
	Important Internal Differences
	Variable Length Argument Lists

	CM32 Language Specifics
	FAR Calls
	Interrupt Functions
	Supported C Language Features
	Library Header File Access
	Limitations (compared to ANSI)
	Structure Limitations

	Far External Functions
	Type Conversion and Pointers
	Initialization of Static Variables
	Other Implementation Dependent Information

	Using CM32
	Command Line Options
	Library Functions
	Listing 29.1 - Supported Library Functions

	Library Code Examples
	Listing 29.2 - Standard file I/O for MMURTL
	Listing 29.3 - Standard String Functions for MMURTL

