
 

 

 D

 

D
Digital Edi

addition

Click t
b

V

igita
tions of s
 to and co

he icon to
books for 

Visit our w

al E
 

elected In
omplemen

 

o access i
Develope

website at w

Editi
ntel Press
nt the prin

nformatio
ers and IT

 
www.intel.

on  
 books ar

nted books

on on othe
T Professio

com/intelp

re in 
s. 

 
er essentia
onals  

press 

 

al 



Beyond BIOS
Developing with the Unified Extensible 
Firmware Interface

Second Edition

Vincent Zimmer
Michael Rothman
Suresh Marisetty



Copyright © 2010 Intel Corporation. All rights reserved.  
ISBN 13 978-1-934053-29-4 
 
This publication is designed to provide accurate and authoritative information in regard to the 
subject matter covered. It is sold with the understanding that the publisher is not engaged in 
professional services. If professional advice or other expert assistance is required, the services 
of a competent professional person should be sought.  
 
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other 
intellectual property rights that relate to the presented subject matter. The furnishing of documents and 
other materials and information does not provide any license, express or implied, by estoppel or 
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.   
 
Intel may make changes to specifications, product descriptions, and plans at any time, without notice.  
 
Fictitious names of companies, products, people, characters, and/or data mentioned herein are not 
intended to represent any real individual, company, product, or event.  
 
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety 
systems, or in nuclear facility applications.  
 
Intel, the Intel logo, Celeron, Intel Centrino, Intel NetBurst, Intel Xeon, Itanium, Pentium, MMX,  and 
VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United 
States and other countries.  
 
† Other names and brands may be claimed as the property of others.  

 

This book is printed on acid-free paper.  

 
Publisher: Richard Bowles 
Editor: David J. Clark 
Program Manager: Stuart Douglas 
Text Design & Composition: InfoPros 
Graphic Art: Ted Cyrek (cover) InfoPros (illustrations) 
 
Library of Congress Cataloging in Publication Data: 
 
10 9 8 7 6 5 4 3 2 1 
First printing, November 2010 
 



To my wife Jan, and my daughters Ally and Zoe, without whose love this 
book would not have been possible. To my parents Stanley and Joann, and 
my sister Natalie, who have helped me on my journey through life.
—Vincent Zimmer

To my wife Sandi for having infinite patience in allowing me to find
the “spare” time for this endeavor, and to my sons Ryan and Aaron
who keep me grounded in what life is really about.
—Mike Rothman

To my very supporting spouse Anitha, my son Ketan and daughter Manisha 
for being the source of inspiration in my life.
—Suresh Marisetty



 v

Contents
Contents v

Foreword to the First Edition xi

Foreword to the Second Edition xv

Preface xix

Chapter 1 Introduction 1
Terminology 5

A Short History of EFI 6

EFI Becomes UEFI—The UEFI Forum 7

PIWG and USWG 10

Platform Trust/Security 14

Embedded Systems: The New Challenge 17

Summary 19

Chapter 2 Basic UEFI Architecture 21
Objects Managed by UEFI-based Firmware 22

UEFI System Table 22

Handle Database 23

Protocols 26

Working with Protocols 30

Tag GUID 31



vi  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

UEFI Images 31

Events and Task Priority Levels 37

Summary 41

Chapter 3 UEFI Driver Model 43
Why a Driver Model Prior to OS Booting? 44

Driver Initialization 44

Host Bus Controllers 46

Device Drivers 48

Bus Drivers 50

Platform Components 52

Hot Plug Events 53

Additional Innovations 63

Summary 67

Chapter 4 Protocols You Should Know 69
EFI OS Loaders 71

Device Path and Image Information of the OS Loader 74

Accessing Files in the Device Path of the OS Loader 75

Finding the OS Partition 76

Getting the Current System Configuration 77

Getting the Current Memory Map 78

Getting Environment Variables 79

Transitioning to an OS Kernel 80

Summary 81

Chapter 5 UEFI Runtime 83
Isn’t There Only One Kind of Memory? 85

How Are Runtime Services Exposed? 88

Time Services 89

Virtual Memory Services 92

Variable Services 94

Miscellaneous Services 98

Summary 101



 Contents  n  vii

Chapter 6 UEFI Console Services 103
Simple Text Input Protocol 106

Simple Text Input Ex Protocol 109

Simple Text Output Protocol 110

Remote Console Support 113

Console Splitter 116

Network Consoles 118

Summary 120

Chapter 7 Different Types of Platforms 121
Summary 138

Chapter 8 DXE Basics: Core, Dispatching,  
and Drivers 139
DXE Core 141

Global Coherency Domain Services 152

DXE Dispatcher 157

DXE Drivers 162

Boot Device Selection (BDS) Phase 163

Summary 166

Chapter 9 Some Common UEFI and  
PI Functions 167
Architectural Protocol Examples 168

PCI Protocols 177

Block I/O 188

Disk I/O 190

Simple File System 192

Configuration Infrastructure 194

Using the Configuration Infrastructure 196

Driver Model Interactions 197

Provisioning the Platform 201

Summary 203



viii  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Chapter 10 Platform Security and Trust 205
Trust Overview 206

Trusted Platform Module (TPM) and Measured Boot 209

UEFI Secure Boot 221

UEFI Executable Verification 222

UEFI Networking 224

UEFI User Identification (UID) 227

Hardware Evolution: SRTM-to-DRTM 228

Platform Manufacturer 229

Vulnerability Classification 231

Roots of Trust/Guards 232

Summary 232

Chapter 11 Boot Device Selection  235
Firmware Boot Manager 238

Globally-Defined Variables 242

Default Behavior for Boot Option Variables 245

Boot Mechanisms 246

Summary 248

Chapter 12 Boot Flows 249
Defined Boot Modes 250

Priority of Boot Paths 251

Reset Boot Paths 253

Normal Boot Paths 254

Recovery Paths 257

Special Boot Path Topics 259

Architectural Boot Mode PPIs 264

Recovery 265

Summary 266

Chapter 13 Pre-EFI Initialization (PEI) 267
Scope 268

Rationale 268



 Contents  n  ix

Phase Prerequisites 273

Concepts 274

Operation 279

Summary 289

Chapter 14 Putting It All Together—Firmware 
Emulation  291
Virtual Platform 292

Hardware Pass-Through 300

Summary 302

Chapter 15 Reducing Platform Boot Times  303
Proof of Concept 308

Marketing Requirements 309

Additional Details 315

Summary 320

Chapter 16 Embedded Boot Solution 323
CE Device Landscape 324

CE Device Boot Challenges 325

In-Vehicle Infotainment 328

Other Embedded Platforms 331

Generic Requirements 332

Boot Strategies 335

Power Management 337

Boot Storage Devices 337

Security 340

Manageability 344

Summary 345

Chapter 17 Manageability 347
Overall Management Framework 348

UEFI Error Format Standardization 351

Windows Hardware Error Architecture and the Role of UEFI 358



x  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN 364

The UEFI/IPMI/Intel® AMT/WS-MAN Bridge 370

Summary 372

Data Types 373

Status Codes 377

Index 381



 Foreword to the  First Edition  n  xi

Foreword to the  
First Edition

Beyond BIOS. Those two words began to circulate through the elite firmware 
architects and developers in the industry standard computing circle around 
1998, when Intel, Microsoft, HP and a number of other companies began to 
lay out the plan for bringing up the first Intel® Itanium® systems. The plan was 
originally called IBI, the Intel Boot Initiative. Mainstream PCs had been using 
BIOS ever since the beginning of the IBM PC. Its drawbacks and limitations 
were magnified in the “big iron” machines based on the Itanium processors. 
For example, BIOS depends on many of the PC-AT hardware such as the 8254 
timer and 8259 interrupt controller, which were not designed to scale to larger 
servers like the HP Integrity Superdome† servers. Worse, BIOS assumes a 1MB 
execution memory limit and has very limited memory space to execute the 
Option ROMs on the add-in cards. BIOS’ 16-bit nature stifles the platform 
advancement for Itanium systems that are 64-bit based.

There have been non-BIOS solutions in the more proprietary vertical 
integrated systems design, such as Open Firmware used by IBM Power†, SUN 
SPARC†, and Apple PowerPC†; ARCS† by DEC Alpha, and PDC/IODC† by 
HP PA-RISC. Open Firmware is Forth-based, it is difficult to find the talent, 
and its specifications have not kept up with the evolution of the technology. 
ARCS lacks the driver model to support add-in cards. With BIOS hitting the 
wall and no clear alternative that can be brought into the industry standard 
arena, Intel spearheaded the IBI, which at this stage is named Extensible 
Firmware Interface (EFI), to reflect objective of the effort. EFI brought 
the modern computer software architectural concepts into firmware. EFI 
enables firmware development in high-level languages like C, provides proper 



xii  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

abstraction of hardware, and enables extensibility through the GUID concept. 
The benefits of EFI were so convincing that Microsoft and the industry made 
it the only boot mechanism for the Itanium-based systems.

Now that the IA-32 processors are also extended to 64-bit via Intel® 64, the 
industry is working on Unified EFI (UEFI) as the standard pre-boot firmware 
infrastructure going forward. Intel also spearheaded the effort on the Intel 
Platform Innovation Framework for EFI (Framework). The Framework is 
Intel’s implementation of EFI, and it is also the starting point for the industry 
to define the Platform Initialization (PI) specifications that establish the 
firmware internal interface architecture as well as firmware-to-silicon interfaces 
that enable silicon driver modularity and interoperability. With Framework’s 
implementation of UEFI and PI, Intel has completed the task of replacing 
BIOS, thus enabling the industry to move beyond BIOS.

This book is a landmark in the development of the UEFI and PI firmware. 
It couples a powerful, modern firmware infrastructure with a unique look 
into the mind of a few UEFI/PI architects who have made the Framework 
implementation into reality and as a reference. It’s accessible to the student 
in firmware development, yet conveys a deep technical understanding of the 
UEFI/PI architecture and the Framework implementation. It covers all major 
areas of the Framework implementation that the firmware developers need to 
understand. Using this book along with the EFI Development Kit (EDK) code 
on the TianoCore.org open source project would be an excellent tutorial for 
the firmware engineers to move beyond BIOS.

Vincent Zimmer has been running the PI Working Group meetings and 
Michael Rothman has been running the UEFI Specification Working Group 
meetings, helping the Chair of both groups, Mark Doran. Vincent has also 
been very involved in the Trusted Computing Group, defining security related 
extensions for EFI. Michael Rothman and Robert Hale are also the lead forces 
in the development of the Human Interface Infrastructure coming up in the 
next generation of the UEFI Specification. These authors are some of the elite 
EFI architects who have helped bring the dream of moving beyond BIOS into 
reality, thus among the best possible teachers of this subject matter.

This book is for you if you’d like to understand the UEFI/PI architecture and 
the Framework implementation; that is, to understand how to move beyond 
BIOS. It gives you all the technical background to understand Bill Gates’ 
WINHEC 2006 Keynote Speech when he said: “There are changes across the 
board, in terms of how hardware and software work together. If we think about 



 Foreword to the First Edition  n  xiii

boot, we’re finally moving away from the old BIOS to this unified extensible 
firmware interface, and that gives us new flexibility and capability, and it’s 
got a rich API set to build on, so many of you are working with us on that.” 
For any student in this field, this book provides an important bridge between 
normative specifications and the informative details of the development. 

Today, Itanium-based systems are no longer the only machines supporting 
EFI. All the Intel®-based Apple Mac† systems are supporting EFI. Systems 
based on Intel® 64 IA-32 processors are also in the process of supporting 
UEFI. Embedded systems are also making use of the UEFI/PI architecture in 
its specialized environment. Operating systems, such as Windows†, Linux†, 
HP-UX†, Open VMS, FreeBSD, and so on are already EFI-based on Itanium-
based systems. Windows, Linux and OS-X† are in the process of supporting 
UEFI on Intel® 64 IA-32 processor-based systems. Currently OS-X already 
supports EFI on the IA-32 processor-based Mac systems.

This book is the first to describe in detail the Framework implementation 
of UEFI and PI architecture. I am very pleased to recommend this new must-
read to you who may have been living in the BIOS world for so long to see the 
life beyond BIOS as envisioned by Bill Gates. I also recommend that readers 
take full advantage of the open source TianoCore.org. Sample code is worth a 
thousand words. The EDK is a great companion for the book.

Dong Wei
Vice President and Chief Executive, the Unified Forum
HP Distinguished Technologist
Granite Bay, California
June 18, 2006



xiv  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 Foreword to the  Second Edition  n  xv

Foreword to the  
Second Edition

One weekend this summer in the Silicon Valley, I was at a party hosted by 
an executive from a hard disk drive manufacturer. Many of the people there 
are in the computer industry. Inevitably the conversations were around the 
hot topics in the industry, most notably cloud computing. While people were 
busy explaining what they know about the cloud and all the $aaS (everything 
as a service), the executive declared that he would be happy as long as cloud 
means more demands for the storage capacity. He said his company is ready to 
ship hard disk drives with 3 TB, but he claims that the industry is not entirely 
ready to support these storage devices. The room went quiet. Not all the people 
there understood what he was talking about, but all wanted to know why the 
industry that is seemingly able to support all the grandiose concepts human 
beings can think of has difficulty handling this seemingly easy task. What he 
said next excited me. 

“Beyond BIOS.” The executive spoke of these two words. My moment 
came to explain to the crowd the root of the problem. It is amazing to see 
the ah-hah moment when they see the definition of the Master Boot Record 
(MBR) that we have been using to boot a PC from a hard disk drive since the 
dawn of PC. It allows for partition size of up to 2 TiB (or 2.2 TB), assuming 
today’s 512-byte sector size. “How come our high-paying architects have not 
solved this simple problem?” one asked. I told them that a solution based on the 
Unified Extensible Firmware Interface (UEFI) GUID-Partition Table (GPT) 
disk format has been in existence for over a decade now (support for GPT disks 
is available for all Itanium-based systems) and Windows† has supported GPT 
data disks since Windows XP and GPT boot disks since Windows Vista SP1 



xvi  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

on x64. “Then why are we not entirely ready and how do we get the industry 
entirely ready?” asked another. The best approach is to have all the computers 
support the UEFI boot from GPT format hard disk drives! I mentioned this 
book to the crowd. The crowd started to get the terms, UEFI, GPT…

Time is ripe for the second edition of this book. Tremendous progresses 
have been made since the publication of the first edition more than four 
years ago. Time went by fast. It would have been hard to believe then, but 
the majority of the x64 systems are now based on the UEFI technology (even 
though some may not have exposed the UEFI boot interface). Many vendors 
spearheaded the support for the UEFI boot on their systems, among them, 
Apple iMac†, HP commercial notebooks, IBM System X† servers and Dell 
PowerEdge† servers. The UEFI Forum has also defined support for many new 
UEFI interfaces including network boot over IPv6, ARM† processor binding, 
security enhancements, human interface infrastructure enhancements, 
and so on. In addition, the UEFI Forum also evolved what was known as 
“Framework” to Platform Initialization (PI) to define the phases of control from 
the platform reset into the UEFI environment and to establish the firmware 
internal interface architecture as well as firmware-to-silicon interfaces that 
enable silicon driver modularity and interoperability. The resulting modularity 
made PI the preferred implementation of UEFI. In the mean time, the open 
source implementation of UEFI has gone through some changes. With the 
evolution of Framework to PI, EFI Development Kit (EDK) II was introduced 
to better realize the modularity and reuse. EDK II also contains the ARM and 
Itanium port, in addition to the x64 port. Going forward, it is foreseeable that 
EDK II will become the common converged firmware infrastructure across 
the compute continuum. More recently, Intel named a release of EDK II as 
UDK2010. It signifies that there is a UEFI Development Kit now matching 
the UEFI Specifications as of January 2010 (namely UEFI v2.3 and PI v1.2). 
As a matter of fact, IBM System X servers as well as HP Superdome† 2 and 
Integrity† servers have been leading the way in transitioning to EDK II and are 
in the process of updating to UDK2010 as we speak. This is the perfect time 
to update the book.

This book is for you if you’d like to understand the UEFI/PI architecture; 
that is, to understand how to move beyond BIOS. This book provides an 
important bridge between normative specifications and the informative details 
of the development. Now it has been updated to match the latest UEFI 
Specifications and the EDK II codebase along with its UDK2010 release. I 
am very pleased to recommend this new must-read to you, and please take 
full advantage of the open source EDK II code base hosted by SourceForge. 



 Foreword to the Second Edition  n  xvii

EDK II is a great companion of this book. This book is a landmark in the 
development of the UEFI and PI firmware. It couples a powerful, modern 
firmware infrastructure with a unique look into the mind of a few UEFI/PI 
architects. 

Vincent Zimmer and Michael Rothman were the original authors I 
introduced; they continue to be the driving forces behind UEFI and PI 
Specifications and significantly contributed to the update of this book. For 
example, Vincent, as the chair of the UEFI Networking Sub-team, took the 
lead to work with the Internet Engineering Task Force (IETF) to define the 
network boot over IPv6, as the IPv4 addresses run out. Michael, as the chair 
of the UEFI Shell Sub-team, led the effort for the standardization of the UEFI 
Shell. Suresh Marisetty is a new author but he is anything but new to this 
field. He worked on Itanium machine check code and subsequently Windows 
Hardware Error Architecture (WHEA), and most recently has been involved 
with the end-to-end boot solution for the embedded market.

The move beyond BIOS to UEFI/PI brings many benefits. GPT formatted 
hard disk drives allow for partition size of up to 8 ZiB (or 9.4 TB), assuming 
today’s 512-byte sector size, and can support more than 4 partitions. 64-
bit code architecture removed the 1 MB and 4 GB execution memory limit 
associated with BIOS, along with the 192 KB limited memory space for the 
boot drivers on the add-in cards. Adapter vendors are enabled to easily add 
functions. The time has come for the computers to support UEFI boot. A 
Compatibility Support Module (CSM) can still be provided on a UEFI system 
to support booting the legacy operating systems, but its role is fading, so the 
authors have decided to leave it out of this second edition. Moving UEFI/PI 
to the embedded market is promising, in addition to the natural application to 
the systems based on the x64 embedded processors such as Intel Atom†. EDK 
II has been ported to ARM BeagleBoard as a reference, Apple devices and HP 
printers are already using the UEFI technology—obviously the opportunities 
there are endless. Let’s now embrace the UEFI/PI technology fully and explore 
what more value-add features will be possible on the horizon. FaaS (firmware 
as a service), anyone?

Dong Wei
Vice President (Chief Executive), the UEFI Forum
Secretary, the ACPI SIG
Chair, The PCI SIG Firmware WG



xviii  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 Preface  n  xix

Preface
There are two mistakes one can make on the road to truth…not going all the 
way, and not starting.

— Buddha

This is a book about a new way to solve an old set of problems that are persistent 
as well as fundamental, but not always well understood: How should you boot 
a computer? What sits at the reset vector? What can the operating system count 
on when it is loaded and initially receives control? What should the internal 
structures be between these two endpoints? How can the same basic structure 
work for handhelds and megaservers? How do we convince ourselves today’s 
design will work 10 or 20 years from now? How much will it cost to switch? 
How much will it cost steady state? What comes after BIOS (Basic Input/
Output System)?

Beyond BIOS is a book about a largely invisible subject. The general user, if 
they have any view of BIOS at all, tends to view it as ten unnecessary seconds 
on the way to booting the operating system or as setup. The community that 
knows and uses the BIOS has tended to view it as an uncontrolled place of 
kludge, myth, bug, and legend. The very small community of BIOS developers 
has viewed their code not only as highly mutable and embodying much of the 
compatibility that has made the PC and its offspring so successful, but also as 
their livelihood.

This is a book that is about what comes after BIOS, which we call the 
Unified Extensible Firmware Interface (UEFI) and Platform Initialization (PI). 
In doing so, it must also be a book at least partly about what a BIOS or its 
replacement is called upon to do. It is not a cookbook on how to port the PI 
from platform to platform. It is not a rehash of the specifications. Instead, it 



xx  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

tries to fit in the middle ground between specifications and cookbook. It tries 
to focus on the concepts and constructs that are cross-platform and implied, 
if not stated, by the architecture. It is supposed to help to get to some of the 
“why” behind the specs and make the porting work make some sense.

This book is a child of its time. Both the UEFI and the PI are under 
the control of the UEFI Forum, an industry-wide group in which you are 
encouraged to participate. Beyond BIOS mainly focuses on the current state 
of the PI and UEFI since the 2005 formation of the Forum, its working 
groups, and its sub-teams. This is not to say that this is only a history book or 
a simple summary of the standard. Instead, we believe it remains valuable as 
an introduction to the newer versions of the specifications no matter who “has 
the pen.”

The Chapters

Chapter 1 provides a description of the evolution.
This rest of the book is organized into two major sections. The earlier 

chapters present an introduction to UEFI, and the later chapters cover the 
Platform Initialization.

Chapter 2 provides an overview of the basic UEFI architecture. This is 
a must-read for anyone seeking an understanding of the Unified Extensible 
Firmware Interface (UEFI).

Chapter 3 describes the UEFI driver model. This is important for vendors 
writing device drivers for output devices (such as video), input devices (such 
as keyboards or mice), networking adapters, and block devices. These drivers 
can be stored in the host-bus adapter, the platform ROM, or loaded from the 
UEFI system partition.

Chapter 4 describes of series of commonly used UEFI protocols. This 
chapter complements the earlier two chapters and includes data on additional 
boot services application interfaces.

Chapter 5 includes information on the UEFI runtime operational 
environment. This chapter is important for operating system vendors who 
need to interact with the platform during the operating system execution.

Chapter 6 describes UEFI input and output console services. This chapter 
provides details on the particular capabilities, interfaces, and relationships of 
the console services.

Chapter 7 includes a list of different platforms and the Platform 
Initialization-based implementations. This chapter demonstrates the flexibility 



 Preface  n  xxi

of the Platform Initialization by mapping the infrastructure to widely varying 
hardware platforms.

Chapter 8 describes the basics of the Platform Initialization Driver 
Execution Environment (DXE). This is important to read for anyone working 
on the phase of execution prior to UEFI service availability but after early Pre-
EFI initialization (PEI). 

Chapter 9 describes some common UEFI interfaces. This chapter includes 
information on interfaces that are important for both UEFI and DXE 
development.

Chapter 10 describes UEFI and platform initialization issues around 
security and platform trust. This is important because beyond the basic UEFI 
and Platform Initialization specifications, which describe mechanism, further 
discussion is included on composition and construction of technology. 

Chapter 11 describes Boot Device Selection (BDS). This includes the 
policy by which Framework platforms decide look-and-feel, in addition to how 
to boot.

Chapter 12 describes the various boot flows that can occur within a 
platform. These include power-event restarts, and so on.

Chapter 13 describes the Pre-EFI Initialization environment. This is 
the phase of execution that occurs after reset and is responsible for the early 
hardware state and memory initialization.

Chapter 14 includes information on emulation of a firmware environment 
within an operating system.

Chapter 15 describes mechanisms and capabilities for reducing platform 
boot time. Since “visible” firmware is often broken firmware, decreasing time 
for a system restart is key.

Chapter 16 describes the application of firmware for an embedded boot 
solution. The bulk of shipping systems are embedded computing environments, 
so the use of UEFI and Platform Initialization for this class of system is 
becoming more important.

Chapter 17 includes details on manageability. The platform and firmware 
play a pivotal role in both bare-metal, OS-absent scenarios and also as a 
complement to OS runtime manageability usages.

The Appendixes include source code data types and commonly-used 
interfaces.



xxii  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Acknowledgements 

The authors recognize the efforts and contribution of the two men and a dog: 
Mark Doran, Ken Reneris, and Andrew Fish, who conceived and hatched EFI. 

The authors recognize and thank the other original Framework (Tiano) 
architects Andrew Fish, Bob Hale, Mike Kinney, Barnes Cooper, Will Stevens, 
Krithivas, ER Uber, Mahesh Natu, Rahul Khanna, Jim Ewertz, Kirk Brannock, 
and others whose names are lost to time and the team’s intrepid leader, Mark 
Doran. We thank Isaac Oram, John Lambino, and the entire Tiano Architecture 
Team (TAT) team for fleshing out and enhancing the architecture. Thank you 
to the Tiano engineering team for their patience while implementing the first 
versions and to our internal and external customers. The innovation in this 
book is from these fertile brains. Also, many of this team will recall over ten 
years of “design discussions” at R&R.

We thank our managers, past and present, for giving us the chance and the 
time to work on the architecture and this book including Doug Fisher, Richard 
Wirt, Stu Goossen, Mike Richmond, Kah Loh, Jeff Griffen, Michael Greene, 
Ju Lu, and Ron Story. 

We acknowledge the ever-supportive marketing team: Shala, Laurie, Harry, 
Fadi, Elmer, and Bailey.

No Intel Press book is published without peer review. We’d like to thank 
all the reviewers for identifying errors and for providing valuable insight 
and encouragement along the way. Without their help, this book would not 
have been a success. From Intel, these individuals participated, at one time 
or another, in the review of this project: Rob Branch, Mallik Bulusu, Brad 
Davis, Michael Krau, John Suresh Kumar, Matthew Parrish, Mike Richmond, 
Lee Rosenbaum, and Sudhakar Otturu. Other reviewers included Cameron 
Esfahani from Apple Computer Corporation, Todd Greene from QLogic 
Corporation, Penny Huang from MicroStar International Company, Limited, 
Jimmy Hwang from American Megatrends, Incorporated, and Dong Wei from 
Hewlett-Packard Development Company, L.P.

A book like this describes the efforts of a large number of talented 
individuals. The authors would like to thank all of them for their efforts and 
support. Please accept our apologies if we missed you. We can only say that 
space is as limited here as it is in ROMs and time as limited here as it is in 
schedules. We’ll try to fix it in the next release.



 Preface  n  xxiii

Finally, we’d like to thank the team from Intel Press. Stuart Douglas was 
the content architect for this project—his steady guidance and ability to find 
resources as we needed them kept this book on track. David Clark was the 
editor on the project, and helped take our engineering prose and turn it into 
a real book. 

 



xxiv  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 1

Chapter 1
Introduction

The suddenness of the leap from hardware to software cannot but produce a 
period of anarchy and collapse, especially in the developed countries.

—Marshall McLuhan

This chapter provides an overview of the evolution of the Extensible 
Firmware Interface (EFI) to the Unified Extensible Firmware Interface 

(UEFI) and from the Intel Framework specifications to the UEFI Platform 
Initialization (PI) specifications. Note the omission of the word “Framework” 
from the title of the present volume. Some of the changes that have occurred 
since the first edition of this book include the migration of much of the Intel 
Framework specification content into the five volumes of the UEFI Platform 
Initialization (PI) specifications, which are presently at revision 1.2 and can 
be found at the Web site www.uefi.org. In addition to the PI evolution from 
Framework, additional capabilities have evolved in both the PI building-
block specifications and in the UEFI specification. The UEFI specification 
itself has evolved to revision 2.3 in the time since the first edition of this text, 
as well.

When we discuss UEFI, we need to emphasize that UEFI is a pure 
interface specification that does not dictate how the platform firmware is 
built; the “how” is relegated to PI. The consumers of UEFI include but are 
not limited to operating system loaders, installers, adapter ROMs from boot 
devices, pre-OS diagnostics, utilities, and OS runtimes (for the small set of 
UEFI runtime services). In general, though, UEFI is about booting, or passing 
control to a successive layer of control, namely an operating system loader, as 
shown in Figure 1.1. UEFI offers many interesting capabilities and can exist 



2  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

as a limited runtime for some application set, in lieu of loading a full, shrink-
wrapped multi-address space operating system like Microsoft Windows†, Apple 
OS X†, HP-UX†, or Linux, but that is not the primary design goal. 

Pre
Verifier 

PEI
Core 

CPU
Init 

Chipset
Init

Board
Init

Architectural
Protocols

OS-Absent
App

Transient OS
Environment

EFI Driver
Dispatcher

Boot
Manager

EFI/UEFI
Interfaces

Components Covered by EFI & UEFI

Verify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre EFI
Initialization

(PEI) 

Driver Execution
Environment

(DXE) 

Boot Dev
Select
(BDS) 

UEFI & OS
Loader

Handshake 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [....OS Boot....] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

Pre
Verifier

PEI
Core

CPU
Init

Chipset
Init

Board
Init

Architectural
Protocols

EFI Driver
Dispatcher

Verify

Security
(SEC)

Pre EFI
Initialization

(PEI)

Driver Execution
Environment

(DXE) 

Boot Dev
Select
(BDS) 

Not
Covered

by EFI or UEFI

Figure 1.1 Where EFI and UEFI Fit into the Platform Boot Flow

PI, on the other hand, should be largely opaque to the pre-OS boot 
devices, operating systems, and their loaders since it covers many software 
aspects of platform construction that are irrelevant to those consumers. PI 
instead describes the phases of control from the platform reset and into the 
success phase of operation, including an environment compatible with UEFI, 
as shown in Figure 1.2. In fact, the PI DXE component is the preferred UEFI 
core implementation. 



  Chapter 1:  Introduction  n  3

 

Pre
Verifier 

PEI
Core 

CPU
Init 

Chipset
Init

Board
Init

Architectural
Protocols

OS-Absent
App

Transient OS
Environment

EFI Driver
Dispatcher

Boot
Manager

EFI/UEFI
Interfaces

Components Covered
by Framework & PI

Verify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre EFI
Initialization

(PEI) 

Driver Execution
Environment

(DXE) 

Boot Dev
Select
(BDS) 

UEFI & OS
Loader

Handshake 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [....OS Boot....] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

OS-Absent
App

Transient OS
Environment

Boot
Manager

EFI/UEFI
Interfaces

Device,
Bus, or
Service
Driver

UEFI & OS
Loader

Handshake 
Runtime

(RT) 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

Not
Covered

by EFI or UEFI

Figure 1.2 Where PI and Framework Fit into the Platform Boot Flow

Within the evolution of Framework to PI, some things were omitted from 
inclusion in the PI specifications. As a result of these omissions, some subjects 
that were discussed in the first edition of Beyond BIOS, such as the compatibility 
support module (CSM), have been removed from the second edition in order 
to provide space to describe the newer PI and UEFI capabilities. This omission 
is both from a scope perspective, namely that the PI specification didn’t want to 
codify or include the CSM, but also from a long-term perspective. Specifically, 
the CSM specification abstracted booting on a PC/AT system. This requires 
an x86 processor, PC/AT hardware complex (for example, 8254, 8259, RTC). 
The CSM also inherited other conventional BIOS boot limitations, such as 
the 2.2-TB disk limit of Master Boot Record (MBR) partition tables. For a 
world of PI and UEFI, you get all of the x86 capabilities (IA-32 and x64, 



4  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

respectively), ARM†, Itanium®, and future CPU bindings. Also, via the polled 
driver model design, UEFI APIs, and the PI DXE architectural protocols, the 
platform and component hardware details are abstracted from all consumer 
software. Other minor omissions also include data hub support. The latter 
has been replaced by purpose-built infrastructure to fill the role of data hub 
in Framework-based implementations, such as SMBIOS table creation and 
agents to log report status code actions.

What has happened in PI beyond Framework, though, includes the 
addition of a multiprocessor protocol, Itanium E-SAL and MCA support, the 
above-listed report-status code listener and SMBIOS protocol, an ACPI editing 
protocol, and an SIO protocol. With Framework collateral that moved to PI, a 
significant update was made to the System Management Mode (SMM) protocol 
and infrastructure to abstract out various CPU and chipset implementations 
from the more generic components. On the DXE front, small cleanup was 
added in consideration of UEFI 2.3 incompatibility. Some additions occurred 
in the PEI foundation for the latest evolution in buses, such as PCI Express†. In 
all of these cases, the revisions of the SMM, PEI, and DXE service tables were 
adjusted to ease migration of any SMM drivers, DXE drivers, and PEI module 
(PEIM) sources to PI. In the case of the firmware file system and volumes, 
the headers were expanded to comprehend larger file and alternate file system 
encodings, respectively. Unlike the case for SMM drivers, PEIMs, and DXE 
drivers, these present a new binary encoding that isn’t compatible with a pure 
Framework implementation. 

The notable aspect of the PI is the participation of the various members of 
the UEFI Forum, which will be described below. These participants represent 
the consumers and producers of PI technology. The ultimate consumer of a 
PI component is the vendor shipping a system board, including multinational 
companies such as Apple, Dell, HP, IBM, Lenovo, and many others. The 
producers of PI components include generic infrastructure producers such as 
the independent BIOS vendors (IBVs) like AMI, Insyde, Phoenix, and others. 
And finally, the vendors producing chipsets, CPUs, and other hardware devices 
like AMD, ARM, and Intel would produce drivers for their respective hardware. 
The IBVs and the OEMs would use the silicon drivers, for example. If it were 
not for this business-to-business transaction, the discoverable binary interfaces 
and separate executable modules (such as PEIMs and DXE drivers) would 
not be of interest. This is especially true since publishing GUID-based APIs, 
marshalling interfaces, discovering and dispatching code, and so on take some 



  Chapter 1:  Introduction  n  5

overhead in system board ROM storage and boot time. Given that there’s never 
enough ROM space, and also in light of the customer requirements for boot-
time such as the need to be “instantly on,” this overhead must be balanced by 
the business value of PI module enabling. If only one vendor had access to all of 
the source and intellectual property to construct a platform, a statically bound 
implementation would be more efficient, for example. But in the twenty-first 
century with the various hardware and software participants in the computing 
industry, software technology such as PI is key to getting business done in light 
of the ever-shrinking resource and time-to-market constraints facing all of the 
UEFI forum members.

There is a large body of Framework-based source-code implementations, 
such as those derived or dependent upon EDK I (EFI Developer Kit version 
1), which can be found on www.tianocore.org. These software artifacts can 
be recompiled into a UEFI 2.3, PI 1.2-compliant core, such as UDK2010 
(the UEFI Developer Kit revision 2010), via the EDK Compatibility Package 
(ECP). For new development, though, the recommendation is to build native 
PI 1.2, UEFI 2.3 modules in the UDK2010 since these are the specifications 
against which long-term silicon enabling and operating system support will 
occur, respectively.

Terminology
The following list provides a quick overview of some of the terms that may be 
encountered later in the book and have existed in the industry associated with 
the BIOS standardization efforts.

 n UEFI Forum. The industry body which produces UEFI, Platform 
Initialization (PI), and other specifications.

 n UEFI Specification. The firmware-OS interface specification.

 n EDK. The EFI Development Kit, an open sourced project that 
provides a basic implementation of UEFI, Framework, and other 
industry standards. It, is not however, a complete BIOS solution. An 
example of this can be found at www.tianocore.org.



6  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n UDK. The UEFI Development Kit is the second generation of 
the EDK (EDK II), which has added a variety of codebase related 
capabilities and enhancements. The inaugural UDK is UDK2010, 
with the number designating the instance of the release.

 n Framework. A deprecated term for a set of specifications that define 
interfaces and how various platform components work together. What 
this term referred to is now effectively replaced by the PI specifications.

 n Tiano. An obsolete codename for an Intel codebase that implemented 
the Framework specifications. 

A Short History of EFI
The Extensible Firmware interface (EFI) project was developed by Intel, 
with the initial specification released in 1999. At the time, it was designed 
as the means by which to boot Itanium-based systems. The original proposal 
for booting Itanium was the SAL (System Architectural Layer) SAL_PROC 
interface, with an encapsulation of the PC/AT BIOS registers as the arguments 
and parameters. Specifically, the means to access the disk in the SAL_PROC 
proposal was “SAL_PROC (0x13, 0x2, …)”, which is aligned with the PC/AT 
conventional BIOS call of “int13h.”

Given the opportunity to clean up the boot interface, various proposals 
were provided. These included but were not limited to Open Firmware and 
Advanced RISC Computing (ARC). Ultimately, though, EFI prevailed and its 
architecture-neutral interface was adopted.

The initial EFI specification included both an Itanium and IA-32 binding. 
EFI evolved from the EFI 1.02 interface into EFI1.10 in 2001. EFI1.10 
introduced the EFI Driver model. 

With the advent of 64-bit computing on IA-32 (for example, x64) and 
the industry’s need to have a commonly owned specification, the UEFI 2.0 
specification appeared in 2005. UEFI 2.0 is largely the same as EFI 1.0, but 
also included the modular networking stack APIs for IPv4 and the x64 binding.

In Figure 1.3 we illustrate the evolution of the BIOS from its legacy days 
through 2010.



  Chapter 1:  Introduction  n  7

 

2000 Intel® invented the Extensible
Firmware Interface (EFI) and
provided sample implementation
under free BSD terms.

2004 tianocore.org
Open source EFI community
launched.

2005 Unified EFI (UEFI)
Industry form, with 11 members,
was formed to standardize EFI.

2010 160 members and growing!
Major MNCs shipping; UEFI
platforms crossed 50% of IA worldwide
units: Microsoft* UEFI x64 support in
Server 2008, Vista* and Win7*; RedHat*
and Novell* OS support.

Pre-2000 All platforms BIOS were proprietary.

Figure 1.3 BIOS Evolution Timeline

EFI Becomes UEFI—The UEFI Forum
Regarding the UEFI Forum, there are various aspects to how it manages both 
the UEFI and PI specifications. Specifically, the UEFI forum is responsible for 
creating the UEFI and PI specifications. 

When the UEFI Forum first formed, a variety of factors and steps were part 
of the creation process of the first specification: 

 n The UEFI forum stakeholders agree on EFI direction

 n Industry commitment drives need for broader governance on 
specification

 n Intel and Microsoft contribute seed material for updated specification



8  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n EFI 1.10 components provide starting drafts

 n Intel agrees to contribute EFI test suite
As this had established the framework of the specification material that was 
produced which the industry used, the forum itself was formed with several 
thoughts in mind: 

 n The UEFI Forum is established as a Washington non-profit 
Corporation

 – Develops, promotes and manages evolution of Unified EFI 
Specification

 – Continue to drive low barrier for adoption

 n The Promoter members for the UEFI forum are:

 – AMD, AMI, Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, 
Microsoft, Phoenix

 n The UEFI Forum has a form of tiered Membership: 

 – Promoters, Contributors and Adopters
 – More information on the membership tiers can be found at: 

www.uefi.org 

 n The UEFI Forum has several work groups: 

 – Figure 1.4 illustrates the basic makeup of the forum and the 
corresponding roles.



  Chapter 1:  Introduction  n  9

 

How the Forum Works

UEFI Board 

USWG 

PIWG 

UTWG 

ICWG 

UCST 

UNST 

USST 

Publications/decisions
ratified by the board.

Each work group
approves/delivers

different content to 
the public.

Each sub-team
focuses on specific

topics and contributes
materials to the

work group.

Figure 1.4 Forum group hierarchy

 n Sub-teams are created in the main owning workgroup when a topic 
of sufficient depth requires a lot of discussion with interested parties 
or experts in a particular domain. These teams are collaborations 
amongst many companies who are responsible for addressing the topic 
in question and bringing back to the work-group either a response or 
material for purposes of inclusion in the main working specification. 
Some examples of sub-teams that have been created are as follows as 
of this book publication:

 – UCST – UEFI Configuration Sub-team
 ■ Chaired by Michael Rothman (Intel)
 ■ Responsible for all configuration related material and the 

team has been responsible for the creation of the UEFI 
configuration infrastructure commonly known as HII, 
which is in the UEFI Specification. 



10  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 – UNST – UEFI Networking Sub-team
 ■ Chaired by Vincent Zimmer (Intel)
 ■ Responsible for all network related material and the team 

has been responsible for the update/inclusion of the network 
related material in the UEFI specification, most notably the 
IPv6 network infrastructure.

 – USST – UEFI Security Sub-team
 ■ Chaired by Tim Lewis (Phoenix)
 ■ Responsible for all security related material and the team has 

been responsible for the added security infrastructure in the 
UEFI specification. 

PIWG and USWG
The Platform Initialization Working Group (PIWG) is the portion of the 
UEFI forum that defines the various specifications in the PI corpus. The UEFI 
Specification Working Group (USWG) is the group that evolves the main 
UEFI specification. Figure 1.5 illustrates the layers of the platform and what 
the scope that the USWG and PIWG cover.



  Chapter 1:  Introduction  n  11

OS Pre-boot
Tools 

UEFI Specification 

• UEFI Spec is about interfaces
  between Os, add-in driver, and
  system firmware 

PI
W

G
 S

co
pe

 “
H

” 

USWG
Scope 

- Operating systems and other high-level
  software should only interact with
  interfaces and services defined by the
  UEFI Specification 

• PIWG Specs relate to making
  UEFI implementations 

- Promote interoperability between firm-
  ware components providers
- All interfaces and services produced
  and consumed by firmware only 

Hardware 

Platform
Drivers 

Silicone
Component
Modules 

Framework 

Modular Components 
 

Figure 1.5 PI/UEFI layering

Over time, these specifications have evolved. Below we enumerate the recent 
history of specifications and the work associated with each:

 n UEFI 2.1

 – Roughly one year of Specification work
 ■ Builds on UEFI 2.0

 – New content area highlights:
 ■ Human Interface Infrastructure
 ■ Hardware Error Record Support
 ■ Authenticated Variable Support



12  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 ■ Simple Text Input Extensions
 ■ Absolute Pointer Support

 n UEFI 2.2

 – Follow-on material from existing 2.1 content
 ■ Backlog that needed more gestation time

 – Security/Integrity related enhancements
 ■ Provide service interfaces for UEFI drivers that want to 

operate with high integrity implementations of UEFI
 – Human Interface Infrastructure enhancements

 ■ Further enhancements pending to help interaction/
configuration of platforms with standards-based 
methodologies.

 – Networking
 ■ IPv6, PXE+, IPsec

 – Various other subject areas possible
 ■ More boot devices, more authentication support, more 

networking updates, etc.

 n UEFI2.3

 – ARM binding 
 – Firmware management protocol

To complement the layering picture in Figure 1.5, Figure 1.6 shows how the 
PI elements evolve into the UEFI. The left half of the diagram with SEC, 
PEI, and DXE are described by the PI specifications. BDS, UEFI+OS Loader 
handshake, and RT are the province of the UEFI specification.



  Chapter 1:  Introduction  n  13

Pre
Verifier 

PEI
Core 

CPU
Init 

Chipset
Init

Board
Init

Architectural
Protocols

OS-Absent
App

Transient OS
Environment

EFI Driver
Dispatcher

Boot
Manager

UEFI
Interfaces

Components Now Covered by UEFI & PI

Verify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre EFI
Initialization

(PEI) 

Driver Execution
Environment

(DXE) 

Boot Dev
Select
(BDS) 

UEFI & OS
Loader

Handshake 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [....OS Boot....] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

 

Figure 1.6 Where PI and Framework Fit into the Platform Boot Flow

In addition, as time has elapsed, the specifications have evolved. Figure 1.7 
is a time line for the specifications and the implementations associated with 
them.



14  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

EDK 1.04:
UEFI 2.1
PI 1.0 

All products, date, and programs are based on current expectations
and subject to change without notice.

*EDK II is Same Code Base as UDK2010

EDK 1.05:
UEFI 2.1+

PI 1.0 

EDK II*:
UEFI 2.1+

PI 1.0 

UDK2010:
UEFI 2.3+
PI 1.2+ 

EDK 1.01:
UEFI 2.0

UEFI 2.0 

PI 1.0 PI 1.1

Shell 2.0 Packaging 1.0

PI 1.2

UEFI 2.1 UEFI 2.2 UEFI 2.3 

2006 2007 2008 2009 2010

SCT UEFI
2.0 

SCT
PI 1.0

SCT UEFI
2.1 

Sp
ec

ifi
ca

tio
ns

Im
pl

em
en

ta
tio

n

http://uefi.org

Open Source

New 

 

Figure 1.7 Specification and Codebase Timeline

Platform Trust/Security
Recall that PI allowed for business-to-business engagements between 
component providers and system builders. UEFI, on the other hand, has a 
broader set of participants. These include the operating system vendors that 
built the OS installers and UEFI-based runtimes; BIOS vendors who provide 
UEFI implementations; platform manufacturers, such as multi-national 
corporations who ship UEFI-compliant boards; independent software vendors 
who create UEFI applications and diagnostics; independent hardware vendors 
who create drivers for their adapter cards; and platform owners, whether a 
home PC user or corporate IT, who must administer the UEFI-based system.



  Chapter 1:  Introduction  n  15

PI differs from UEFI in the sense that the PI components are delivered under 
the authority of the platform manufacturer and are not typically extensible by 
third parties. UEFI, on the other hand, has a mutable file system partition, boot 
variables, a driver load list, support of discoverable option ROMs in host-bus 
adapters (HBAs), and so on. As such, PI and UEFI offer different issues with 
respect to security. Chapter 10 treats this topic in more detail, but in general, 
the security dimension of the respective domains include the following: PI must 
ensure that the PI elements are only updateable by the platform manufacturer, 
recovery, and PI is a secure implementation of UEFI features, including security; 
UEFI provides infrastructure to authenticate the user, validate the source and 
integrity of UEFI executables, network authentication and transport security, 
audit (including hardware-based measured boot), and administrative controls 
across UEFI policy objects, including write-protected UEFI variables. 

A fusion of these security elements in a PI implementation is shown in 
Figure 1.8.



16  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

FV
R

ec
ov

er
y

FV M
ai

n

UEFI-OS 

MBR and
Option ROMs 

Legacy-OS 

BDS 

PEI 

SEC 

DXE 

Memory 

UEFI Secure Boot 

UEFI TCG Measurement 

Secure Firmware Update Measure FV Main

Phys Presence, SHA1

Signed Update / Content

SEC, PI Foundation

CPU South
Bridge

North
Bridge

Super I/O

LPC TPM

Signed
Loader 

Measurement
Log in ACPI
Memory 

S-CRTM 

Hardware

UEFI-OS Ldr
and Drivers 

Figure 1.8 Trusted UEFI/PI stack



  Chapter 1:  Introduction  n  17

Embedded Systems: The New Challenge
As the UEFI took off and became pervasive, a new challenge has been taking 
shape in the form of the PC platform evolution to take on the embedded 
devices, more specifically the consumer electronic devices, with a completely 
different set of requirements driven by user experience factors like instant 
power-on for various embedded operating systems. Many of these operating 
systems required customized firmware with OS-specific firmware interfaces 
and did not fit well into the PC firmware ecosystem model.

The challenge now is to make the embedded platform firmware have 
similar capabilities to the traditional model such as the being OS-agnostic, 
being scalable across different platform hardware, and being able to lessen the 
development time to port and to leverage the UEFI standards.

How the Boot Process Differs between a Normal Boot and an Optimized/
Embedded Boot

Figure 1.9 indicates that between the normal boot and an optimized boot, there 
are no design differences from a UEFI architecture point of view. Optimizing a 
platform’s performance does not mean that one has to violate any of the design 
specifications. It should also be noted that to comply with UEFI, one does not 
need to encompass all of the standard PC architecture, but instead the design 
can limit itself to the components that are necessary for the initialization of 
the platform itself. Chapter 2 in the UEFI 2.3 specification does enumerate the 
various components and conditions that comprise UEFI compliance.



18  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Normal Boot 

DXE + BDS Phase 
Discover all Drivers Available to the Platform.

Dispatch all Drivers Encountered. 

O/S Resume Vector 

Are We in an
S3 Boot Mode? 

PEI Phase 
Dispatch Various PEI Drivers. Pre-memory

Early Initialization, Microcode Patching,
and MTRR Programming.

Yes 

SEC Phase 
Pre-memory Early Initialization, Microcode

Patching, and MTRR Programming.

No 

Optimized Boot 

DXE + BDS Phase 
Discover the Drivers Available to the Platform.
Dispatch only the Minimal Drivers Required

to Boot the Target. 

O/S Resume Vector 

Are We in an
S3 Boot Mode? 

PEI Phase 
Dispatches Only Minimal PEI Drivers.

Pre-memory Early Initialization, Microcode
Patching, and MTRR Programming.

Yes 

SEC Phase 
Pre-memory Early Initialization, Microcode

Patching, and MTRR Programming.

No 

 

Figure 1.9 Architectural Boot Flow Comparison



  Chapter 1:  Introduction  n  19

Summary
We have provided some rationale in this chapter for the changes from Beyond 
BIOS: Implementing the Unified Extensible Firmware Interface with Intel’s 
Framework to Beyond BIOS: Developing with the Unified Extensible Firmware 
Interface. These elements include the industry members’ ownership and 
governance of the UEFI specification. Beyond this sea change, the chapter 
describes the migration of the Framework specifications to PI specification and 
the evolution of PI over the former Framework feature set. In addition, the 
section describes the evolution of the UEFI specification to UEFI 2.3 from 
the initial UEFI 2.0 matter in the first edition. Finally, some of the codebase 
technology to help realize implementations of this technology was discussed. 

So fasten your seat belt and dive into a journey through industry standard 
firmware.



20  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 21

Chapter 2
Basic UEFI 

 Architecture
I believe in standards. Everyone should have one.

—George Morrow

The Unified Extensible Firmware Interface (UEFI) describes a 
programmatic interface to the platform. The platform includes the 

motherboard, chipset, central processing unit (CPU), and other components. 
UEFI allows for pre-operating system (pre-OS) agents. Pre-OS agents 
are OS loaders, diagnostics, and other applications that the system needs 
for applications to execute and interoperate, including UEFI drivers and 
applications. UEFI represents a pure interface specification against which 
the drivers and applications interact, and this chapter highlights some of the 
architectural aspects of the interface. These architectural aspects include a set 
of objects and interfaces described by the UEFI Specification.

The cornerstones for understanding UEFI applications and drivers 
are several UEFI concepts that are defined in the UEFI 2.3 Specification. 
Assuming you are new to UEFI, the following introduction explains a few of 
the key UEFI concepts in a helpful framework to keep in mind as you study 
the specification:

 n Objects managed by UEFI-based firmware - used to manage system 
state, including I/O devices, memory, and events.



22  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n The UEFI System Table - the primary data structure with data 
information tables and function calls to interface with the systems.

 n Handle database and protocols - the means by which callable interfaces 
are registered.

 n UEFI images - the executable content format by which code is 
deployed.

 n Events - the means by which software can be signaled in response to 
some other activity.

 n Device paths - a data structure that describes the hardware location of 
an entity, such as the bus, spindle, partition, and file name of a UEFI 
image on a formatted disk.

Objects Managed by UEFI-based Firmware
Several different types of objects can be managed through the services provided 
by UEFI. Some UEFI drivers may need to access environment variables, but 
most do not. Rarely do UEFI drivers require the use of a monotonic counter, 
watchdog timer, or real-time clock. The UEFI System Table is the most 
important data structure, because it provides access to all UEFI-provided the 
services and to all the additional data structures that describe the configuration 
of the platform. 

UEFI System Table
The UEFI System Table is the most important data structure in UEFI. A pointer 
to the UEFI System Table is passed into each driver and application as part of 
its entry-point handoff. From this one data structure, a UEFI executable image 
can gain access to system configuration information and a rich collection of 
UEFI services that includes the following:

 n UEFI Boot Services



  Chapter 2:  Basic UEFI Architecture  n  23

 n UEFI Runtime Services

 n Protocol services
The UEFI Boot Services and UEFI Runtime Services are accessed through the 
UEFI Boot Services Table and the UEFI Runtime Services Table, respectively. 
Both of these tables are data fields in the UEFI System Table. The number and 
type of services that each table makes available is fixed for each revision of the 
UEFI specification. The UEFI Boot Services and UEFI Runtime Services are 
defined in the UEFI2.3 Specification. 

Protocol services are groups of related functions and data fields that are 
named by a Globally Unique Identifier (GUID), a 16-byte, statistically-
unique entity defined in Appendix A of the UEFI2.3 Specification. Typically, 
protocol services are used to provide software abstractions for devices such as 
consoles, disks, and networks, but they can be used to extend the number of 
generic services that are available in the platform. Protocols are the mechanism 
for extending the functionality of UEFI firmware over time. The UEFI 2.3 
Specification defines over 30 different protocols, and various implementations 
of UEFI firmware and UEFI drivers may produce additional protocols to 
extend the functionality of a platform.

Handle Database
The handle database is composed of objects called handles and protocols. Handles 
are a collection of one or more protocols, and protocols are data structures that 
are named by a GUID. The data structure for a protocol may be empty, may 
contain data fields, may contain services, or may contain both services and 
data fields. During UEFI initialization, the system firmware, UEFI drivers, 
and UEFI applications create handles and attach one or more protocols to the 
handles. Information in the handle database is global and can be accessed by 
any executable UEFI image.

The handle database is the central repository for the objects that are 
maintained by UEFI-based firmware. The handle database is a list of UEFI 
handles, and each UEFI handle is identified by a unique handle number that 
is maintained by the system firmware. A handle number provides a database 
“key” to an entry in the handle database. Each entry in the handle database 
is a collection of one or more protocols. The types of protocols, named by a 



24  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

GUID, that are attached to a UEFI handle determine the handle type. A UEFI 
handle may represent components such as the following:

 n Executable images such as UEFI drivers and UEFI applications

 n Devices such as network controllers and hard drive partitions

 n UEFI services such as UEFI Decompression and the EBC Virtual 
Machine

Figure 2.1 below shows a portion of the handle database. In addition to the 
handles and protocols, a list of objects is associated with each protocol. This list 
is used to track which agents are consuming which protocols. This information 
is critical to the operation of UEFI drivers, because this information is what 
allows UEFI drivers to be safely loaded, started, stopped, and unloaded without 
any resource conflicts. 



  Chapter 2:  Basic UEFI Architecture  n  25

 

First Handle 

Handle 

Handle 

GUID 
Protocol 
Interface 

GUID 
Protocol 
Interface 

GUID 
Protocol 
Interface 

GUID 
Protocol 
Interface 

GUID 
Protocol 
Interface 

Agent Handle 
Controller Handle 

Attributes 

Agent Handle 
Controller Handle 

Attributes 

Agent Handle 
Controller Handle 

Attributes 

Agent Handle 
Controller Handle 

Attributes 

Agent Handle 
Controller Handle 

Attributes 

Agent Handle 
Controller Handle 

Attributes 

Figure 2.1 Handle Database

Figure 2.2 shows the different types of handles that can be present in the 
handle database and the relationships between the various handle types. All 
handles reside in the same handle database and the types of protocols that 
are associated with each handle differentiate the handle type. Like file system 
handles in an operating system context, the handles are unique for the session, 
but the values can be arbitrary. Also, like the handle returned from an fopen 
function in a C library, the value does not necessarily serve a useful purpose in a 
different process or during a subsequent restart in the same process. The handle 
is just a transitory value to manage state.



26  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Handles 

Agent 
Handles 

Image 
Handles 

Driver Image 
Handles 

Driver 
Handles 

Service 
Handles 

Controller Handles 

Physical 
Controller 
Handles 

Virtual 
Controller 
Handles 

 

Figure 2.2 Handle Types

Protocols
The extensible nature of UEFI is built, to a large degree, around protocols. 
UEFI drivers are sometimes confused with UEFI protocols. Although they 
are closely related, they are distinctly different. A UEFI driver is an executable 
UEFI image that installs a variety of protocols of various handles to accomplish 
its job.

A UEFI protocol is a block of function pointers and data structures or APIs 
that have been defined by a specification. At a minimum, the specification 
must define a GUID. This number is the protocol’s real name; boot services like 
LocateProtocol uses this number to find his protocol in the handle database. 
The protocol often includes a set of procedures and/or data structures, called 



  Chapter 2:  Basic UEFI Architecture  n  27

the protocol interface structure. The following code sequence is an example of 
a protocol definition. Notice how it defines two function definitions and one 
data field.

Sample GUID
#define EFI_COMPONENT_NAME2_PROTOCOL_GUID \
{0x6a7a5cff, 0xe8d9, 0x4f70, 0xba, 0xda, 0x75, 0xab, 0x30, 

0x25, 0xce, 0x14}

Protocol Interface Structure
typedef struct _EFI_COMPONENT_NAME2_PROTOCOL {
 EFI_COMPONENT_NAME_GET_DRIVER_NAME
  GetDriverName;
 EFI_COMPONENT_NAME_GET_CONTROLLER_NAME
  GetControllerName;
 CHAR8
  *SupportedLanguages;
} EFI_COMPONENT_NAME2_PROTOCOL;

Figure 2.3 shows a single handle and protocol from the handle database 
that is produced by a UEFI driver. The protocol is composed of a GUID and 
a protocol interface structure. Many times, the UEFI driver that produces 
a protocol interface maintains additional private data fields. The protocol 
interface structure itself simply contains pointers to the protocol function. 
The protocol functions are actually contained within the UEFI driver. A UEFI 
driver might produce one protocol or many protocols depending on the driver’s 
complexity. 



28  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

First Handle 

Handle 

GUID 
Protocol Interface 

Function Pointer 1 
Function Pointer 2 

Private Data 
Access 

Device or 
Services 

Produced  
by Other  

EFI Drivers 

EFI Driver 
GUID 1 

Function 1 

Function 2 

GUID 2 

Figure 2.3 Construction of a Protocol

Not all protocols are defined in the UEFI2.3 Specification. The UEFI 
Developer Kit 2010 (UDK2010) includes many protocols that are not part of 
the UEFI 2.3 Specification. This project can be found at http://www.tianocore.
org. These protocols provide the wider range of functionality that might be 
needed in any particular implementation, but they are not defined in the 
UEFI 2.3 Specification because they do not present an external interface that is 
required to support booting an OS or writing a UEFI driver. The creation of 
new protocols is how UEFI-based systems can be extended over time as new 
devices, buses, and technologies are introduced. For example, some protocols 
that are in the EDK II but not in the UEFI2.3 Specification are: 

 n Varstore – interface to abstract storage of UEFI persistent binary 
objects



  Chapter 2:  Basic UEFI Architecture  n  29

 n ConIn – service to provide a character console input

 n ConOut – service to provide a character console output

 n StdErr – service to provide a character console output for error 
messaging

 n PrimaryConIn – the console input with primary view

 n VgaMiniPort – a service that provides Video Graphics Array output

 n UsbAtapi – a service to abstract block access on USB bus
The UEFI Application Toolkit also contains a number of UEFI protocols that 
may be found on some platforms, such as: 

 n PPP Daemon – Point-to-Point Protocol driver

 n Ramdisk – file system instance on a Random Access Memory buffer

 n TCP/IP – Transmission Control Protocol / Internet Protocol

 n The Trusted Computing Group interface and platform specification, 
such as:

 – EFI TCG Protocol – interaction with a Trusted Platform Module 
(TPM).

The OS loader and drivers should not depend on these types of protocols 
because they are not guaranteed to be present in every UEFI-compliant system. 
OS loaders and drivers should depend only on protocols that are defined in 
the UEFI2.3 Specification and protocols that are required by platform design 
guides such as Design Implementation Guide for 64-bit Server.

The extensible nature of UEFI allows the developers of each platform to 
design and add special protocols. Using these protocols, they can expand the 
capabilities of UEFI and provide access to proprietary devices and interfaces in 
congruity with the rest of the UEFI architecture.

Because a protocol is “named” by a GUID, no other protocols should have 
that same identification number. Care must be taken when creating a new 
protocol to define a new GUID for it. UEFI fundamentally assumes that a 



30  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

specific GUID exposes a specific protocol interface. Cutting and pasting an 
existing GUID or hand-modifying an existing GUID creates the opportunity 
for a duplicate GUID to be introduced. A system containing a duplicate GUID 
inadvertently could find the new protocol and think that it is another protocol, 
crashing the system as a result. For these types of bugs, finding the root cause 
is also very difficult. The GUID allows for naming APIs without having to 
worry about namespace collision. In systems such as PC/AT BIOS, services 
were added as an enumeration. For example, the venerable Int15h interface 
would pass the service type in AX. Since no central repository or specification 
managed the evolution of Int15h services, several vendors defined similar 
service numbers, thus making interoperability with operating systems and pre-
OS applications difficult. Through the judicious use of GUIDs to name APIs 
and an association to develop the specification, UEFI balances the need for 
API evolution with interoperability.

Working with Protocols
Any UEFI code can operate with protocols during boot time. However, after 
ExitBootServices() is called, the handle database is no longer available. 
Several UEFI boot time services work with UEFI protocols. 

Multiple Protocol Instances

A handle may have many protocols attached to it. However, it may have only 
one protocol of each type. In other words, a handle may not have more than 
one instance of the exact same protocol. Otherwise, it would make requests for 
a particular protocol on a handle nondeterministic.

However, drivers may create multiple instances of a particular protocol 
and attach each instance to a different handle. The PCI I/O Protocol fits this 
scenario, where the PCI bus driver installs a PCI I/O Protocol instance for 
each PCI device. Each instance of the PCI I/O Protocol is configured with data 
values that are unique to that PCI device, including the location and size of the 
UEFI Option ROM (OpROM) image.

Also, each driver can install customized versions of the same protocol 
as long as they do not use the same handle. For example, each UEFI driver 
installs the Component Name Protocol on its driver image handle, yet when 
the EFI_COMPONENT_NAME2_PROTOCOL.GetDriverName() 



  Chapter 2:  Basic UEFI Architecture  n  31

function is called, each handle returns the unique name of the driver that 
owns that image handle. The EFI_COMPONENT_NAME2_PROTOCOL.
GetDriverName() function on the USB bus driver handle returns “USB 
bus driver” for the English language, but on the PXE driver handle it returns 
“PXE base code driver.”

Tag GUID
A protocol may be nothing more than a GUID. In such cases, the GUID is 
called a tag GUID. Such protocols can serve useful purposes such as marking a 
device handle as special in some way or allowing other UEFI images to easily 
find the device handle by querying the system for the device handles with that 
protocol GUID attached. The EDKII uses the HOT_PLUG_DEVICE_GUID 
in this way to mark device handles that represent devices from a hot-plug bus 
such as USB.

UEFI Images
All UEFI images contain a PE/COFF header that defines the format of the 
executable code as required by the Microsoft Portable Executable and Common 
Object File Format Specification (Microsoft 2008). The target for this code 
can be an IA-32 processor, an Itanium® processor, x64, ARM, or a processor 
agnostic, generic EFI Byte Code (EBC). The header defines the processor type 
and the image type. Presently there are three processor types and the following 
three image types defined: 

 n UEFI applications – images that have their memory and state 
reclaimed upon exit.

 n UEFI Boot Service drivers – images that have their memory and state 
preserved throughout the pre-operating system flow. Their memory is 
reclaimed upon invocation of ExitBootServices() by the OS 
loader.

 n UEFI Runtime drivers – images whose memory and state persist 
throughout the evolution of the machine. These images coexist with 
and can be invoked by a UEFI-aware operating system.



32  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The value of the UEFI Image format is that various parties can create binary 
executables that interoperate. For example, the operating system loader for 
Microsoft Windows† and Linux for a UEFI-aware OS build is simply a UEFI 
application. In addition, third parties can create UEFI drivers to abstract their 
particular hardware, such as a networking interface host bus adapter (HBA) 
or other device. UEFI images are loaded and relocated into memory with the 
Boot Service gBS >LoadImage(). Several supported storage locations for 
UEFI images are available, including the following:

 n Expansion ROMs on a PCI card

 n System ROM or system flash

 n A media device such as a hard disk, floppy, CD-ROM, or DVD

 n A LAN boot server
In general, UEFI images are not compiled and linked at a specific address. 
Instead, the UEFI image contains relocation fix-ups so the UEFI image can be 
placed anywhere in system memory. The Boot Service gBS >LoadImage() 
does the following:

 n Allocates memory for the image being loaded

 n Automatically applies the relocation fix-ups to the image

 n Creates a new image handle in the handle database, which installs an 
instance of the EFI_LOADED_IMAGE_PROTOCOL

This instance of the EFI_LOADED_IMAGE_PROTOCOL contains 
information about the UEFI image that was loaded. Because this information 
is published in the handle database, it is available to all UEFI components.

After a UEFI image is loaded with gBS >LoadImage(), it can be started 
with a call to gBS >StartImage(). The header for a UEFI image contains 
the address of the entry point that is called by gBS >StartImage(). The 
entry point always receives the following two parameters:

 n The image handle of the UEFI image being started

 n A pointer to the UEFI System Table



  Chapter 2:  Basic UEFI Architecture  n  33

These two items allow the UEFI image to do the following:

 n Access all of the UEFI services that are available in the platform.

 n Retrieve information about where the UEFI image was loaded from 
and where in memory the image was placed. 

The operations that the UEFI image performs in its entry point vary depending 
on the type of UEFI image. Figure 2.4 shows the various UEFI image types 
and the relationships between the different levels of images.
 

EFI Images 

Drivers 

Service Drivers 

Initializing 
Drivers 

Root Bridge 
Drivers 

EFI 1.02 
Drivers 

EFI Driver Model Drivers 

Bus 
Drivers 

Hybrid 
Drivers 

Device 
Drivers 

Applications 

OS Loaders 

Figure 2.4 Image Types and Their Relationship to One Another



34  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 2.1 Description of Image Types

 Type of Image Description

Application A UEFI image of type EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION. 
This image is executed and automatically unloaded when the image exits 
or returns from its entry point.

OS loader A special type of application that normally does not return or exit. 
Instead, it calls the UEFI Boot Service gBS >ExitBootServices() to 
transfer control of the platform from the firmware to an operating system.

Driver A UEFI image of type  
EFI_IMAGE_SUBSYSTEM_BOOT_SERVICE_DRIVER or  
EFI_IMAGE_SUBSYSTEM_RUNTIME_DRIVER. If this image returns 
EFI_SUCCESS, then the image is not unloaded. If the image returns an 
error code other than EFI_SUCCESS, then the image is automatically 
unloaded from system memory. The ability to stay resident in system 
memory is what differentiates a driver from an application. Because 
drivers can stay resident in memory, they can provide services to other 
drivers, applications, or an operating system. Only the services produced 
by runtime drivers are allowed to persist past  
gBS >ExitBootServices().

Service driver A driver that produces one or more protocols on one or more new service 
handles and returns EFI_SUCCESS from its entry point.

Initializing driver A driver that does not create any handles and does not add any 
protocols to the handle database. Instead, this type of driver performs 
some initialization operations and returns an error code so the driver is 
unloaded from system memory.

Root bridge driver A driver that creates one or more physical controller handles that contain 
a Device Path Protocol and a protocol that is a software abstraction for 
the I/O services provided by a root bus produced by a core chipset. The 
most common root bridge driver is one that creates handles for the PCI 
root bridges in the platform that support the Device Path Protocol and the 
PCI Root Bridge I/O Protocol.

EFI 1.02 driver A driver that follows the EFI 1.02 Specification. This type of driver does 
not use the UEFI Driver Model. These types of drivers are not discussed in 
detail in this document. Instead, this document presents recommendations 
on converting EFI 1.02 drivers to drivers that follow the UEFI Driver 
Model.

UEFI Driver Model 
driver

A driver that follows the UEFI Driver Model that is described in detail in 
the UEFI 2.3 Specification. This type of driver is fundamentally different 
from service drivers, initializing drivers, root bridge drivers, and EFI 
1.02 drivers because a driver that follows the UEFI Driver Model is not 
allowed to touch hardware or produce device-related services in the 
driver entry point. Instead, the driver entry point of a driver that follows 
the UEFI Driver Model is allowed only to register a set of services that 
allow the driver to be started and stopped at a later point in the system 
initialization process.



  Chapter 2:  Basic UEFI Architecture  n  35

Device driver A driver that follows the UEFI Driver Model. This type of driver produces 
one or more driver handles or driver image handles by installing one or 
more instances of the Driver Binding Protocol into the handle database. 
This type of driver does not create any child handles when the Start() 
service of the Driver Binding Protocol is called. Instead, it only adds 
additional I/O protocols to existing controller handles.

Bus driver A driver that follows the UEFI Driver Model. This type of driver produces 
one or more driver handles or driver image handles by installing one or 
more instances of the Driver Binding Protocol in the handle database. This 
type of driver creates new child handles when the Start() service of 
the Driver Binding Protocol is called. It also adds I/O protocols to these 
newly created child handles.

Hybrid driver A driver that follows the UEFI Driver Model and shares characteristics 
with both device drivers and bus drivers. This distinction means that the 
Start() service of the Driver Binding Protocol will add I/O protocols to 
existing handles and it will create child handles.

Applications

A UEFI application starts execution at its entry point, then continues execution 
until it reaches a return from its entry point or it calls the Exit() boot service 
function. When done, the image is unloaded from memory. Some examples 
of common UEFI applications include the UEFI shell, UEFI shell commands, 
flash utilities, and diagnostic utilities. It is perfectly acceptable to invoke UEFI 
applications from inside other UEFI applications.

OS loader

A special type of UEFI application, called an OS boot loader, calls the 
ExitBootServices() function when the OS loader has set up enough of 
the OS infrastructure to be ready to assume ownership of the system resources. 
At ExitBootServices(), the UEFI core frees all of its boot time services 
and drivers, leaving only the run-time services and drivers.

Drivers

UEFI drivers differ from UEFI applications in that the driver stays resident in 
memory unless an error is returned from the driver’s entry point. The UEFI 
core firmware, the boot manager, or other UEFI applications may load drivers.



36  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

EFI 1.02 Drivers

Several types of UEFI drivers exist, having evolved with subsequent levels of the 
specification. In EFI 1.02, drivers were constructed without a defined driver 
model. The UEFI 2.3 Specification provides a driver model that replaces the way 
drivers were built in EFI 1.02 but that still maintains backward compatibility 
with EFI 1.02 drivers. EFI 1.02 immediately started the driver inside the entry 
point. Following this method meant that the driver searched immediately for 
supported devices, installed the necessary I/O protocols, and started the timers 
that were needed to poll the devices. However, this method did not give the 
system control over the driver loading and connection policies, so the UEFI 
Driver Model was introduced in Section 10.1 of the UEFI 2.3 Specification to 
resolve these issues.

The Floating-Point Software Assist (FPSWA) driver is a common example of 
an EFI 1.02 driver; other EFI 1.02 drivers can be found in the EFI Application 
Toolkit 1.02.12.38. For compatibility, EFI 1.02 drivers can be converted to 
UEFI 2.3 drivers that follow the UEFI Driver Model.

Boot Service and Runtime Drivers

Boot-time drivers are loaded into area of memory that are marked as 
EfiBootServicesCode, and the drivers allocate their data structures 
from memory marked as EfiBootServicesData. These memory types 
are converted to available memory after gBS >ExitBootServices() 
is called. 

Runtime drivers are loaded in memory marked as 
EfiRuntimeServicesCode, and they allocate their data structures from 
memory marked as EfiRuntimeServicesData. These types of memory 
are preserved after gBS >ExitBootServices() is called, thereby 
enabling the runtime driver to provide services to an operating system while 
the operating system is running. Runtime drivers must publish an alternative 
calling mechanism, because the UEFI handle database does not persist into 
OS runtime. The most common examples of UEFI runtime drivers are the 
Floating-Point Software Assist driver (FPSWA.efi) and the network Universal 
Network Driver Interface (UNDI) driver. Other than these examples, runtime 
drivers are not very common. In addition, the implementation and validation 
of runtime drivers is much more difficult than boot service drivers because 
UEFI supports the translation of run-time services and runtime drivers from a 



  Chapter 2:  Basic UEFI Architecture  n  37

physical addressing mode to a virtual addressing mode. With this translation, 
the operating system can make virtual calls to the runtime code. The OS 
typically runs in virtual mode, so it must transition into physical mode to make 
the call. Transitions into physical mode for modern, multiprocessor operating 
systems are expensive because they entail flushing translation look-up blocks 
(TLB), coordinating all CPUs, and other tasks. As such, UEFI runtime offers 
an efficient invocation mechanism because no transition is required.

Events and Task Priority Levels
Events are another type of object that is managed through UEFI services. An 
event can be created and destroyed, and an event can be either in the waiting 
state or the signaled state. A UEFI image can do any of the following:

 n Create an event.

 n Destroy an event.

 n Check to see if an event is in the signaled state.

 n Wait for an event to be in the signaled state. 

 n Request that an event be moved from the waiting state to the signaled 
state. 

Because UEFI does not support interrupts, it can present a challenge to driver 
writers who are accustomed to an interrupt-driven driver model. Instead, UEFI 
supports polled drivers. The most common use of events by a UEFI driver is 
the use of timer events that allow drivers to periodically poll a device. Figure 
2.5 shows the different types of events that are supported in UEFI and the 
relationships between those events. 



38  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Wait 
Events 

Signal 
Events 

Exit Boot 
Services 
Events 

Set Virtual 
Address Map 

Events 

Periodic 
Timer 
Events 

One-Shot 
Timer 
Events 

Timer 
Events 

Figure 2.5 Event Types and Relationships



  Chapter 2:  Basic UEFI Architecture  n  39

Table 2.2  Description of Event Types

Type of Events Description

Wait event An event whose notification function is executed whenever the event is 
checked or waited upon.

Signal event An event whose notification function is scheduled for execution whenever 
the event goes from the waiting state to the signaled state.

Exit Boot Services 
event

A special type of signal event that is moved from the waiting state to 
the signaled state when the UEFI Boot Service ExitBootServices() 
is called. This call is the point in time when ownership of the 
platform is transferred from the firmware to an operating system. 
The event’s notification function is scheduled for execution when 
ExitBootServices() is called.

Set Virtual Address 
Map event

A special type of signal event that is moved from the waiting 
state to the signaled state when the UEFI Runtime Service 
SetVirtualAddressMap() is called. This call is the point in 
time when the operating system is making a request for the runtime 
components of UEFI to be converted from a physical addressing mode 
to a virtual addressing mode. The operating system provides the map of 
virtual addresses to use. The event’s notification function is scheduled for 
execution when SetVirtualAddressMap() is called.

Timer event A type of signal event that is moved from the waiting state to the signaled 
state when at least a specified amount of time has elapsed. Both periodic 
and one-shot timers are supported. The event’s notification function is 
scheduled for execution when a specific amount of time has elapsed.

Periodic timer event A type of timer event that is moved from the waiting state to the signaled 
state at a specified frequency. The event’s notification function is 
scheduled for execution when a specific amount of time has elapsed.

One-shot timer  
event

A type of timer event that is moved from the waiting state to the signaled 
state after the specified timer period has elapsed. The event’s notification 
function is scheduled for execution when a specific amount of time has 
elapsed.

The following three elements are associated with every event: 

 n The Task Priority Level (TPL) of the event

 n A notification function

 n A notification context
The notification function for a wait event is executed when the state of the 
event is checked or when the event is being waited upon. The notification 



40  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

function of a signal event is executed whenever the event transitions from the 
waiting state to the signaled state. The notification context is passed into the 
notification function each time the notification function is executed. The TPL 
is the priority at which the notification function is executed. Table 2.3 lists the 
four TPL levels that are defined today. Additional TPLs could be added later. 
An example of a compatible addition to the TPL list could include a series of 
“Interrupt TPLs” between TPL_NOTIFY and TPL_HIGH_LEVEL in order 
to provide interrupt-driven I/O support within UEFI.

Table 2.3 Task Priority Levels Defined in UEFI

Task Priority Level Description

TPL_APPLICATION The priority level at which UEFI images are executed.

TPL_CALLBACK The priority level for most notification functions.

TPL_NOTIFY The priority level at which most I/O operations are performed.

TPL_HIGH_LEVEL The priority level for the one timer interrupt supported in UEFI.

TPLs serve the following two purposes: 

 n To define the priority in which notification functions are executed

 n To create locks
For priority definition, you use this mechanism only when more than one event 
is in the signaled state at the same time. In these cases, the application executes 
the notification function that has been registered with the higher priority first. 
Also, notification functions at higher priorities can interrupt the execution of 
notification functions executing at a lower priority.

For creating locks, code running in normal context and code in an interrupt 
context can access the same data structure because UEFI does support a single-
timer interrupt. This access can cause problems and unexpected results if the 
updates to a shared data structure are not atomic. A UEFI application or UEFI 
driver that wants to guarantee exclusive access to a shared data structure can 
temporarily raise the task priority level to prevent simultaneous access from 
both normal context and interrupt context. The application can create a lock 
by temporarily raising the task priority level to TPL_HIGH_LEVEL. This 
level blocks even the one-timer interrupt, but you must take care to minimize 
the amount of time that the system is at TPL_HIGH_LEVEL. Since all timer-



  Chapter 2:  Basic UEFI Architecture  n  41

based events are blocked during this time, any driver that requires periodic 
access to a device is prevented from accessing its device. A TPL is similar to the 
IRQL in Microsoft Windows and the SPL in various Unix implementations. A 
TPL describes a prioritization scheme for access control to resources.

Summary
This chapter has introduced some of the basic UEFI concepts and object types. 
These items have included events, protocols, task priority levels, image types, 
handles, GUIDs, and service tables. Many of these UEFI concepts, including 
images and protocols, are used extensively by other firmware technology, 
including the UEFI Platform Initialization (PI) building blocks, such as the 
DXE environment. These concepts will be revisited in different guises in 
subsequent chapters.



42  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 43

Chapter 3
UEFI Driver Model

Things should be made as simple as possible—but no simpler.
—Albert Einstein

The Unified Extensible Firmware Interface (UEFI) provides a driver model 
for support of devices that attach to today’s industry-standard buses, 

such as Peripheral Component Interconnect (PCI) and Universal Serial Bus 
(USB), and architectures of tomorrow. The UEFI Driver Model is intended 
to simplify the design and implementation of device drivers, and produce 
small executable image sizes. As a result, some complexity has been moved 
into bus drivers and to a greater extent into common firmware services. A 
device driver needs to produce a Driver Binding Protocol on the same image 
handle on which the driver was loaded. It then waits for the system firmware 
to connect the driver to a controller. When that occurs, the device driver 
is responsible for producing a protocol on the controller’s device handle 
that abstracts the I/O operations that the controller supports. A bus driver 
performs these exact same tasks. In addition, a bus driver is also responsible 
for discovering any child controllers on the bus, and creating a device handle 
for each child controller found. 

The combination of firmware services, bus drivers, and device drivers 
in any given platform is likely to be produced by a wide variety of vendors 
including Original Equipment Manufacturers (OEMs), Independent BIOS 
Vendors (IBVs), and Independent Hardware Vendors (IHVs). These different 
components from different vendors are required to work together to produce 
a protocol for an I/O device than can be used to boot a UEFI compliant 



44  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

operating system. As a result, the UEFI Driver Model is described in great 
detail in order to increase the interoperability of these components. 

This chapter gives a brief overview of the UEFI Driver Model. It describes 
the entry point of a driver, host bus controllers, properties of device drivers, 
properties of bus drivers, and how the UEFI Driver Model can accommodate 
hot plug events.

Why a Driver Model Prior to OS Booting?
Under the UEFI Driver Model, only the minimum number of I/O devices 
needs to be activated. For example, with today’s BIOS-based systems, a server 
with dozens of SCSI drives needs to have those drives “spun-up” or activated. 
This is because the BIOS Int19h code does not know a priori which device will 
contain the operating system loader. The UEFI Driver Model allows for only 
activating the subset of devices that are necessary for booting. This makes a 
rapid system restart possible and pushes the policy of which additional devices 
need activation up into the operating system. With the more aggressive boot 
time requirements more along the lines of consumer electronics devices being 
pushed to all open platforms, this capability is imperative.

Driver Initialization
The file for a driver image must be loaded from some type of media. This could 
include ROM, flash, hard drives, floppy drives, CD-ROM, or even a network 
connection. Once a driver image has been found, it can be loaded into system 
memory with the Boot Service LoadImage(). LoadImage() loads 
a Portable Executable/Common File Format (PE/COFF) formatted image 
into system memory. A handle is created for the driver, and a Loaded Image 
Protocol instance is placed on that handle. A handle that contains a Loaded 
Image Protocol instance is called an Image Handle. At this point, the driver has 
not been started. It is just sitting in memory waiting to be started. Figure 3.1 
shows the state of an image handle for a driver after LoadImage() has been 
called.



  Chapter 3:  UEFI Driver Model  n  45

 

Image Handle 

EFI_LOADED_IMAGE_PROTOCOL 

Figure 3.1 Image Handle

After a driver has been loaded with the Boot Service LoadImage(), it 
must be started with the Boot Service StartImage(). This is true of all 
types of UEFI applications and UEFI drivers that can be loaded and started on 
a UEFI compliant system. The entry point for a driver that follows the UEFI 
Driver Model must follow some strict rules. First, it is not allowed to touch any 
hardware. Instead, it is only allowed to install protocol instances onto its own 
Image Handle. A driver that follows the UEFI Driver Model is required to install 
an instance of the Driver Binding Protocol onto its own Image Handle. It may 
optionally install the Driver Configuration Protocol, the Driver Diagnostics 
Protocol, or the Component Name Protocol. In addition, if a driver wishes to 
be unloadable it may optionally update the Loaded Image Protocol to provide 
its own Unload() function. Finally, if a driver needs to perform any special 
operations when the Boot Service ExitBootServices()is called, it may 
optionally create an event with a notification function that is triggered when 
the Boot Service ExitBootServices() is called. An Image Handle that 
contains a Driver Binding Protocol instance is known as a Driver Image Handle. 
Figure 3.2 shows a possible configuration for the Image Handle from Figure 
3.1 after the Boot Service StartImage() has been called. 



46  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

 

EFI_LOADED_IMAGE_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

EFI_DRIVER_CONFIGURATION_PROTOCOL

EFI_DRIVER_DIAGNOSTICS_PROTOCOL

EFI_COMPONENT_NAME2_PROTOCOL

Driver Image Handle 

Figure 3.2 Driver Image Handle

Host Bus Controllers
Drivers are not allowed to touch any hardware in the driver’s entry point. As 
a result, drivers are loaded and started, but they are all waiting to be told to 
manage one or more controllers in the system. A platform component, like the 
UEFI Boot Manager, is responsible for managing the connection of drivers 
to controllers. However, before even the first connection can be made, some 
initial collection of controllers must be present for the drivers to manage. This 
initial collection of controllers is known as the Host Bus Controllers. The I/O 
abstractions that the Host Bus Controllers provide are produced by firmware 
components that are outside the scope of the UEFI Driver Model. The device 
handles for the Host Bus Controllers and the I/O abstraction for each one 
must be produced by the core firmware on the platform, or a UEFI Driver that 
may not follow the UEFI Driver Model. See the PCI Host Bridge I/O Protocol 
description in Chapter 13 of the UEFI 2.3 specification for an example of an 
I/O abstraction for PCI buses.



  Chapter 3:  UEFI Driver Model  n  47

A platform can be viewed as a set of CPUs and a set of core chip set 
components that may produce one or more host buses. Figure 3.3 shows a 
platform with n CPUs, and a set of core chipset components that produce m 
host bridges.
 

CPU 1 CPU 2 CPU n 

Front Side Bus 

Core Chipset Components 

HB 1 HB 2 HB m 

Figure 3.3 Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains 
a Device Path Protocol instance, and a protocol instance that abstracts the 
I/O operations that the host bus can perform. For example, a PCI Host Bus 
Controller supports the PCI Host Bridge I/O Protocol. Figure 3.4 shows an 
example device handle for a PCI Host Bridge. 

Device Handle 

EFI_DEVICE_PATH_PROTOCOL 

EFI_PCI_HOST_BRIDGE_IO_PROTOCOL 

Figure 3.4 Host Bus Device Handle



48  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

A PCI Bus Driver could connect to this PCI Host Bridge, and create child 
handles for each of the PCI devices in the system. PCI Device Drivers should 
then be connected to these child handles, and produce I/O abstractions that 
may be used to boot a UEFI compliant OS. The following section describes 
the different types of drivers that can be implemented within the UEFI Driver 
Model. The UEFI Driver Model is very flexible, so not all the possible types of 
drivers are discussed here. Instead, the major types are covered that can be used 
as a starting point for designing and implementing additional driver types.

Device Drivers
A device driver is not allowed to create any new device handles. Instead, it 
installs additional protocol interfaces on an existing device handle. The most 
common type of device driver attaches an I/O abstraction to a device handle 
that has been created by a bus driver. This I/O abstraction may be used to boot 
a UEFI compliant OS. Some example I/O abstractions would include Simple 
Text Output, Simple Input, Block I/O, and Simple Network Protocol. Figure 
3.5 shows a device handle before and after a device driver is connected to it. In 
this example, the device handle is a child of the XYZ Bus, so it contains an XYZ 
I/O Protocol for the I/O services that the XYZ bus supports. It also contains a 
Device Path Protocol that was placed there by the XYZ Bus Driver. The Device 
Path Protocol is not required for all device handles. It is only required for 
device handles that represent physical devices in the system. Handles for virtual 
devices do not contain a Device Path Protocol.



  Chapter 3:  UEFI Driver Model  n  49

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_IO_PROTOCOL

Device Handle 

EFI_DEVICE_PATH_PROTOCOL

EFI_BLOCK_IO_PROTOCOL

EFI_XYZ_IO_PROTOCOL

Device Handle 

START()

STOP()

Figure 3.5 Connecting Device Drivers

The device driver that connects to the device handle in Figure 3.5 must 
have installed a Driver Binding Protocol on its own image handle. The Driver 
Binding Protocol contains three functions called Supported(), Start(), 
and Stop(). The Supported() function tests to see if the driver supports 
a given controller. In this example, the driver will check to see if the device 
handle supports the Device Path Protocol and the XYZ I/O Protocol. If a 
driver’s Supported() function passes, then the driver can be connected 
to the controller by calling the driver’s Start() function. The Start() 
function is what actually adds the additional I/O protocols to a device handle. 
In this example, the Block I/O Protocol is being installed. To provide symmetry, 
the Driver Binding Protocol also has a Stop() function that forces the driver 
to stop managing a device handle. This causes the device driver to uninstall any 
protocol interfaces that were installed in Start().



50  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The Support(), Start(), and Stop() functions of the UEFI 
Driver Binding Protocol are required to make use of the new Boot Service 
OpenProtocol() to get a protocol interface and the new Boot Service 
CloseProtocol() to release a protocol interface. OpenProtocol() 
and CloseProtocol() update the handle database maintained 
by the system firmware to track which drivers are consuming protocol 
interfaces. The information in the handle database can be used to retrieve 
information about both drivers and controllers. The new Boot Service 
OpenProtocolInformation() can be used to get the list of components 
that are currently consuming a specific protocol interface.

Bus Drivers
Bus drivers and device drivers are virtually identical from the UEFI Driver 
Model’s point of view. The only difference is that a bus driver creates new 
device handles for the child controllers that the bus driver discovers on its 
bus. As a result, bus drivers are slightly more complex than device drivers, but 
this in turn simplifies the design and implementation of device drivers. There 
are two major types of bus drivers. The first creates handles for all the child 
controllers on the first call to Start(). The second type allows the handles 
for the child controllers to be created across multiple calls to Start(). This 
second type of bus driver is very useful in supporting a rapid boot capability. 
It allows a few child handles or even one child handle to be created. On buses 
that take a long time to enumerate all of their children (such as SCSI), this 
can lead to a very large time savings in booting a platform. Figure 3.6 shows 
the tree structure of a bus controller before and after Start() is called. The 
dashed line coming into the bus controller node represents a link to the bus 
controller’s parent controller. If the bus controller is a Host Bus Controller, 
then it does not have a parent controller. Nodes A, B, C, D, and E represent 
the child controllers of the bus controller.



  Chapter 3:  UEFI Driver Model  n  51

Start() 

Stop() 

Bus Controller Bus Controller 

A B C D E 

 

Figure 3.6 Connecting Bus Drivers

A bus driver that supports creating one child on each call to Start() 
might choose to create child C first, and then child E, and then the remaining 
children A, B, and D. The Supported(), Start(), and Stop() 
functions of the Driver Binding Protocol are flexible enough to allow this type 
of behavior.

A bus driver must install protocol interfaces onto every child handle that is 
created. At a minimum, it must install a protocol interface that provides an I/O 
abstraction of the bus’s services to the child controllers. If the bus driver creates 
a child handle that represents a physical device, then the bus driver must also 
install a Device Path Protocol instance onto the child handle. A bus driver 
may optionally install a Bus Specific Driver Override Protocol onto each child 
handle. This protocol is used when drivers are connected to the child controllers. 
A new Boot Service ConnectController() uses architecturally defined 
precedence rules to choose the best set of drivers for a given controller. The Bus 
Specific Driver Override Protocol has higher precedence than a general driver 
search algorithm, and lower precedence than platform overrides. An example 
of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives 
a driver stored in a PCI controller’s option ROM a higher precedence than 
drivers stored elsewhere in the platform. Figure 3.7 shows an example child 
device handle that has been created by the XYZ Bus Driver that supports a bus 
specific driver override mechanism.



52  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Child Device Handle 

EFI_DEVICE_PATH_PROTOCOL 

EFI_XYZ_IO_PROTOCOL 

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL 
Optional 

 

Figure 3.7 Child Device Handle with a Bus Specific Override

Platform Components
Under the UEFI Driver Model, the act of connecting and disconnecting 
drivers from controllers in a platform is under the platform firmware’s 
control. This will typically be implemented as part of the UEFI Boot 
Manager, but other implementations are possible. The new Boot Services 
ConnectController() and DisconnectController() can be 
used by the platform firmware to determine which controllers get started and 
which ones do not. If the platform wishes to perform system diagnostics or 
install an operating system, then it may choose to connect drivers to all possible 
boot devices. If a platform wishes to boot a preinstalled operating system, it 
may choose to only connect drivers to the devices that are required to boot the 
selected operating system. The UEFI Driver Model supports both of these modes 
of operation through the new Boot Services ConnectController() and 
DisconnectController(). In addition, since the platform component 
that is in charge of booting the platform has to work with device paths for 
console devices and boot options, all of the services and protocols involved in 
the UEFI Driver Model are optimized with device paths in mind.



  Chapter 3:  UEFI Driver Model  n  53

The platform may also choose to produce an optional protocol named the 
Platform Driver Override Protocol. This is similar to the Bus Specific Driver 
Override Protocol, but it has higher priority. This gives the platform firmware 
the highest priority when deciding which drivers are connected to which 
controllers. The Platform Driver Override Protocol is attached to a handle in 
the system. The new Boot Service ConnectController() will make use 
of this protocol if it is present in the system.

Hot Plug Events
In the past, system firmware has not had to deal with hot plug events in the pre-
boot environment. However, with the advent of buses like USB, where the end 
user can add and remove devices at any time, it is important to make sure that it 
is possible to describe these types of buses in the UEFI Driver Model. It is up to 
the bus driver of a bus that supports the hot adding and removing of devices to 
provide support for such events. For these types of buses, some of the platform 
management is going to have to move into the bus drivers. For example, when 
a keyboard is added hot to a USB bus on a platform, the end user would 
expect the keyboard to be active. A USB Bus driver could detect the hot add 
event and create a child handle for the keyboard device. However, since drivers 
are not connected to controllers unless ConnectController() is called 
the keyboard would not become an active input device. Making the keyboard 
driver active requires the USB Bus driver to call ConnectController() 
when a hot add event occurs. In addition, the USB Bus driver would have to 
call DisconnectController() when a hot remove event occurs. 

Device drivers are also affected by these hot plug events. In the case of USB, 
a device can be removed without any notice. This means that the Stop() 
functions of USB device drivers must deal with shutting down a driver for 
a device that is no longer present in the system. As a result, any outstanding 
I/O requests must be flushed without actually being able to touch the device 
hardware. 

In general, adding support for hot plug events greatly increases the 
complexity of both bus drivers and device drivers. Adding this support is up to 
the driver writer, so the extra complexity and size of the driver must be weighed 
against the need for the feature in the pre-boot environment.

The two example code sequences below provide guidance on how a device 
driver writer might discover if it in fact manages the candidate hardware device. 



54  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

These mechanisms include looking at the controller handle in the first example 
and examining the device path in the second example.

 
extern EFI_GUID              gEfiDriverBindingProtocolGuid;
EFI_HANDLE                   gMyImageHandle;
EFI_HANDLE                   DriverImageHandle;
EFI_HANDLE                   ControllerHandle;
EFI_DRIVER_BINDING_PROTOCOL  *DriverBinding;
EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath;

//
// Use the DriverImageHandle to get the Driver Binding 

Protocol
// instance
//
Status = gBS->OpenProtocol (
                  DriverImageHandle,  
                  &gEfiDriverBindingProtocolGuid, 
                  &DriverBinding,
                  gMyImageHandle,
                  NULL,
                  EFI_OPEN_PROTOCOL_HANDLE_PROTOCOL
                  );
if (EFI_ERROR (Status)) {
  return Status;
}

//
// EXAMPLE #1
//
// Use the Driver Binding Protocol instance to test to see 

if 
// the driver specified by DriverImageHandle supports the 
// controller specified by ControllerHandle
//
Status = DriverBinding->Supported (
                          DriverBinding, 
                          ControllerHandle, 
                          NULL
                          ); 
if (!EFI_ERROR (Status)) {
  Status = DriverBinding->Start (
                            DriverBinding, 
                            ControllerHandle, 



  Chapter 3:  UEFI Driver Model  n  55

                            NULL
                            ); 
}

return Status;

//
// EXAMPLE #2
//
// The RemainingDevicePath parameter can be used to 

initialize 
// only the minimum devices required to boot. For example,
// maybe we only want to initialize 1 hard disk on a SCSI 
// channel. If DriverImageHandle is a SCSI Bus Driver, and 
// ControllerHandle is a SCSI Controller, and we only want 

to 
// create a child handle for PUN=3 and LUN=0, then the
// RemainingDevicePath would be SCSI(3,0)/END. The 

following 
// example would return EFI_SUCCESS if the SCSI driver 

supports
// creating the child handle for PUN=3, LUN=0. Otherwise 

it 
// would return an error.
//
Status = DriverBinding->Supported (
                          DriverBinding, 
                          ControllerHandle, 
                          RemainingDevicePath
                          ); 
if (!EFI_ERROR (Status)) {
  Status = DriverBinding->Start (
                            DriverBinding, 
                            ControllerHandle, 
                            RemainingDevicePath
                            ); 
}

return Status;

Pseudo Code

The algorithms for the Start() function for three different types of drivers 
are presented here. How the Start() function of a driver is implemented can 



56  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

affect how the Supported() function is implemented. All of the services in 
the EFI_DRIVER_BINDING_PROTOCOL need to work together to make 
sure that all resources opened or allocated in Supported() and Start() 
are released in Stop(). 

The first algorithm is a simple device driver that does not create any 
additional handles. It only attaches one or more protocols to an existing handle. 
The second is a simple bus driver that always creates all of its child handles on 
the first call to Start(). It does not attach any additional protocols to the 
handle for the bus controller. The third is a more advanced bus driver that 
can either create one child handle at a time on successive calls to Start(), 
or it can create all of its child handles or all of the remaining child handles 
in a single call to Start(). Once again, it does not attach any additional 
protocols to the handle for the bus controller.

Device Driver

1. Open all required protocols with OpenProtocol(). If this driver 
allows the opened protocols to be shared with other drivers, then it 
should use an Attribute of EFI_OPEN_PROTOCOL_BY_
DRIVER. If this driver does not allow the opened protocols to be 
shared with other drivers, then it should use an Attribute of EFI_
OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_
EXCLUSIVE. It must use the same Attribute value that was 
used in Supported().

2. If any of the calls to OpenProtocol() in Step 1 returned 
an error, then close all of the protocols opened in Step 1 with 
CloseProtocol(), and return the status code from the call to 
OpenProtocol() that returned an error.

3. Ignore the parameter RemainingDevicePath.

4. Initialize the device specified by ControllerHandle. If 
an error occurs, close all of the protocols opened in Step 1 with 
CloseProtocol(), and return EFI_DEVICE_ERROR.

5. Allocate and initialize all of the data structures that this driver requires 
to manage the device specified by ControllerHandle. This 
would include space for public protocols and space for any additional 



  Chapter 3:  UEFI Driver Model  n  57

private data structures that are related to ControllerHandle. If 
an error occurs allocating the resources, then close all of the protocols 
opened in Step 1 with CloseProtocol(), and return EFI_
OUT_OF_RESOURCES.

6. Install all the new protocol interfaces onto ControllerHandle 
using InstallProtocolInterface(). If an error occurs, 
close all of the protocols opened in Step 1 with CloseProtocol(), 
and return the error from InstallProtocolInterface().

7. Return EFI_SUCCESS.

Bus Driver that Creates All of Its Child Handles on the First Call to Start()

1. Open all required protocols with OpenProtocol(). If this driver 
allows the opened protocols to be shared with other drivers, then it 
should use an Attribute of EFI_OPEN_PROTOCOL_BY_
DRIVER. If this driver does not allow the opened protocols to be 
shared with other drivers, then it should use an Attribute of EFI_
OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_
EXCLUSIVE. It must use the same Attribute value that was used in 
Supported().

2. If any of the calls to OpenProtocol() in Step 1 returned 
an error, then close all of the protocols opened in Step 1 with 
CloseProtocol(), and return the status code from the call to 
OpenProtocol() that returned an error.

3. Ignore the parameter RemainingDevicePath.

4. Initialize the device specified by ControllerHandle. If 
an error occurs, close all of the protocols opened in Step 1 with 
CloseProtocol(), and return EFI_DEVICE_ERROR.

5. Discover all the child devices of the bus controller specified by 
ControllerHandle.

6. If the bus requires it, allocate resources to all the child devices of the 
bus controller specified by ControllerHandle.



58  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

7. FOR each child C of ControllerHandle.

8. Allocate and initialize all of the data structures that this driver 
requires to manage the child device C. This would include space 
for public protocols and space for any additional private data 
structures that are related to the child device C. If an error occurs 
allocating the resources, then close all of the protocols opened 
in Step 1 with CloseProtocol(), and return EFI_OUT_
OF_RESOURCES.

9. If the bus driver creates device paths for the child devices, then 
create a device path for the child C based upon the device path 
attached to ControllerHandle.

10. Initialize the child device C. If an error occurs, close all of the 
protocols opened in Step 1 with CloseProtocol(), and 
return EFI_DEVICE_ERROR.

11. Create a new handle for C, and install the protocol interfaces for 
child device C. This may include the EFI_DEVICE_PATH_
PROTOCOL.

12. Call OpenProtocol() on behalf of the child C with an 
Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_
CONTROLLER.

13. END FOR

14. Return EFI_SUCCESS.

Bus Driver that Is Able to Create All or One of Its Child Handles on Each Call to 
Start():

1. Open all required protocols with OpenProtocol(). If this driver 
allows the opened protocols to be shared with other drivers, then it 
should use an Attribute of EFI_OPEN_PROTOCOL_BY_
DRIVER. If this driver does not allow the opened protocols to be 
shared with other drivers, then it should use an Attribute of EFI_
OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_



  Chapter 3:  UEFI Driver Model  n  59

EXCLUSIVE. It must use the same Attribute value that was used 
in Supported().

2. If any of the calls to OpenProtocol() in Step 1 returned 
an error, then close all of the protocols opened in Step 1 with 
CloseProtocol(), and return the status code from the call to 
OpenProtocol() that returned an error.

3. Initialize the device specified by ControllerHandle. If 
an error occurs, close all of the protocols opened in Step 1 with 
CloseProtocol(), and return EFI_DEVICE_ERROR.

4. IF RemainingDevicePath is not NULL, THEN

5. C is the child device specified by RemainingDevicePath.

6. Allocate and initialize all of the data structures that this driver 
requires to manage the child device C. This would include space 
for public protocols and space for any additional private data 
structures that are related to the child device C. If an error occurs 
allocating the resources, then close all of the protocols opened 
in Step 1 with CloseProtocol(), and return EFI_OUT_
OF_RESOURCES.

7. If the bus driver creates device paths for the child devices, then 
create a device path for the child C based upon the device path 
attached to ControllerHandle.

8. Initialize the child device C.

9. Create a new handle for C, and install the protocol interfaces for 
child device C. This may include the EFI_DEVICE_PATH_
PROTOCOL.

10. Call OpenProtocol() on behalf of the child C with an 
Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_
CONTROLLER.

11. ELSE

12. Discover all the child devices of the bus controller specified by 
ControllerHandle.



60  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

13. If the bus requires it, allocate resources to all the child devices of 
the bus controller specified by ControllerHandle.

14. FOR each child C of ControllerHandle

15. Allocate and initialize all of the data structures that this 
driver requires to manage the child device C. This would 
include space for public protocols and space for any 
additional private data structures that are related to the 
child device C. If an error occurs allocating the resources, 
then close all of the protocols opened in Step 1 with 
CloseProtocol(), and return EFI_OUT_OF_
RESOURCES.

16. If the bus driver creates device paths for the child devices, 
then create a device path for the child C based upon the 
device path attached to ControllerHandle.

17. Initialize the child device C. 

18. Create a new handle for C, and install the protocol 
interfaces for child device C. This may include the EFI_
DEVICE_PATH_PROTOCOL.

19. Call OpenProtocol() on behalf of the child C with 
an Attribute of EFI_OPEN_PROTOCOL_BY_
CHILD_CONTROLLER.

20. END FOR

21. END IF

22. Return EFI_SUCCESS.



  Chapter 3:  UEFI Driver Model  n  61

Listed below is sample code of the Start() function of the device driver 
for a device on the XYZ bus. The XYZ bus is abstracted with the EFI_XYZ_
IO_PROTOCOL. This driver does allow the EFI_XYZ_IO_PROTOCOL to 
be shared with other drivers, and just the presence of the EFI_XYZ_IO_
PROTOCOL on ControllerHandle is enough to determine if this driver 
supports ControllerHandle. This driver installs the EFI_ABC_IO_
PROTOCOL on ControllerHandle. The gBS and gMyImageHandle 
variables are initialized in this driver’s entry point. 

The following code sequence provides a generic example of what a driver 
can do in its start routine in the hope of particularizing the guidance listed 
above.

extern EFI_GUID          gEfiXyzIoProtocol;
extern EFI_GUID          gEfiAbcIoProtocol;
EFI_BOOT_SERVICES_TABLE  *gBS;
EFI_HANDLE               gMyImageHandle;

EFI_STATUS
AbcStart (
  IN EFI_DRIVER_BINDING_PROTOCOL  *This,
  IN EFI_HANDLE                   ControllerHandle,
  IN EFI_DEVICE_PATH_PROTOCOL     *RemainingDevicePath  

OPTIONAL
)

{
  EFI_STATUS           Status;
  EFI_XYZ_IO_PROTOCOL  *XyzIo;
  EFI_ABC_DEVICE       AbcDevice;

  //
  // Open the Xyz I/O Protocol that this driver consumes
  //
  Status = gBS->OpenProtocol (
                  ControllerHandle,  
                  &gEfiXyzIoProtocol, 
                  &XyzIo,
                  gMyImageHandle,
                  ControllerHandle,
                  EFI_OPEN_PROTOCOL_BY_DRIVER
                  );
  if (EFI_ERROR (Status)) {
    return Status;
  }



62  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

  //
  // Allocate and zero a private data structure for the Abc 
  // device.
  //
  Status = gBS->AllocatePool (
                  EfiBootServicesData,
                  sizeof (EFI_ABC_DEVICE),
                  &AbcDevice
                  );
  if (EFI_ERROR (Status)) {
    goto ErrorExit;
  }
  ZeroMem (AbcDevice, sizeof (EFI_ABC_DEVICE));

  //
  // Initialize the contents of the private data structure 

for 
  // the Abc device. This includes the XyzIo protocol 

instance 
  // and other private data fields and the EFI_ABC_IO_

PROTOCOL 
  // instance that will be installed.
  //
  AbcDevice->Signature       = EFI_ABC_DEVICE_SIGNATURE;
  AbcDevice->XyzIo           = XyzIo;

  AbcDevice->PrivateData1    = PrivateValue1;
  AbcDevice->PrivateData1    = PrivateValue2;
  . . .
  AbcDevice->PrivateData1    = PrivateValueN;

  AbcDevice->AbcIo.Revision  = EFI_ABC_IO_PROTOCOL_
REVISION;

  AbcDevice->AbcIo.Func1     = AbcIoFunc1;
  AbcDevice->AbcIo.Func2     = AbcIoFunc2;
  . . .
  AbcDevice->AbcIo.FuncN     = AbcIoFuncN;

  AbcDevice->AbcIo.Data1     = Value1;
  AbcDevice->AbcIo.Data2     = Value2;
  . . .
  AbcDevice->AbcIo.DataN     = ValueN;

  //



  Chapter 3:  UEFI Driver Model  n  63

  // Install protocol interfaces for the ABC I/O device.
  //
  Status = gBS->InstallProtocolInterface (
                  &ControllerHandle, 
                  &gEfiAbcIoProtocolGuid, 
                  EFI_NATIVE_INTERFACE, 
                  &AbcDevice->AbcIo
                  );
  if (EFI_ERROR (Status)) {
    goto ErrorExit;
  } 

  return EFI_SUCCESS;

ErrorExit:
  //
  // When there is an error, the provate data structures 

need 
  // to be freed and the protocols that were opened need 

to be 
  // closed.
  //
  if (AbcDevice != NULL) {
    gBS->FreePool (AbcDevice);
  }
  gBS->CloseProtocol (
         ControllerHandle, 
         &gEfiXyzIoProtocolGuid, 
         gMyImageHandle,   
         ControllerHandle   
         );
  return Status;
} 

Additional Innovations
In addition to the basic capabilities for booting, such as support for the various 
buses, there are other classes of feature drivers that provide capabilities to the 
platform. Some examples of these feature drivers include security, manageability, 
and networking.



64  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Security

In addition to the bus driver-based architecture, the provenance of the UEFI 
driver may be a concern for some vendors. Specifically, if the UEFI driver is 
loaded from a host-bus adapter (HBA) PCI card or from the UEFI system 
partition, the integrity of the driver could be called into question. As such, the 
UEFI 2.3 Specification describes a means by which to enroll signed UEFI drivers 
and applications. The particular signature format is Authenticode, which is a 
well-known usage of X509V2 certificates and PKCS#7 signature formats. The 
use of a well-known embedded signature format in the PE/COFF images of 
the UEFI drivers allows for interoperable trust, including the use of Certificate 
Authorities (CAs), such as Verisign, to sign the executables and distribute the 
credentials. More information on the enrollment can be found in Chapter 
27 of the UEFI 2.3 Specification. Information on the Windows Authenticode 
Portable Executable Signature Format can be found at http://www.microsoft.
com/whdc/winlogo/drvsign/Authenticode_PE.mspx.

Other security featuers in UEFI 2.3 include the User Identity (UID) 
infrastructure. The UID allows for the inclusion of credential provider drivers, 
such as biometric devices, smart cards, and other authentication methods, 
into a user manager framework. This framework will allow for combining the 
factors from the various credential providers and assigning rights to different 
UEFI users. One use case could include only the administrator having access to 
the USB devices in the pre-OS, whereas other users could only access the boot 
loader on the UEFI system partition. More information on UID can be found 
in Chapter 31 of the UEFI 2.3 Specification.

Manageability

The UEFI driver model has also introduced the Driver Health Protocol. The 
Driver Health Protocol exposes additional capabilities that a boot manager 
might use in concert with a device. These capabilities include EFI_DRIVER_
HEALTH_PROTOCOL.GetHealthStatus() and EFI_DRIVER_HEALTH_
PROTOCOL.Repair() services. The former will allow the boot manager to 
ascertain the state of the device, and the latter API will allow for the invocation 
of some recovery operation. An example of the usage may include a large solid-
state disk cache or redundant array of inexpensive disks (RAID). If the system 
were powered down during operating system runtime in an inconsistent state, 
say not having the RAID5 parity disk fully updated, the driver health protocol 



  Chapter 3:  UEFI Driver Model  n  65

would allow for exposing the need to synchronize the cache or RAID during 
the pre-OS without “disappearing” for a long period during this operation 
and making the user believe the machine had failed. More information on 
the Driver Health Protocol can be found in Chapter 10 of the UEFI 2.3 
Specification.

Networking

The UEFI driver model has also evolved to support complex device hierarchies, 
such as a dual IPV4 and IPV6 modular network stack. Figure 3.8 is a picture 
of the Internet Small Computer Systems Interface (iSCSI) network application 
atop both the IPV4 and IPV6 network stack.



66  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

MNP

ARP 

MNP

IP4 

UDP4

DHCP4

MNP

ARP 

MNP

IP4 

TCP4

MNP

IP6

UDP6

DHCP6

MNP

IP6

TCP6

iSCSI

IP4CONFIG_SB

DHCP4_SB

TCP4_SB

UDP_SB

IP4_SB

ARP_SB

MNP_SB

By Child

IP6CONFIG_SB

DHCP6_SB

TCP6_SB

UDP6_SB

IP6_SB

NIC

Figure 3.8 ISCSI on IPV4 and IPV6

One notable infrastructure element precipitated by this modular design 
includes the Service Binding Protocol (SBP). The EFI_DRIVER_BINDING_
PROTOCOL allows for producing a set of protocols related to a device via 
simple layering, but for more complex relationships like graphs and trees, 
the driver binding protocol was found to be deficient. For this reason, the 
SBP provides a member function to create a child handle with a new protocol 
installed upon it. This allows for the more generalized driver layering via as 
shown in Figure 3.8. 



  Chapter 3:  UEFI Driver Model  n  67

Summary
This chapter has introduced the UEFI driver model and some sample drivers. 
The UEFI driver model allows for support of modern bus architectures in 
addition to the lazy activation of devices needed by boot for today’s platforms 
and designs in the future. The support for buses is key because most of the 
storage, console, and networking devices are attached via an industry-standard 
bus like USB, PCI, and SCSI. The architecture described is general enough to 
support these and future evolutions in platform hardware. In addition to access 
to boot devices, though, there are other features and innovations that need 
to be surfaced in the platform. UEFI drivers are the unit of delivery for these 
types of capabilities, and examples of networking, security, and management 
feature drivers were reviewed.



68  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 69

Chapter 4
Protocols You  
Should Know

Common sense ain’t common.
—Will Rogers

This chapter describes protocols that everyone who is working with the 
Unified Extensible Firmware Interface (UEFI), whether creating device 

drivers, UEFI pre-OS applications, or platform firmware, should know. 
The protocols are illustrated by a few examples, beginning with the most 
common exercise from any programming text, namely “Hello world.” The test 
application listed here is the simplest possible application that can be written. 
It does not depend upon any UEFI Library functions, so the UEFI Library is 
not linked into the executable that is generated. This test application uses the 
SystemTable that is passed into the entry point to get access to the UEFI 
console devices. The console output device is used to display a message using 
the OutputString() function of the SIMPLE_TEXT_OUTPUT_
INTERFACE protocol, and the application waits for a keystroke from the 
user on the console input device using the WaitForEvent() service with 
the WaitForKey event in the SIMPLE_INPUT_INTERFACE protocol. 
Once a key is pressed, the application exits.

/*++

Module Name:
helloworld.c



70  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Abstract: 
This is a simple module to display behavior of a basic UEFI 
application.

Author:
Waldo

Revision History
--*/

#include “efi.h”

EFI_STATUS
InitializeHelloApplication (
    IN EFI_HANDLE           ImageHandle,
    IN EFI_SYSTEM_TABLE     *SystemTable
    )
{
    UINTN Index;

    //
    // Send a message to the ConsoleOut device.
    //

    SystemTable->ConOut->OutputString (
      SystemTable->ConOut, 
      L”Hello application started\n\r”);

    //
    // Wait for the user to press a key.
    //

    SystemTable->ConOut->OutputString (
      SystemTable->ConOut, 
      L”\n\r\n\r\n\rHit any key to exit\n\r”);

    SystemTable->BootServices->WaitForEvent (
      1,
      &(SystemTable->ConIn->WaitForKey),
      &Index);

    SystemTable->ConOut->OutputString (
      SystemTable->ConOut,L”\n\r\n\r”);



  Chapter 4:  Protocols You Should Know  n  71

    //
    // Exit the application.
    //

    return EFI_SUCCESS;
}

To execute a UEFI application, type the program’s name at the UEFI Shell 
command line. The following examples show how to run the test application 
described above from the UEFI Shell. The application waits for the user to 
press a key before returning to the UEFI Shell prompt. It is assumed that  
hello.efi is in the search path of the UEFI Shell environment.

Example
Shell> hello

Hello application started

Hit any key to exit this image

EFI OS Loaders
This section discusses the special considerations that are required when writing 
an OS loader. An OS loader is a special type of UEFI application responsible for 
transitioning a system from a firmware environment into an OS environment. 
To accomplish this task, several important steps must be taken:

1. The OS loader must determine from where it was loaded. This 
determination allows an OS loader to retrieve additional files from 
the same location.

2. The OS loader must determine where in the system the OS exists. 
Typically, the OS resides on a partition of a hard drive. However, 
the partition where the OS exists may not use a file system that is 
recognized by the UEFI environment. In this case, the OS loader 
can only access the partition as a block device using only block I/O 
operations. The OS loader will then be required to implement or load 
the file system driver to access files on the OS partition.



72  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

3. The OS loader must build a memory map of the physical memory 
resources so that the OS kernel can know what memory to manage. 
Some of the physical memory in the system must remain untouched 
by the OS kernel, so the OS loader must use the UEFI APIs to retrieve 
the system’s current memory map. 

4. An OS has the option of storing boot paths and boot options in 
nonvolatile storage in the form of environment variables. The OS 
loader may need to use some of the environment variables that are 
stored in nonvolatile storage. In addition, the OS loader may be 
required to pass some of the environment variables to the OS kernel.

5. The next step is to call ExitBootServices(). This call can be 
done from either the OS loader or from the OS kernel. Special care 
must be taken to guarantee that the most current memory map has been 
retrieved prior to making this call. Once ExitBootServices() 
had been called, no more UEFI Boot Services calls can be made. At 
some point, either just prior to calling ExitBootServices() or 
just after, the OS loader will transfer control to the OS kernel.

6. Finally, after ExitBootServices() has been called, the UEFI 
Boot Services calls are no longer available. This lack of availability 
means that once an OS kernel has taken control of the system, the OS 
kernel may only call UEFI Runtime Services. 

A complete listing of a sample application for an OS loader can be found 
below. The code fragments in the following sections do not perform any error 
checking. Also, the OS loader sample application makes use of several UEFI 
Library functions to simplify the implementation. 

The output shown below starts by printing out the device path and the 
file path of the OS loader itself. It also shows where in memory the OS loader 
resides and how many bytes it is using. Next, it loads the file OSKERNEL.BIN 
into memory. The file OSKERNEL.BIN is retrieved from the same directory 
as the image of the OS loader sample of Figure 4.1.



  Chapter 4:  Protocols You Should Know  n  73

Operating System 

Legacy OS Loader EFI OS Loader EFI API 

EFI Boot Services 

M
em

ory 

Boot  
Devices 

Protocols +  
Handlers 

EFI 1.10 or 
Framework 

Drivers 

EFI  
RUNTIME 
SERVICES 

Tim
er 

PLATFORM SPECIFIC FIRMWARE 

(Other) 
SMBIOS 

ACPI 
INTERFACES 
FROM OTHER 

REQUIRED 
SPECS 

PLATFORM HARDWARE 

Framework 

Compatibility 

Motherboard 
ROM/FLASH 

EFI 1.10 
Drivers 

Option ROM 

EFI 1.10 
Drivers 

EFI System 
Partition 

EFI OS Loader 

EFI 1.10 Drivers 

OS 
Partition 

M
em

ory 

Boot  
Devices 

Protocols +  
Handlers 

EFI 1.10 or 
Framework 

Drivers 

RUNTIME 
SERVICES 

Tim
er 

PLATFORM SPECIFIC FIRMWARE

(Other)
SMBIOS

ACPI
INTERFACES
FROM OTHER

REQUIRED 
SPECS 

PLATFORM 

Framework 

Motherboard 
ROM/FLASH 

EFI 1.10 
Drivers 

RUNTIME

Figure 4.1 EFI Loader in System Diagram

The next section of the output shows the first block of several block devices. 
The first one is the first block of the floppy drive with a FAT12 file system. The 
second one is the Master Boot Record (MBR) from the hard drive. The third 
one is the first block of a large FAT32 partition on the same hard drive, and 
the fourth one is the first block of a smaller FAT16 partition on the same hard 
drive.

The final step shows the pointers to all the system configuration tables, the 
system’s current memory map, and a list of all the system’s environment variables. 
The very last step shown is the OS loader calling ExitBootServices().



74  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Device Path and Image Information of the OS Loader
The following code fragment shows the steps that are required to get the device 
path and file path to the OS loader itself. The first call to HandleProtocol() 
gets the LOADED_IMAGE_PROTOCOL interface from the ImageHandle 
that was passed into the OS loader application. The second call to 
HandleProtocol() gets the DEVICE_PATH_PROTOCOL interface to 
the device handle of the OS loader image. These two calls transmit the device 
path of the OS loader image, the file path, and other image information to the 
OS loader itself.

BS->HandleProtocol(
        ImageHandle, 
        &LoadedImageProtocol, 
        LoadedImage 
       );

BS->HandleProtocol(
        LoadedImage->DeviceHandle, 
        &DevicePathProtocol, 
        &DevicePath
      );

Print (
   L”Image device : %s\n”, 
   DevicePathToStr (DevicePath)
  ); 
Print (
    L”Image file   : %s\n”, 
    DevicePathToStr (LoadedImage->FilePath)
  );
Print (
    L”Image Base   : %X\n”, 
    LoadedImage->ImageBase
  );
Print (
    L”Image Size   : %X\n”, 
    LoadedImage->ImageSize
  );



  Chapter 4:  Protocols You Should Know  n  75

Accessing Files in the Device Path of the OS Loader
The previous section shows how to retrieve the device path and the image 
path of the OS loader image. The following code fragment shows how to 
use this information to open another file called OSKERNEL.BIN that 
resides in the same directory as the OS loader itself. The first step is to use 
HandleProtocol() to get the FILE_SYSTEM_PROTOCOL interface 
to the device handle retrieved in the previous section. Then, the disk volume 
can be opened so file access calls can be made. The end result is that the variable 
CurDir is a file handle to the same partition in which the OS loader resides.

BS->HandleProtocol(
   LoadedImage->DeviceHandle, 
   &FileSystemProtocol, 
   &Vol
);

Vol->OpenVolume (
        Vol, 
        &RootFs
       );

CurDir = RootFs;

The next step is to build a file path to OSKERNEL.BIN that exists in the 
same directory as the OS loader image. Once the path is built, the file handle 
CurDir can be used to call Open(), Close(), Read(), and Write() 
on the OSKERNEL.BIN file. The following code fragment builds a file path, 
opens the file, reads it into an allocated buffer, and closes the file.

StrCpy(FileName,DevicePathToStr(LoadedImage->FilePath));
for(i=StrLen(FileName);i>=0 && FileName[i]!=’\\’;i--);

FileName[i] = 0;

StrCat(FileName,L”\\OSKERNEL.BIN”);
 CurDir->Open (CurDir, &FileHandle, FileName, EFI_FILE_
MODE_READ, 0);



76  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Size = 0x00100000;
BS->AllocatePool(EfiLoaderData, Size, &OsKernelBuffer);

FileHandle->Read(FileHandle, &Size, OsKernelBuffer);

FileHandle->Close(FileHandle);

Finding the OS Partition
The UEFI sample environment materializes a BLOCK_IO_PROTOCOL 
instance for every partition that is found in a system. An OS loader can search 
for OS partitions by looking at all the BLOCK_IO devices. The following code 
fragment uses LibLocateHandle() to get a list of BLOCK_IO device 
handles. These handles are then used to retrieve the first block from each one 
of these BLOCK_IO devices. The HandleProtocol() API is used to get 
the DEVICE_PATH_PROTOCOL and BLOCK_IO_PROTOCOL instances 
for each of the BLOCK_IO devices. The variable BlkIo is a handle to the 
BLOCK_IO device using the BLOCK_IO_PROTOCOL interface. At this 
point, a ReaddBlocks() call can be used to read the first block of a device. 
The sample OS loader just dumps the contents of the block to the display. A 
real OS loader would have to test each block read to see if it is a recognized 
partition. If a recognized partition is found, then the OS loader can implement 
a simple file system driver using the UEFI API ReadBlocks() function to 
load additional data from that partition.

NoHandles = 0;

HandleBuffer = NULL;

LibLocateHandle(ByProtocol, &BlockIoProtocol, NULL, 
&NoHandles, &HandleBuffer);

for(i=0;i<NoHandles;i++) {

    BS->HandleProtocol (
            HandleBuffer[i], 
            &DevicePathProtocol, 
            &DevicePath
           );

    BS->HandleProtocol (

            HandleBuffer[i], 
            &BlockIoProtocol, 
            &BlkIo
           ); 



  Chapter 4:  Protocols You Should Know  n  77

    Block = AllocatePool (BlkIo->BlockSize);

    MediaId = BlkIo->MediaId;

    BlkIo->ReadBlocks(

             BlkIo, 
             MediaId, 
             (EFI_LBA)0, 
             BlkIo->BlockSize, 
             Block 
            );

    Print(

        L”\nBlock #0 of device %s\n”,DevicePathToStr(Device
Path));

    DumpHex(0,0,BlkIo->BlockSize,Block);

}

Getting the Current System Configuration
The system configuration is available through the SystemTable data 
structure that is passed into the OS loader. The operating system loader is a 
UEFI application that is responsible for bridging the gap between the platform 
firmware and the operating system runtime. The System Table informs the 
loader of many things: the services available from the platform firmware (such 
as block and console services for loading the OS kernel binary from media and 
interacting with the user prior to the OS drivers are loaded, respectively) and 
access to industry standard tables like ACPI, SMBIOS, and so on. Five tables 
are available, and their structure and contents are described in the appropriate 
specifications.

LibGetSystemConfigurationTable(
               &AcpiTableGuid,&AcpiTable
              );
LibGetSystemConfigurationTable(
               &SMBIOSTableGuid,&SMBIOSTable
              );
LibGetSystemConfigurationTable(
               &SalSystemTableGuid,&SalSystemTable
              );
LibGetSystemConfigurationTable(
               &MpsTableGuid,&MpsTable



78  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

              );
  
Print(
    L”  ACPI Table is at address           :   
    %X\n”,AcpiTable
    );
Print(
    L”  SMBIOS Table is at address         : 
    %X\n”,SMBIOSTable
    );
Print(
    L”  Sal System Table is at address     : 
    %X\n”,SalSystemTable
   );
Print(
    L”  MPS Table is at address            :
    %X\n”,MpsTable
   );

Getting the Current Memory Map
One UEFI Library function can retrieve the memory map maintained by 
the UEFI environment. While the loader is running, the memory has been 
managed by the platform firmware. It has allocated memory for both firmware 
usage (boot services memory) and other memory that needs to persist into 
the OS runtime (runtime memory). Until the loader passes final control to 
the OS kernel and invokes ExitBootServices(), the UEFI platform 
firmware manages the allocation of memory. The means by which the OS 
loader and other UEFI applications can ascertain the allocation of memory 
is via the memory map services. The following code fragment shows the use 
of this function to ascertain the memory map, and it displays the contents of 
the memory map. An OS loader must pay special attention to the MapKey 
parameter. Every time that the UEFI environment modifies the memory map 
that it maintains, the MapKey is incremented. An OS loader needs to pass 
the current memory map to the OS kernel. Depending on what functions the 
OS loader calls between the time the memory map is retrieved and the time 
that ExitBootServices() is called, the memory map may be modified. 
In general, the OS loader should retrieve the memory map just before calling 
ExitBootServices(). If ExitBootServices() fails because the 
MapKey does not match, then the OS loader must get a new copy of the 
memory map and try again.



  Chapter 4:  Protocols You Should Know  n  79

MemoryMap = LibMemoryMap(
              &NoEntries,
              &MapKey,
              &DescriptorSize,
              &DescriptorVersion
             );

Print(
   L”Memory Descriptor List:\n\n”
  );

Print(
   L”  Type        Start Address     End Address       Attributes      
\n”
    );
Print(
  L”  ==========  ================  ================  
================\n”);

MemoryMapEntry = MemoryMap;

for(i=0;i<NoEntries;i++) {
    Print(L”  %s  %lX  %lX  %lX\n”,
          OsLoaderMemoryTypeDesc[MemoryMapEntry->Type],
          MemoryMapEntry->PhysicalStart,
          MemoryMapEntry->PhysicalStart + 
              LShiftU64( 
                    MemoryMapEntry->NumberOfPages,
                    PAGE_SHIFT)-1,
                    MemoryMapEntry->Attribute
                    );
    MemoryMapEntry = NextMemoryDescriptor(
                           MemoryMapEntry, 
                           DescriptorSize
                          );
}

Getting Environment Variables
The following code fragment shows how to extract all the environment 
variables maintained by the UEFI environment. It uses the  
GetNextVariableName() API to walk the entire list.



80  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

VariableName[0] = 0x0000;

VendorGuid = NullGuid;

Print(
   L”GUID                                Variable Name            
   Value\n”);
Print(
    L”=================================== ==================== 
    ========\n”);
do {
  VariableNameSize = 256;
  Status = RT->GetNextVariableName(
                 &VariableNameSize,
                 VariableName,
                 &VendorGuid
               );
  if (Status == EFI_SUCCESS) {
    VariableValue = LibGetVariable(
                        VariableName,
                        &VendorGuid
                       );
    Print(
      L”%.-35g %.-20s 
      %X\n”,&VendorGuid,VariableName,VariableValue
     );
  }

} while (Status == EFI_SUCCESS);

Transitioning to an OS Kernel
A single call to ExitBootServices() terminates all the UEFI Boot 
Services that the UEFI environment provides. From that point on, only the 
UEFI Runtime Services may be used. Once this call is made, the OS loader 
needs to prepare for the transition to the OS kernel. It is assumed that the OS 
kernel has full control of the system and that only a few firmware functions are 
required by the OS kernel. These functions are the UEFI Runtime Services. 
The OS loader must pass the SystemTable to the OS kernel so that the 
OS kernel can make the Runtime Services calls. The exact mechanism that is 
used to transition from the OS loader to the OS kernel is implementation-
dependent. It is important to note that the OS loader could transition to the 
OS kernel prior to calling ExitBootServices(). In this case, the OS 



  Chapter 4:  Protocols You Should Know  n  81

kernel would be responsible for calling ExitBootServices() before 
taking full control of the system.

Summary
This chapter has provided an overview of some common protocols and their 
demonstration via a sample operating system loader application. Given that 
UEFI has been primarily designed as an operating system loader environment, 
this is a key chapter for demonstrating the usage and capability of the UEFI 
service set.



82  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 83

Chapter 5
UEFI Runtime

Adding manpower to a late software project makes it later.
—Brook’s Law

This chapter describes the fundamental services that are made available in 
a UEFI-compliant system. The services are defined by interface functions 

that may be used by code running in the UEFI environment. Such code may 
include protocols that manage device access or extend platform capabilities. 
In this chapter, the runtime services will be the focus of discussion. These 
runtime services are functions that are available both during UEFI operation 
and when the OS has been launched and running. 

During boot, system resources are owned by the firmware and are 
controlled through a variety of system services that expose callable APIs. In 
UEFI there are two primary types of services:

 n Boot Services – Functions that are available prior to the launching 
of the boot target (such as the OS), and prior to the calling of the 
ExitBootServices() function.

 n Runtime Services – Functions that are available both during the 
boot phase prior to the launching of the boot target and after the 
boot target is executing.

Figure 5.1 illustrates the phases of boot operation that a platform evolves 
through.



84  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Power on [..Platform initialization..] [.. OS boot ..] Shutdown 

Reset 
Vector 

Early 
Platform 

Initialization 

Launch 
EFI 

Infrastructure 

Transient 
System Load 

(TSL) 

Run Time 
(RT) 

After Life 
(AL) 

Reset 
Vectpr 

CPU  
Init 

Chipset 
Init 

Board 
Init 

Device, 
Bus, or 
Service  
Driver 

Boot Manager 

OS-Absent 
App 

Transient OS 
Environment 

Transient OS 
Boot Loader 

OS-Present 
App 

Final OS 
Environment 

Final OS 
Boot Loader 

? 

Boot Services API Availability 

Exposed  
Runtime 
Interface 

Runtime Services API Availability 

Figure 5.1 Phases of Boot Operation

In Figure 5.1, it is clearly evident that the two previously mentioned forms 
of services (Boot Services and Runtime Services) are available during the early 
launch of the UEFI infrastructure and only the runtime services are available 
after the remainder of the firmware stack has relinquished control to an OS 
loader. Once an OS loader has loaded enough of its own environment to take 
control of the system’s continued operation it can then terminate the boot 
services with a call to ExitBootServices(). 

In principle, the ExitBootServices() call is intended for use by 
the operating system to indicate that its loader is ready to assume control 
of the platform and all platform resource management. Thus boot services 
are available up to this point to assist the OS loader in preparing to boot 
the operating system. Once the OS loader takes control of the system and 
completes the operating system boot process, only runtime services may be 
called. Code other than the OS loader, however, may or may not choose to call 



  Chapter 5:  UEFI Runtime  n  85

ExitBootServices(). This choice may in part depend upon whether or 
not such code is designed to make continued use of UEFI boot services or the 
boot services environment.

Isn’t There Only One Kind of Memory?
When UEFI memory is allocated, it is “typed” according to certain classifications 
which designate the general purpose of a particular memory type. For instance, 
one might choose to allocate a buffer as an EfiRuntimeServicesData 
buffer if it was desired that a buffer containing some data remained available 
into the runtime phase of platform operations. When allocating memory, one 
might think “Why not allocate everything as a runtime memory type ‘just in 
case’?” The reason that such activity is hazardous is that when the platform 
transitions from Boot Services phase into Runtime phase, all of the buffers 
which might have been allocated as runtime are now frozen and unavailable to 
the OS. Since there is an implicit assumption that items which request runtime-
enabled memory know what they are doing, one can imagine a proliferation of 
memory leaks if we simply assumed a single type of memory usage. With this 
situation in mind, UEFI establishes a certain set of memory types with certain 
expected usage associated with each.



86  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 5.1 UEFI Memory Types and Usage Prior to ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The code portions of a loaded application. (Note that UEFI OS 
loaders are UEFI applications.) 

EfiLoaderData The data portions of a loaded application and the default data 
allocation type used by an application to allocate pool memory. 

EfiBootServicesCode The code portions of a loaded Boot Services Driver.

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the default 
data allocation type used by a Boot Services Driver to allocate pool 
memory.  

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and the 
default data allocation type used by a Runtime Services Driver to 
allocate pool memory. 

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables. 

EfiACPIMemoryNVS Address space reserved for use by the firmware. 

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO 
region be mapped by the OS to a virtual address so it can be 
accessed by UEFI runtime services. 

EfiMemoryMapped 
IOPortSpace

System memory-mapped IO region that is used to translate 
memory cycles to IO cycles by the processor.

EfiPalCode Address space reserved by the firmware for code that is part of the 
processor. 

Table 5.1 lists memory types and their corresponding usage prior to 
launching a boot target (such as an OS). The memory types that would be used 
by most runtime drivers would be those with the keyword “runtime” in them. 

However, to better illustrate how these memory types are used in the runtime 
phase of the platform evolution, Table 5.2 illustrates how these UEFI Memory 
types are used after the OS loader has called ExitBootServices() to 
indicate the transition from the pre-boot, to the runtime phase of operations.



  Chapter 5:  UEFI Runtime  n  87

Table 5.2 UEFI Memory Types and Usage after ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.   

EfiLoaderCode The Loader and/or OS may use this memory 
as they see fit. Note: the OS loader that called 
ExitBootServices() is utilizing one or more 
EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory 
as they see fit.  Note: the OS loader that called 
ExitBootServices() is utilizing one or more 
EfiLoaderData ranges. 

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader 
and OS in the working and ACPI S1–S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the loader 
and OS in the working and ACPI S1–S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until 
ACPI is enabled. Once ACPI is enabled, the memory in 
this range is available for general use.

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in 
the working and ACPI S1–S3 states.

EfiMemoryMappedIO This memory is not used by the OS. All system memory-
mapped IO information should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-
mapped IO port space information should come from 
ACPI tables.

EfiPalCode This memory is to be preserved by the loader and OS in 
the working and ACPI S1–S3 states. This memory may 
also have other attributes that are defined by the processor 
implementation.

In Table 5.2, one can see how the runtime memory types are preserved, and 
the BootServices type of memory is available for the OS to reclaim as its own. 



88  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

How Are Runtime Services Exposed?
In UEFI, firmware services are exposed through a set of UEFI protocol 
definitions, a series of function pointers in some special purpose service tables, 
and finally in the UEFI configuration table. Of these mechanisms that are used 
to expose firmware APIs, only the following two are persistent into the runtime 
phase of computer operations.

 n Runtime Services Table - The UEFI Runtime Services Table contains 
pointers to all of the runtime services. All elements in the UEFI 
Runtime Services Table are prototypes of function pointers that are 
valid after the operating system has taken control of the platform with 
a call to ExitBootServices().

 n UEFI Configuration Table - The UEFI Configuration Table contains 
a set of GUID/pointer pairs. The number of entries in this table can 
easily grow over time. That is why a GUID is used to identify the 
configuration table type. This table may contain at most one instance 
of each table type.

The runtime services that are exposed in the UEFI Runtime Services Table 
at minimum define the core required runtime API capabilities of a UEFI-
compliant platform. These functions include services that expose time, virtual 
memory, and variable services at a minimum. 

The information exposed through the UEFI Configuration Table is going 
to vary widely between platform implementations. One key thing to note, 
however, is that the GUID associated with the GUID/pointer pair defines how 
one interprets the data to which the pointer is pointing. The content to which 
the pointer is pointed could be a function/API, a table of data, or practically 
anything else. Some examples of the type of information that can be exposed 
through this table are SMBIOS, ACPI, and MPS tables, as well as function 
prototypes for an UNDI-compliant network card. Figure 5.2 is an example 
diagram of the interactions between the UEFI Configuration Table and an 
example function prototype.



  Chapter 5:  UEFI Runtime  n  89

EFI System Table 
. 
. 

NumberOfTableEntries 
*ConfigurationTable 

. 

. 
GUID X, *Pointer X' 
GUID Y, *Pointer Y' 
GUID Z, *Pointer Z' 

 

typedef struct { 
  *FunctionPointerTBD, 
  *FunctionPointerTBD2, 
  *FunctionPointerTBD3, 
  *etc 
} EFI_SYSTEM_ERROR_LOG_PROTOCOL 

EFI Configuration Table 

Protocol/API Definition 
 

Figure 5.2 Interactions between the UEFI Configuration Table and a Function 
Prototype

Time Services
This section describes the core UEFI definitions for time-related functions that 
are specifically needed by operating systems at runtime to access underlying 
hardware that manages time information and services. The purpose of these 
interfaces is to provide runtime consumers of these services an abstraction for 
hardware time devices, thereby relieving the need to access legacy hardware 
devices directly. The functions listed in Table 5.3 reside in the UEFI Runtime 
Services table.



90  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 5.3 Time-based Functions in the UEFI Runtime Services Table

Name Type Description

GetTime Runtime Returns the current time and date, and the time-
keeping capabilities of the platform. 

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.

Why Abstract Time?

For a variety of reasons one might choose to abstract the access to the 
platform RealTime Clock (RTC). First, very poor standard mechanisms (if 
any) exist to access the platform’s RTC. A variety of legacy interrupts might 
serve some purposes, but typically might not abstract sufficient information 
to be particularly useful. If a user wanted to talk to the RTC directly, the 
user would not typically know how to with the exception of using some of 
the standard IBM CMOS directives. Ultimately, how one might gain access 
to this fundamental piece of information (“What time is it?”) could change 
over time. With that in mind, one needed the platform to provide a set of 
abstractions so that the caller would not have to worry about the vagaries of 
varying programming some RTC to acquire time information or to depend on 
some poorly documented and completely nonstandard set of legacy interrupts 
to abstract this same data. 

Get Time

Even though this function is called “GetTime”, it is intended to return the 
current time as well as the date information along with the capabilities of 
the current underlying time-based hardware. This service is not intended to 
provide highly accurate timings beyond certain described levels. During the 
Boot Services phase of platform initialization, there are other means by which 
to do accurate time stall measurements (for example, see the Stall() boot 
services function in the UEFI specification). 

Even though Figure 5.3 shows the smallest granularity of time measurement 
in nanoseconds, this by no means is intended as an indication of the accuracy 
of the time measurement of which the function is capable. The only thing 



  Chapter 5:  UEFI Runtime  n  91

that is guaranteed by the call to this function is that it returns a time that was 
valid during the call to the function. This guarantee is more understandable 
when one thinks about the processing time for the call to traverse various 
levels of code between the caller and the service function actually talking to the 
hardware device and this data then being passed back to the caller. Since this 
is a call initiated during the runtime phase of platform operations, the highly 
accurate timers that are needed for small granularity timing events would be 
provided by alternate (likely OS-based) solutions. 

//*******************************************************
//EFI_TIME
//*******************************************************
// This represents the current time information
typedef struct {
      UINT16            Year;             // 1998 – 20XX
      UINT8             Month;            // 1 – 12
      UINT8             Day;              // 1 – 31
      UINT8             Hour;             // 0 – 23
      UINT8             Minute;           // 0 – 59
      UINT8             Second;           // 0 – 59
      UINT8             Pad1;
      UINT32            Nanosecond;    // 0 – 999,999,999
       INT16             TimeZone;      // -1440 to 1440 or 2047
      UINT8             Daylight;
      UINT8             Pad2;
} EFI_TIME; 

Figure 5.3 Example Time Definition

Set Time

This function provides the ability to set the current time and date information 
on the platform. 

Get Wakeup Time

This function provides the abstraction for obtaining the alarm clock settings 
for the platform. This is often used to determine if a platform has been set for 
being woken up, and if so, at what time it should be woken up.



92  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Set Wakeup Time

Setting a system wakeup alarm causes the system to wake up or power on at the 
set time. When the alarm fires, the alarm signal is latched until acknowledged 
by calling SetWakeupTime() to disable the alarm. If the alarm fires before 
the system is put into a sleeping or off state, since the alarm signal is latched 
the system will immediately wake up. 

Virtual Memory Services
This section contains function definitions for the virtual memory support that 
may be optionally used by an operating system at runtime. If an operating 
system chooses to make UEFI runtime service calls in a virtual addressing 
mode instead of the flat physical mode, then the operating system must use the 
services in this section to switch the UEFI runtime services from flat physical 
addressing to virtual addressing. Table 5.4 lists the virtual memory services 
functions that UEFI provides.

Table 5.4 Virtual Memory Services

Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical 
addressing to virtual addressing.

ConvertPointer Runtime Used by UEFI components to convert internal 
pointers when switching to virtual addressing.

By using these functions, the platform provides a mechanism by which 
components that will exist during the runtime phase of operations can adjust 
their own data references to the new virtual addresses that the runtime caller 
has supplied. This makes it possible for the underlying firmware component(s) 
to adjust from a physical address mode to virtual address mode entity. 

This conversion applies to all functions in the runtime services table as 
well as the pointers in the UEFI System Table. However, this is not necessarily 
the case for the UEFI Configuration Table. In the UEFI Configuration Table, 
one is dealing with GUID/pointer pairs, and since the pointers are all physical 
to start with in the firmware, one might think that the pointers are converted 



  Chapter 5:  UEFI Runtime  n  93

during the transition to the runtime phase of platform operations, right? In 
this particular case, you would be wrong.

The GUID portion of the GUID/pointer pair defines the state of the 
pointer itself. In theory, one might have a particular GUID that during runtime 
has a virtual address pointer paired with it, but the next GUID in the table 
might very well be a physical pointer. This is because the UEFI Configuration 
Table can often be used to advertise certain pieces of information and the 
consumer of this information might have reason for interpreting the pointer as 
a physical pointer even though the OS has converted all other pertinent data 
to virtual addresses. In addition, the UEFI Configuration Table often might be 
pointing to a runtime enabled function prototype. In most cases, the pointers 
for this function would be converted, while other items that might be pointed 
at by the UEFI Configuration Table (Data Tables, for instance) might have no 
reason to have any data converted. 

Set Virtual Address Map

By calling this service, the agent that is the owner of the system’s memory 
map (the component that called ExitBootServices()) can change the 
runtime addressing mode of the underlying UEFI firmware from physical to 
virtual. The inputs of course are the new virtual memory map which shows an 
array of memory descriptors that have mapping information for all runtime 
memory ranges. 

When this service is called, all runtime-enabled agents will in turn be called 
through a notification event triggered by the SetVirtualAddressMap() 
function. 

ConvertPointer

The ConvertPointer function is used by a UEFI component during the 
SetVirtualAddressMap() operation. When the platform has passed 
control to an OS loader and it in turn calls SetVirtualAddressMap(), 
a function is called in most runtime drivers that responds to the virtual address 
change event that is triggered. This function uses the ConvertPointer service to 
convert the current physical pointer to an appropriate virtual address pointer. 
All pointers that the component has allocated should be updated using this 
mechanism.



94  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Variable Services
Variables are defined as key/value pairs that consist of identifying information, 
attributes, and some quantity of data. Variables are intended for use as a means 
to store data that is passed between the UEFI environment implemented in the 
platform and UEFI OS loaders and other applications that run in the UEFI 
environment.

Although the implementation of variable storage is not specifically defined 
for a given platform, variables must be able to persist across reboots of the 
platform. This implies that the UEFI implementation on a platform must 
arrange it so that variables passed in for storage are retained and available for 
use each time the system boots, at least until they are explicitly deleted or 
overwritten. Provision of this type of nonvolatile storage may be very limited 
on some platforms, so variables should be used sparingly in cases where other 
means of communicating information cannot be used. Table 5.5 lists the 
variable services functions that UEFI provides.

Table 5.5 Variable Services

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names. 

SetVariable Runtime Sets the value of a variable.

GetVariable

This function returns the value of a given UEFI variable. Since a fully qualified 
UEFI variable name is composed of both a human-readable text value paired 
with a GUID, a vendor can create and manage its own variables without the 
risk of name conflicts by using its own unique GUID value. For instance, one 
can easily have three variables named “Setup” that are wholly unique assuming 
that each of these “Setup” variables has a different numeric GUID value. 

One of the key items to note in the definition of a UEFI variable is that 
each one has some attributes associated with it. These attributes are treated as 
a bit field, which implies that none, any, or all of the bits can be activated at 
any given time. In the case of UEFI variables, however, there are three defined 
attribute bits to be aware of:



  Chapter 5:  UEFI Runtime  n  95

 n Nonvolatile – a variable that has this attribute activated is defined to 
be persistent across platform resets. It should also be noted that the 
explicit absence of this bit being activated indicates that the variable is 
volatile, and is therefore a temporary variable that will be absent once 
the system resets or the variable is deleted.

 n BootService – a variable that has this attribute activated provides 
read/write access to it during the BootService phase of the platform 
evolution. This simply means that once the platform enters the 
runtime phase, the data will no longer be able to be set through the 
SetVariable service.

 n Runtime – a variable that has this attribute activated must also have 
the BootService attribute activated. With this, the variable is accessible 
during all phases of the platform evolution.

GetNextVariableName

Since the UEFI variable repository is very similar in concept to a file system, 
the ability to parse the repository is provided by the GetNextVariableName 
service. This service enumerates the current variable names in the platform, 
and with each subsequent call to the service the previous results can be passed 
into the interface, and on output the interface returns the next variable name 
data. Once the entire list of variables has been returned, a subsequent call 
into the service providing the previous “last” variable name will provide the 
equivalent of a “Not Found” error.

It should be noted that this service is affected by the phase of platform 
operations. Variables that do not have the runtime attribute activated are 
allocated typically from some type of BootServices memory. Since this is the 
case, once ExitBootServices() is performed to signify the transition 
into the runtime phase, these variables will no longer show up in the search list 
that GetNextVariableName provides. 

One other behavior that should be noted is that one might conceive that 
if a variable has the ability to be named the same human-readable name (such 
as “Setup”) and the only thing that differs is the GUID, one could seed the 
search mechanism for this service by walking a common GUID-based list of 
variables. This is not the case. The usage of this service is typically initiated 



96  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

with a call that starts with a pointer to a Null Unicode string as the human-
readable name; the GUID is ignored. Instead, the entire list of variables must 
be retrieved, and the caller may act as a filter if you choose to have it do so. 

SetVariable

UEFI variables are often used to provide a means by which to save platform-
based context information. For instance, when the platform initializes the I/O 
infrastructure and has probed for all known console output devices, it will 
likely construct a ConOutDev global variable. These global variables have a 
unique purpose in the platform since they have a specific architectural role 
to play with a specific purpose. Table 5.6 shows some of the defined global 
variables.

Table 5.6 Global Variables

Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports. This 
value is deprecated.

Lang NV, BS, RT The language code that the system is configured for. 
This value is deprecated.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds, 
before initiating the default boot selection.

PlatformLangCodes BS, RT The language codes that the firmware supports.

PlatformLang NV, BS, RT The language code that the system is configured for.

ConIn NV, BS, RT The device path of the default input console.

ConOut NV, BS, RT The device path of the default output console.

ErrOut NV, BS, RT The device path of the default error output device.

ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

The examples in Table 5.6 show some of the common global variables, their 
descriptions, and their attributes. Some of the noted differences are the presence 
or absence of the NV (nonvolatile) attribute. This simply means that the values 
associated with these variables are not persistent across platform resets and their 
values are determined during the initialization phase of platform operations. 



  Chapter 5:  UEFI Runtime  n  97

Unlike variables that are persistent, robust implementations of UEFI enable 
the setting of volatile variables in memory-backed store, and do not necessarily 
have the storage size sensitivities that the other variables have that are stored in 
a fixed hardware with often very limited storage capacity. 

Software should only use a nonvolatile variable when absolutely necessary. 
It should be noted that a variable has no concept of a zero-byte data payload. 
All variables must contain at least 1 byte of data, since the service definition 
stipulates that the means by which you delete a target variable is by calling the 
SetVariable() service with a zero byte data payload.

There are certain rules that should definitely be noted when it comes to the 
use of the attributes:

 n Attributes are only applied to a variable when the variable is created. 
If a preexisting variable is rewritten with different attributes, the result 
is indeterminate and may vary between implementations. The correct 
method of changing the attributes of a variable is to delete the variable 
and recreate it with different attributes. 

 n Setting a data variable with no access attributes or a zero size data 
payload causes it to be deleted. 

 n Runtime access to a data variable implies boot service access.

 n Once ExitBootServices() is performed, data variables that did not 
have the runtime access attribute set are no longer visible. This simply 
enforces the paradigm that once in runtime phase, variables without 
the runtime attribute are not to be read from.

 n Once ExitBootServices() is performed, only variables that 
have the runtime and the nonvolatile access attributes set can be set 
with a call to the SetVariable() service. In addition, variables 
that have runtime access but that are not nonvolatile are now read-
only data variables. The reason for this situation is that once the 
platform firmware has handed off control to another agent (such 
as the OS), it no longer controls the memory services and cannot 
further allocate services that might be backed by memory. Since the 
SetVariable service typically uses memory to spill content to store 



98  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

a volatile variable, this capability is no longer available during the 
runtime phase of operations. 

By providing a mechanism for shared data content such as a UEFI variable, the 
use of variables can be seen as a fairly flexible and highly available mechanism 
for firmware components to communicate. The variables shown in Table 5.6 
are some of the architectural variables that steer the behavior of a platform. 
In this case aspects of the platform configuration can be seen in the data 
reflected by these variables. Another usage of the variable services can be to use 
the volatile (one must stress volatile, and not nonvolatile) variable as means 
by which two disparate components can have a common repository that is 
independent of a nonvolatile backing store (such as a harddisk), yet can act as 
a temporary repository of data such as registry content that is discovered by 
one agent and retrieved by another. This infrastructure provides for a lot of 
flexibility in implementation.

Miscellaneous Services
This section contains the remaining function definitions for runtime services 
that were not talked about in previous sections but are required to complete 
a compliant implementation of a UEFI environment. The services that are in 
this section are as listed in Table 5.7.

Table 5.7 Miscellaneous Services

Name Type Description

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s 
monotonic counter.

ResetSystem Runtime Resets the entire platform.

UpdateCapsule Runtime Pass capsules to the firmware. The firmware may 
process the capsules immediately or return a value 
to be passed into ResetSystem() that will 
cause the capsule to be processed by the firmware 
as part of the reset process.

QueryCapsuleCapabilities Runtime Returns if the capsule can be supported via 
UpdateCapsule()



  Chapter 5:  UEFI Runtime  n  99

Reset System 

This service provides a caller the ability to reset the entire platform including all 
processors and devices, and reboots the system. This service provides the ability 
to stipulate three types of resets:

 n Cold Reset – A call to the ResetSystem() service stipulating a 
cold reset will cause a system-wide reset. This sets all circuitry within 
the system to its initial state. This type of reset is asynchronous to 
system operation and operates without regard to cycle boundaries. 
This is tantamount to a system power cycle. 

 n Warm Reset – Calling the ResetSystem() service stipulating a 
warm reset will also cause a system-wide initialization. The processors 
are set to their initiate state, and pending cycles are not corrupted. This 
difference should be noted, since memory is not typically reinitialized 
and that the machine may be rebooting without having cleared 
memory that previously existed. There are a lot of examples of this 
usage model, and implementations vary on exactly what platforms 
choose to do with this type of feature. If the system does not support 
this reset type, then a Cold Reset must be performed.

 n Reset Shutdown – Calling the ResetSystem() service stipulating 
a Reset Shutdown will cause the system to enter a power state 
equivalent to the ACPI G2/S5 or G3 states. If the system does not 
support this reset type, then when the system is rebooted, it should 
exhibit the same attributes as having booted from a Cold Reset. 

Get Next High Monotonic Count

The platform provides a service to get the platform monotonic counter. The 
platform’s monotonic counter is comprised of two 32-bit quantities: the high 
32 bits and the low 32 bits. During boot service time the low 32-bit value 
is volatile: it is reset to zero on every system reset and is increased by 1 on 
every call to GetNextMonotonicCount(). The high 32-bit value is 
nonvolatile and will be increased by 1 whenever the system resets or whenever 
the low 32-bit count overflows. 



100  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Since the GetNextMonotonicCount() service is available 
only at boot services time, and if the operating system wishes to extend 
the platform monotonic counter to runtime, it may do so by utilizing the 
GetNextHighMonotonicCount() runtime service. To do this, 
before calling ExitBootServices() the operating system would call 
GetNextMonotonicCount() to obtain the current platform monotonic 
count. The operating system would then provide an interface that returns the 
next count by:

 n Adding 1 to the last count.

 n Before the lower 32 bits of the count overflows, call 
GetNextHighMonotonicCount(). This will increase the high 
32 bits of the platform’s nonvolatile portion of the monotonic count 
by 1. 

This function may only be called at runtime.

UpdateCapsule

This runtime function allows a caller to pass information to the firmware. 
UpdateCapsule is commonly used to update the firmware FLASH or for an 
operating system to have information persist across a system reset. Other usage 
models such as updating platform configuration are also possible depending on 
the underlying platform support.

A capsule is simply a contiguous set of data that starts with an EFI_
CAPSULE_HEADER. The CapsuleGuid field in the header defines the format 
of the capsule.

The capsule contents are designed to be communicated from an OS-present 
environment to the system firmware. To allow capsules to persist across system 
reset, a level of indirection is required for the description of a capsule, since the 
OS primarily uses virtual memory and the firmware at boot time uses physical 
memory. This level of abstraction is accomplished via the EFI_CAPSULE_
BLOCK_DESCRIPTOR. The EFI_CAPSULE_BLOCK_DESCRIPTOR 
allows the OS to allocate contiguous virtual address space and describe this 
address space to the firmware as a discontinuous set of physical address ranges. 
The firmware is passed both physical and virtual addresses and pointers to 
describe the capsule so the firmware can process the capsule immediately or 
defer processing of the capsule until after a system reset.



  Chapter 5:  UEFI Runtime  n  101

Depending on the intended consumption, the firmware may process the 
capsule immediately. If the payload should persist across a system reset, the 
reset value returned from QueryCapsuleCapabilities must be passed into 
ResetSystem() and will cause the capsule to be processed by the firmware 
as part of the reset process.

QueryCapsuleCapabilities

This runtime function allows a caller to check whether or not a particular capsule 
can be supported by the platform prior to sending it to the UpdateCapsule 
routine. Many of these checks are based on the type of capsule being passed 
and their associated flag values contained within the capsule header.

Summary
This chapter has introduced some of the basic UEFI runtime capabilities. These 
are unique in that they are the few aspects of the firmware that will reside in the 
system even when the target software (such as the operating system) is running. 
These are the functions that can be leveraged any time during the platform’s 
evolution from pre-OS through the runtime phases.



102  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 103

Chapter 6
UEFI Console  

Services
Never test for an error condition you don’t know how to handle.

—Steinbach’s Guideline for Systems Programming

This chapter describes how UEFI extends the traditional boundaries of 
console support in the pre-boot phase and provides a series of software 

layering approaches that are commonly used in UEFI-compliant platforms. 
Most platforms, at minimum, would have a text-based console for a user to 
either locally or remotely interact with the system. A variety of mechanisms 
can accomplish this communication in UEFI. Whether it is through a 
remote interface, through a local keyboard and monitor, or even a remote 
network connection, each has a common root that can be thought of as the 
basic UEFI console support. This support is used to handle input and output 
of text-based information intended for the system user during the operation 
of code in the UEFI boot services environment. These console definitions 
are split into three types of console devices: one for input, and one each for 
normal output and errors.

These interfaces are specified by function call definitions to allow 
maximum flexibility in implementation. For example, a compliant system is 
not required to have a keyboard or screen directly connected to the system. 
As long as the semantics of the functions are preserved, implementations 
may direct information using these interfaces in any way that succeeds in 
passing the information to the system user.



104  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The UEFI console is built out of two primary protocols: UEFI Simple 
Text Input and UEFI Simple Text Output. These two protocols implement a 
basic text-based console that allows platform firmware, UEFI applications, and 
UEFI OS loaders to present information to and receive input from a system 
administrator. The UEFI console consists of 16-bit Unicode characters, a 
simple set of input control characters known as scan codes, and a set of output-
oriented programmatic interfaces that give functionality equivalent to an 
intelligent terminal. In the UEFI 2.1 specification, an extension to the Simple 
Text Input protocol was introduced (now referred to as Simple Text Input Ex), 
which greatly expanded the supportable keys as well as state information that 
can be retrieved from the keyboard. This text-based set of interfaces does not 
inherently support pointing devices on input or bitmaps on output.

To ensure greatest interoperability, the UEFI Simple Text Output 
protocol is recommended to support at least the printable basic Latin Uni-
code character set to enable standard terminal emulation software to be used 
with a UEFI console. The basic Latin Unicode character set implements a 
superset of ASCII that has been extended to 16-bit characters. This provides 
the maximum interoperability with external terminal emulations that might 
otherwise require the conversion of text encoding to be down-converted to a 
set of ASCII equivalents.

UEFI has a variety of system-wide references to consoles. The UEFI System 
Table contains six console-related entries:

 n ConsoleInHandle – The handle for the active console input 
device. This handle must support the UEFI Simple Text Input 
protocol and the UEFI Simple Text Input Ex protocol. 

 n ConIn – A pointer to the UEFI Simple Text Input protocol interface 
that is associated with ConsoleInHandle.

 n ConsoleOutHandle – The handle for the active console output 
device. This handle must support the UEFI Simple Text Output 
protocol. 

 n ConOut – A pointer to the UEFI Simple Text Output protocol 
interface that is associated with ConsoleOutHandle.



  Chapter 6:  UEFI Console Services  n  105

 n StandardErrorHandle – The handle for the active standard 
error console device. This handle must support the UEFI Simple Text 
Output protocol. 

 n StdErr – A pointer to the UEFI Simple Text Output protocol 
interface that is associated with StandardErrorHandle.

Other system-wide references to consoles in UEFI are contained within the 
global variable definitions. Some of the pertinent global variable definitions in 
UEFI are:

 n ConIn – The UEFI global variable that contains the device path of 
the default input console.

 n ConInDev – The UEFI global variable that contains the device path 
of all possible console input devices.

 n ConOut – The UEFI global variable that contains the device path of 
the default output console.

 n ConOutDev – The UEFI global variable that contains the device 
path of all possible console output devices.

 n ErrOut – The UEFI global variable that contains the device path of 
the default error console.

 n ErrOutDev – The UEFI global variable that contains the device 
path of all possible console output devices.

Figure 6.1 illustrates the software layering discussed so far. A UEFI application 
or driver that wants to communicate through a text interface can use the active 
console shown in the UEFI System Table to call the interface that supports 
the appropriate text input or text output protocol. During initialization, the 
system table is passed to the launched UEFI application or driver, and this 
component can then immediately start using the console in question. 



106  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

EFI  
System Table 

ConIn/ConOut/StdErr 

Application/Driver 

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEST_OUT 

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEST_OUT 
Text I/O 

Abstraction 

HW  
Abstraction 

Device is discovered and 
the device's option 

ROM/driver is launched. 

Device is discovered and 
the device driver is launched. 

Video 
Device 

 

Figure 6.1 Initial Software Layering

To further describe these interactions it is necessary to delve a bit deeper 
into what these text I/O interfaces really look like and what they are effectively 
responsible for. 

Simple Text Input Protocol
The Simple Text Input Protocol defines the minimum input required to 
support a specific ConIn device. This interface provides two basic functions 
for the caller:

 n Reset – This function resets the input device hardware. As part 
of the initialization process, the firmware/device makes a quick but 
reasonable attempt to verify that the device is functioning. This 



  Chapter 6:  UEFI Console Services  n  107

hardware verification process is implementation-specific and is left up 
to the firmware and/or UEFI driver to implement.

 n ReadKeyStroke – This function reads the next keystroke from the 
input device. If no keystroke is pending, the function returns a UEFI 
Not Ready error. If a keystroke is pending, a UEFI key is returned. A 
UEFI key is composed of a scan code as well as a Unicode character. 
The Unicode character is the actual printable character or is zero if the 
key is not represented by a printable character, such as the control key 
or a function key.

When reading a key from the ReadKeyStroke() function, a UEFI Input 
Key is retrieved. In traditional firmware, all PS/2 keys had a hardware specific 
scan code, which was the sole item firmware dealt with. In UEFI, things have 
been changed a bit to facilitate the reasonable transaction of this data both with 
local and remote users. The data sent back has two primary components:

 n Unicode Character – The Simple Text Input protocol defines an input 
stream that contains Unicode characters. This value represents the 
Unicode-encoded 16-bit value that corresponds to the key that was 
pressed by the user. A few Unicode characters have special meaning 
and are thus defined as supported Unicode control characters, as 
described in Table 6.1.

Table 6.1 UEFI-supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is 
at the left margin, no action is taken.

TAB U+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the 
current line.



108  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Scan Code - The input stream supports UEFI scan codes in addition 
to Unicode characters. If the scan code is set to 0x00 then the Unicode 
character is valid and should be used. If the UEFI scan code is set to 
a value other than 0x00, it represents a special key as defined in Table 
6.2.

Table 6.2 UEFI-supported Scan Codes

UEFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.

0x02 Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.

0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0x0f Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

0x17 Escape.



  Chapter 6:  UEFI Console Services  n  109

The ReadKeyStroke function provides the additional capability to 
signal a UEFI event when a key has been received. To leverage this capability, 
one must use either the WaitForEvent or CheckEvent services. The 
event to pass into these services is the following:

 n WaitForKey – The event to use when calling WaitForEvent() 
to wait for a key to be available.

The activity being handled by the Simple Text Input protocol is very similar 
to the INT 16h services that were available in legacy firmware. Some of the 
primary differences are that the legacy firmware service returned only the ASCII 
equivalent 8-bit value for the key that was pressed along with the hardware-
specific (such as PS/2) scan codes.

Simple Text Input Ex Protocol
The Simple Text Input Ex protocol provides the same functionality that the 
Simple Text Input protocol produced and adds a series of additional capabilities. 
This interface provides a few new basic functions for the caller:

 n ReadKeyStrokeEx – This function reads the next keystroke 
from the input device. It operates in a fashion similar to the 
ReadKeyStroke from the Simple Text Input protocol, except 
it has the ability to extract a series of extended keystrokes that were 
not previously possible (See Table 6.3 and Table 6.4). This includes 
both shift state (for example, Left Control key pressed, Right Shift 
pressed, and so on), and toggle information (for example, Caps Lock 
is turned on). If no keystroke is pending, the function returns an EFI 
Not Ready error. If a keystroke is pending, a UEFI key is returned. 

 n Key Registration Capabilities – This set of functions provides for the 
ability to register and unregister a set of keystrokes so that when a user 
hits the same keystroke, a notification function is called. This is useful 
in the case where there is a desire to have a particular hot-key registered 
and then associated with a particular piece of software. This capability 
is often associated with the KEY#### UEFI global variable, which 
associated a key sequence with a particular BOOT#### variable 
target.



110  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n SetState – This function allows the settings of certain state data 
for a given input device. This data often encompasses information 
such as whether or not Caps Lock, Num Lock, or Scroll Lock are 
active.

Table 6.3 Simple Text Input Ex Keyboard Shift States

Key Shift State 
Mask Value

Description

0x80000000 If high bit is on, then the state value is valid. For devices that are not 
capable of producing shift state values, this value will be off.

0x01 Right Shift key is pressed.

0x02 Left Shift key is pressed.

0x04 Right Control key is pressed.

0x08 Left Control key is pressed.

0x10 Right Alt key is pressed.

0x20 Left Alt key is pressed.

0x40 Right logo key is pressed.

0x80 Left logo key is pressed.

0x100 Menu key is pressed.

0x200 System Request (SysReq) key is pressed.

Table 6.4 Simple Text Input Ex Keyboard Toggle States

Keyboard Toggle 
State Mask Value

Description

0x80 If high bit is on, then the state value is valid. For devices that are not 
capable of representing toggle state values, this value will be off.

0x01 Scroll Lock is active.

0x02 Num Lock is active.

0x04 Caps Lock is active.

Simple Text Output Protocol
The Simple Text Output protocol is used to control text-based output devices. 
It is the minimum required protocol for any handle supplied as the ConOut or 



  Chapter 6:  UEFI Console Services  n  111

StdOut device. In addition, the minimum supported text mode of such devices 
is at least 80 × 25 characters. 

A video device that supports only graphics mode is required to emulate text 
mode functionality. Output strings themselves are not allowed to contain any 
control codes other than those defined in Table 6.1. Positional cursor placement 
is done only via the SetCursorPosition() function. It is highly 
recommended that text output to the StdErr device be limited to sequential 
string outputs. That is, it is not recommended to use ClearScreen() or 
SetCursorPosition() on output messages to StdErr, so that this 
data can be clearly captured or viewed.

The Simple Text Output protocol also has a pointer to some mode data, 
as shown in Figure 6.2. This mode data is used to determine what the current 
text settings are for the given device. Much of this information is used to 
determine what the current cursor position is as well as the given foreground 
and background color. In addition, one can stipulate whether a cursor should 
be visible or not.

typedef struct {      
    INT32                           MaxMode;      
    // current settings      
    INT32                           Mode;      
    INT32                           Attribute;      
    INT32                           CursorColumn;      
    INT32                           CursorRow;      
    BOOLEAN                         CursorVisible;      

}SIMPLE_TEXT_OUTPUT_MODE;

Figure 6.2 Mode Structure for UEFI Simple Text Output Protocol

The Simple Text Output protocol also has a variety of text output related 
functions; however, this chapter focuses on some of the most commonly used 
ones:

 n OutputString – Provides the ability to write a NULL-terminated 
Unicode string to the output device and have it displayed. All 
output devices must also support some of the basic Unicode drawing 
characters listed in the UEFI 2.1 Specification. This is the most basic 
output mechanism on an output device. The string is displayed at 
the current cursor location on the output device(s) and the cursor is 
advanced according to the rules listed in Table 6.5.



112  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 6.5 Cursor Advancement Rules

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.

BS U+0008 If the cursor is not at the left edge of the display, then move the 
cursor left one column.

LF U+000A If the cursor is at the bottom of the display, then scroll the display 
one row, and do not update the cursor position. Otherwise, 
move the cursor down one row.

CR U+000D Move the cursor to the beginning of the current row.

Other U+XXXX Print the character at the current cursor position and move the 
cursor right one column. If this moves the cursor past the right 
edge of the display, then the line should wrap to the beginning 
of the next line. This is equivalent to inserting a CR and an LF. 
Note that if the cursor is at the bottom of the display, and the 
line wraps, then the display will be scrolled one line. 

By providing an abstraction that allows a console device, such as a video 
driver, to produce a text interface, this can be compared to legacy firmware 
support for INT 10h. The producer of the Simple Text Output interface is 
responsible for converting the Unicode text characters into the appropriate 
glyphs for that device. In the case where an unrecognized Unicode character 
has been sent to the OutputString() API, the result is typically a warning 
that indicates that these characters were skipped.

 n SetAttribute – This function sets the background and foreground 
colors for both the OutputString() and ClearScreen() 
functions. A variety of foreground and background colors are defined 
by the UEFI 2.1 Specification. The color mask can be set even if the 
device is in an invalid text mode. Devices that support a different 
number of text colors must emulate the specified colors to the best of 
the device’s capabilities.

 n ClearScreen – This function clears the output device(s) display 
to the currently selected background color. The cursor position is set 
to (0, 0).

 n SetCursorPosition – This function sets the current coordinates 
of the cursor position. The upper left corner of the screen is defined 
as coordinate (0, 0).



  Chapter 6:  UEFI Console Services  n  113

Remote Console Support
The previous sections of this chapter described some of the text input and 
output protocols, and used some examples that were generated through local 
devices. UEFI also supports many types of remote console. This support 
leverages the preexisting local interfaces but enables the routing of this data to 
and from devices outside of the platform being executed. 

When a remote console is instantiated, it typically results from UEFI 
constructing an I/O abstraction that a console driver latches onto. In this case, 
the discussion initially concerns serial interface consoles. A variety of console 
transport protocols, such as PC ANSI, VT-100, and so on, describe the format 
of the data that is sent to and from the machine. 

The console driver responsible for producing the Text I/O interfaces acts 
as a filter for the I/O. For example, when a remote key is pressed, this might 
require a variety of pieces of data to be constructed and sent from the remote 
device and upon receipt, the console driver needs to interpret this information 
and convert it into the corresponding UEFI semantics such as the UEFI scan 
code and Unicode character. The same is true for any application running on 
the local machine that prints a message. This message is received by the console 
driver and translated to the remote terminal type semantics. 

Table 6.6 gives examples of how a UEFI scan code can be mapped to ANSI 
X3.64 terminal, PC-ANSI terminal, or an AT 101/102 keyboard. PC ANSI 
terminals support an escape sequence that begins with the ASCII character 
0x1b and is followed by the ASCII character 0x5B, “[“. ASCII characters that 
define the control sequence that should be taken follow the escape sequence. 
The escape sequence does not contain spaces, but spaces are used in Table 6.6 
for ease of reading. For additional information on UEFI terminal support, see 
the latest UEFI Specification. 



114  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 6.6 Sample Conversion Table for UEFI Scan Codes to other Terminal Formats

EFI Scan  
Code

Description ANSI 
X3.64
Codes

PC ANSI  
Codes

AT 101/102 
Keyboard Scan 
Codes

0x00 Null scan code N/A N/A N/A

0x01 Move cursor up 1 
row

CSI A ESC [ A 0xe0, 0x48

0x02 Move cursor down 
1 row

CSI B ESC [ B 0xe0, 0x50

0x03 Move cursor right 1 
column

CSI C ESC [ C 0xe0, 0x4d

0x04 Move cursor left 1 
column

CSI D ESC [ D 0xe0, 0x4b

0x05 Home CSI H ESC [ H 0xe0, 0x47

0x06 End CSI K ESC [ K 0xe0, 0x4f

0x07 Insert CSI @ ESC [ @ 0xe0, 0x52

0x08 Delete CSI P ESC [ P 0xe0, 0x53

0x09 Page Up CSI ? ESC [ ? 0xe0, 0x49

0x0a Page Down CSI / ESC [ / 0xe0, 0x51

Table 6.7 shows some of the PC ANSI and ANSI X3.64 control sequences 
for adjusting display/text display attributes for text displays.

Table 6.7 Example Control Sequences that Can Be Used in Console Drivers

PC ANSI 
Codes

ANSI X3.64 
Codes

Description

ESC [ 2 J CSI 2 J Clear Display Screen.

ESC [ 0 m CSI 0 m Normal Text.

ESC [ 1 m CSI 1 m Bright Text.

ESC [ 7 m CSI 7 m Reversed Text.

ESC [ 30 m CSI 30 m Black foreground, compliant with ISO Standard 6429.

ESC [ 31 m CSI 31 m Red foreground, compliant with ISO Standard 6429.

ESC [ 32 m CSI 32 m Green foreground, compliant with ISO Standard 6429.

ESC [ 33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429.

ESC [ 34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429.



  Chapter 6:  UEFI Console Services  n  115

Figure 6.3 illustrates the software layering for a remote serial interface with 
Text I/O abstractions. The primary difference between this illustration and one 
that exhibits the same Text I/O abstractions on local devices is that this one 
has one additional layer of software drivers. In the former examples, the local 
device was discovered by an agent, launched, and it in turn would establish 
a set of Text I/O abstractions. In the remote case, the local device is a serial 
device, which has a console driver that is layered onto it, and it in turn would 
establish a set of Text I/O abstractions.
 

HW  
Abstraction 

Console Driver layers onto Serial I/O interface 
and produces Text I/O interfaces along with an 
indentifying terminal device path (e.g. VT100). 

Device is discovered and the  
Serial I/O Interface is installed 

Console 
Abstraction 

EFI  
System Table 

ConIn/ConOut/StdErr 

Application/Driver 

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEST_OUT 

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEST_OUT 
Text I/O 

Abstraction 

Serial terminal connections 
through a serial connection 

Remote System 

Figure 6.3 Remote Console Software Layering



116  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Console Splitter
The ability to describe a variety of console devices poses interesting new 
possibilities. In previous generations of firmware, one had a single means by 
which one could describe what the Text I/O sources and targets were. Now 
the UEFI variables that specify the active consoles are specified by a device 
path. In this case, these device paths are multi-instance, meaning that more 
than one target device could be the active input or output. For instance, if one 
wanted to be able to have an application print text to the local screen as well as 
to the screen of a remote terminal, it would be highly impractical for anyone 
to customize their software to accommodate that particular scenario. In the 
solution that UEFI provides with its console splitting/merging capability, an 
application can simply use the standard text interfaces that UEFI provides and 
the console splitter routes the text requests to the appropriate target or targets. 
This works for both input as well as output streams.

The way this works is that when the UEFI-compliant platform initializes, 
the console splitter installs itself in the UEFI System Table as the primary active 
console. In doing so, it can then proceed to monitor the platform as other 
UEFI text interfaces get installed as protocols and the console splitter keeps a 
running tally of the user selected devices for a given console variable, such as 
ConOut, ConIn, or ErrOut. 

Figure 6.4 illustrates a scenario where an application is calling UEFI text 
interfaces, which in turn calls the UEFI System Table console interfaces. These 
interfaces belong to the console splitter, and the console splitter then sends the 
text I/O requests from the application to the platform-configured consoles. 



  Chapter 6:  UEFI Console Services  n  117

Video
Device

EFI_SIMPLE_TEXT_IN 

Application/Driver 

Console Splitter 
Install Hooks so

the Splitter is
Always Called

Local Devices
Remote System

Serial Terminal
Connections
Through a 

Serial Connection

EFI_SIMPLE_TEXT_OUT

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEXT_IN 

Split and Merge
Text I/O Streams 

EFI_SIMPLE_TEXT_OUT

EFI_SIMPLE_TEXT_OUT

Data is Sent to the
Target Video Device

Data is Received from the
Keyboard Device

Console driver translates I/O to and
from a terminal type and EFI

semantics. This driver proxies it
to the physical device abstraction.

Device abstraction receives and 
sends data from the upper

software Layer and the hardware.  

EFI
System Table 

ConIn/
ConOut/StdErr 

ConIn/
ConOut/StdErr 

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12*

B0* B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Tab

Caps Lock

LShif t

LCtr l A0 LAlt Space Bar A2 A3 A4 RCtr l

RShif t

Backspace

D13*

Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Enter

Print SLck Pause

Ins Home PgUp

Del End PgDn

NLck / *

7 8 9

4 5 6

1 2 3

0 .

-

+

Enter

EFI
System Table 

 

Figure 6.4 Software Layering Description of the UEFI Console Splitter



118  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Network Consoles
UEFI also provides the ability to establish data connections with remote 
platforms across a network. Given the appropriate installed drivers, one 
could also enable a UEFI-compliant platform to support a text I/O set of 
abstractions. Similar to previously discussed concepts where the hardware 
interface (for example, serial device, keyboard, video, network interface card) 
has an abstraction, other components build on top of this hardware abstraction 
to provide a working software stack.

Some network components that UEFI might include are as follows:

 n Network Interface Identifier – This is an optional protocol that is 
produced by the Universal Network Driver Interface (UNDI) and is 
used to produce the Simple Network Protocol. This protocol is only 
required if the underlying network interface is a 16-bit UNDI, 32/64-
bit software UNDI, or hardware UNDI. It is used to obtain type and 
revision information about the underlying network interface.

 n Simple Network Protocol – This protocol provides a packet level 
interface to a network adapter. It in addition provides services to 
initialize a network interface, transmit packets, receive packets, and 
close a network interface.

To illustrate what a common network console might look like, you could 
describe an initial hardware abstraction that talks directly to the network 
interface controller (NIC) produced by an UNDI driver. This in turn has a 
Simple Network Protocol that layers on top of UNDI. It provides basic network 
abstraction interfaces such as Send and Receive. On top of this a transport 
protocol might be installed such as a TCP/IP stack. As with most systems, 
once an established transport mechanism is provided, one can build all sorts 
of extensions into the platform such as a Telnet daemon to allow remote users 
to log into the system through a network connection. Ultimately, this daemon 
would produce and be responsible for handling the normal Text I/O interfaces 
already described in this chapter. 

Figure 6.5 illustrates an example where a remote machine is able to access 
the EFI-compliant platform through a network connection. Providing the 
top layer of the software stack (EFI_SIMPLE_TEXT_IN and EFI_SIMPLE_
TEXT_OUT) as the interoperable surface area that applications talk to allows 
for all standard UEFI applications to seamlessly leverage the console support 



  Chapter 6:  UEFI Console Services  n  119

in a platform. Couple this with console splitting and merging as inherent 
capabilities and you have the ability to interact with the platform in a much 
more robust manner without requiring a lot of specially tuned software to 
enable it.

HW  
Abstraction 

Telnet Daemon Console 
Abstraction 

TCP/IP 
Stack 

SNP 

UNDI 

NIC 

Transport 
Layer 

Simple Network 
Protocol 

EFI  
System Table 

ConIn/ConOut/StdErr 

Application/Driver 

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEST_OUT 

EFI_SIMPLE_TEXT_IN EFI_SIMPLE_TEST_OUT 
Text I/O 

Abstraction 

 

Figure 6.5 Example of Network Console Software Layering



120  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Summary
In conclusion, UEFI provides a very robust means of describing the various 
possible input and output console possibilities. It can also support console 
representations through a gamut of protocols such as terminal emulators 
(such as ANSI/VT100) as well as remote network consoles leveraging wider 
variations of the underlying UEFI network stack.



 121

Chapter 7
Different Types of 

Platforms
Variety’s the very spice of life, That gives it all its flavor.

—William Cowper

This chapter describes different platform types and instantiations of the 
Platform Initialization (PI), such as embedded system, laptop, smart 

phone, netbook, tablet, PDA, desktop, and server. In addition to providing 
a “BIOS replacement” for platforms that are commonly referred to as the 
Personal Computer, the PI infrastructure can be used to construct a boot and 
initialization environment for servers, handheld devices, televisions, and so 
on. These sundry devices may include the more common IA-32 processors 
in the PC, but also feature the lower-power Intel® Atom™ processor, or the 
mainframe-class processors such as the Itanium®-based systems. This chapter 
examines the PEI modules and DXE drivers that are necessary to construct 
a standard PC platform. Then a subset of these modules used for emulation 
and Intel Atom-based netbooks and smart phones is described. 

Figure 7.1 is a block diagram of a typical system, showing the various 
components, integrating the CPU package, south bridge, and super I/O, 
beyond other possible components. These blocks represent components 
manufactured on the system board. Each silicon and platform component will 
have an associated module or driver to handle the respective initialization. In 
addition to the components on the system board, the initial system address 
map of the platform has specific region allocations. Figure 7.2 shows the 
system address map of the PC platform, including memory allocation. The 



122  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

system flash in this platform configuration is 1 megabyte in size. The system 
flash appears at the upper end of the 32-bit address space in order to allow 
the Intel® Core i7™ processor to fetch the first opcodes from flash upon reset. 
The reset vector lies 16 bytes from the end of the address space. In the SEC, 
the initial opcodes of the SEC file allow for initial control flow of the PI-
based platform firmware. From the SEC a collection of additional modules 
are executed. The Intel Core i7 processor has both the central processing unit 
(CPU), or core, and portions of the chipset, or uncore. The latter elements 
include the integrated memory controller (IMC) and the system bridge, such 
as to PCI.
 

Direct Video Memory
Modules

Disk

USB

LAN

Audio

CPU Cores

Memory
Controller

South
Bridge

Super
I/O

PCI
Slots

FLASH

SM Bus

PCI-e Bus
SPI Bus

Figure 7.1 Typical PC System



  Chapter 7:  Different Types of Platforms  n  123

 

System FLASH ( 1MB )

Temp Memory

Local APIC

I/O APIC

PCI Resources

System Memory

0xFFFF_FFFF

0xFF00_0000

0xFEF0_0000

0xFEE0_0000

0xFED0_0000

0xFEC0_0000

0xZZZ0_0000

0xYYY0_0000

Low Top of Memory

0x0000_0000

UEFI PI Code and
Data Stored Here

CPU SEC Maps Unused
Region as Temporary
Memory

Figure 7.2 System Address Map



124  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Before going through the various components of the PC firmware load, 
a few other platforms will be reviewed. These include the wireless personal 
digital assistant, which can be a low-power x64 or IA-32 CPU or an Intel Atom 
processor/system-on-a-chip (SoC). The platforms then scale up to a server. This 
is shown in Figure 7.3.
 

Handheld PC

System Flash

Desktop/Server PC

Figure 7.3 Span of Systems

Figure 7.4 shows a series of non-PCs, such as tablets and smart phones. 
The former includes a touch screen and integrated peripherals, such as 3G, 
Wi-Fi† and LTE/WiMAX† radios. The latter devices, namely the smart 
phones, are highly integrated devices with GPS, several radios, touch screens, 
accelerometers, and some NAND storage. Within all of these devices, an Intel 



  Chapter 7:  Different Types of Platforms  n  125

Atom-based system on a chip and a specific collection of PEI modules (PEIMs) 
and DXE drivers execute to initialize the local hardware complex. Then the 
DXE-based UEFI core would boot a UEFI-aware version of an embedded 
operating system, such as MeeGo† or VxWorks†. This demonstrates how the 
platform concept can span many different topologies. These topologies include 
the classical, open-architecture PC and the headless, closed embedded system 
of an I/O board.
 

Figure 7.4 An Intel® Atom™-based System

Now let’s examine the components for the PC in Figure 7.1 in greater 
detail. The PEI phase of execution runs immediately after a restart event, such 
as a power-on reset, resume from hibernate, and so on. The PEI modules 
execute in place from the flash store, at least until the main memory complex 
(such as DRAM) has been initialized. 

Figure 7.5 displays the collection of PEIMs for the PC platform. Different 
business interests would supply the modules. For example, in the platform 
codenamed Lakeport, Intel would provide the Intel® Core™ i7 CPU with an 
integrated Memory Controller Hub Memory Controller PEIM and the PCH 
(Platform Controller Hub) PEIM. The PCH is also known as the “South 
Bridge.” In addition, for the SMBUS (System management bus) attached to the 
PCH, there would be a PCH-specific SMBUS PEIM. The status code PEIM 
would describe a platform-specific means by which to emit debug information, 
such as an 8-bit code emitted to I/O port 80-hex.



126  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Intel CPU Core PEIM

Stall PEIM

SMBUS PEIM

Status Code PEIM

Motherboard PEIM

DXE IPL PEIM

Memory Controller PEIMs

PCI Configuration PEIM

Generic

Generic

PCAT

South Bridge

Platform

Platform

Uncore

PCAT

Init and CPU I/O

Uses 8254 Timer

SMBUS Transactions

Debug Messages

FLASH Map, Boot Policy

Starts DXE Foundation

Read SPD, Init Memory

Uses I/O 0xCF8, 0xCFC

Figure 7.5 Components of PEI on PC

The SMBUS PEIM for the PCH listed in Figure 7.5 provides a standard 
interface, or PEIM-to-PEIM interface (PPI), as shown in Figure 7.6. This 
allows the memory controller PEIM to use the SMBUS read command in 
order to get information regarding the dual-inline memory module (DIMM) 
Serial Presence Detect (SPD) data on the memory. The SPD data includes 
the size, timing, and other details about the memory modules. The memory 
initialization PEIM will use the EFI_PEI_SMBUS_PPI so that the GMCH-
specific memory initialization module does not need to know which component 
provides the SMBUS capability. In fact, many integrated super I/O (SIO) 
components also provide an SMBUS controller, so this platform could have 
replaced the PCH SMBUS PEIM with an SIO SMBUS PEIM without having 
to modify the memory controller PEIM.



  Chapter 7:  Different Types of Platforms  n  127

 

typedef 
EFI_STATUS 
(EFIAPI *PEI_SMBUS_PPI_EXECUTE_OPERATION) ( 
  IN      EFI_PEI_SERVICE           **PeiServices, 
  IN      struct EFI_PEI_SMBUS_PPI  *This, 
  IN      EFI_SMBUS_DEVICE_ADDRESS  SlaveAddress, 
  IN      EFI_SMBUS_DEVICE_COMMAND  Command, 
  IN      EFI_SMBUS_OPERATION       Operation, 
  IN      BOOLEAN                   PecCheck, 
  IN OUT  UINTN                     *Length, 
  IN OUT  VOID                      *Buffer 
  ); 
 
typedef struct { 
  PEI_SMBUS_PPI_EXECUTE_OPERATION  Execute; 
  PEI_SMBUS_PPI_ARP_DEVICE         ArpDevice; 
} EFI_PEI_SMBUS_PPI; 
 

Figure 7.6 Code Fragment for a PEIM PPI

Many implementations are possible beyond the EFI_PEI_SMBUS_PPI 
shown earlier. Figure 7.7 shows a code fragment that implements the SMBUS 
read operation for the PCH component listed earlier. Note the use of the 
CPU I/O abstraction for performing the I/O operations against the PCH 
component. The fact that the logic is written in C means that this same PCH 
on an Intel Atom or Itanium-based system could reuse the same source code 
through a simple compilation for the target microarchitecture.



128  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

#define SMBUS_R_HD0  0xEFA5 
#define SMBUS_R_HBD  0xEFA7 
 
EFI_PEI_SERVICES          *PeiServices; 
SMBUS_PRIVATE_DATA        *Private;? 
UINT8  Index, BlockCount  *Length; 
UINT8                     *Buffer; 
 
BlockCount = Private->CpuIo.IoRead8 ( 
               *PeiServices,Private->CpuIo,SMBUS_R_HD0); 
if (*Length < BlockCount) { 
  return EFI_BUFFER_TOO_SMALL; 
} else { 
  for (Index = 0; Index < BlockCount; Index++) { 
    Buffer[Index] = Private->CpuIo.IoRead8 ( 
                      *PeiServices,Private->CpuIo,SMBUS_R_HBD); 
  } 
} 
 

Figure 7.7 Code Fragment of PEIM Implementation

Beyond the PEI phase, the DXE core requires a series of platform-, CPU-, 
and chipset-specific drivers in order to provide a fully-instantiated set of DXE/
EFI services. Figure 7.8 lists the collection of architectural protocols that are 
necessary for the PC platform under study. 



  Chapter 7:  Different Types of Platforms  n  129

 

Watchdog 

Runtime 
CPU 
BDS 
Timer 
Metronome 
Reset 
Real Time Clock 
Security 
Status Code 
Variable 

Uses Timer-based Events 
Uses Variable Services 
Platform Independent 
Pentium 4 DXE Driver 
Use Sample One for Now 
Uses 8254 Timer 
Uses 8254 Timer 
I/O 0xCF9  
I/O 0x70-0x71 
Platform Specific Authentication 
Debug Messages 
Depends on FLASH Map 

Generic 
Generic 
Generic 
Generic 
Generic 
PCAT 
PCAT 
PCAT 
PCAT 

Platform 
Platform 
Platform 

Monotonic Counter 

Figure 7.8 Architectural Protocols

The fact that the DXE Foundation does not presume anything about the 
timekeeping logic, interrupt controller, instruction set, and so on, means that 
the DXE Foundation C code can be retargeted for a large class of platforms 
without reengineering the Foundation code itself. Instead, a different collection 
of the architectural protocols (APs) can affect the Foundation port. 

One aspect of the system that needs to be abstracted is the management 
of time. The timekeeping hardware on a PC/AT compatible chipset, such as 
the 8254 timer, differs from the CPU-integrated timer-counter (ITC) on the 
Itanium processor or the timekeeping logic specific to the Intel Atom processor. 
As such, in order to have a single implementation of the DXE Foundation 
watchdog-timer logic, the access to CPU/chipset-specific timing hardware 
is implemented via the Timer Architectural Protocol. This AP has a series of 
services, such as getting and setting the time period. The setting of the time 
period will be reviewed across our reference class of platforms. 

To begin, Figure 7.9 provides an instance of the set timer service for the 
NT32 platform. NT32 is a virtual PI platform that executes upon a 32-bit 
Microsoft Windows system as a user-mode process. It is a “soft” platform 
in that the platform capabilities are abstracted through Win32 services. As 
such, the implementation of this AP service doesn’t access an I/O controller 
or chipset control/status registers. Instead, the AP invokes a series of Win32 
services to provide mutual exclusion and an operating system thread to emulate 
the timer action.



130  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

EFI_STATUS 
TimerDriverSetTimerPeriod ( 
  IN EFI_TIMER_ARCH_PROTOCOL  *This, 
  IN UINT64                   TimerPeriod 
  ) 
{ 
. . . 
  gWinNt->EnterCriticalSection (&mNtCriticalSection); 
  mTimerPeriod = TimerPeriod; 
  mCancelTimerThread = FALSE; 
  gWinNt->LeaveCriticalSection (&mNtCriticalSection); 
  mNtLastTick = gWinNt->GetTickCount (); 
  mNtTimerThreadHandle = gWinNt->CreateThread ( 
                                   NULL,  
                                   0,  
                                   NtTimerThread, 
                                   &mTimer,  
                                   0,  
                                   &NtThreadId); 
. . . 
} 
 

Figure 7.9 NT32 Architectural Protocol 

The NT32 implementation is radically different from a bare-metal PI 
implementation. An instance of a hardware implementation can be found in 
Figure 7.10. Herein the memory-mapped registers of an Intel Atom system on 
a chip are accessed by the same AP set timer interface. The DXE Foundation 
cannot discern the difference between the virtual NT32 platform service and 
the actual hardware instance for an Intel Atom processor. 



  Chapter 7:  Different Types of Platforms  n  131

 

EFI_STATUS 
TimerDriverSetTimerPeriod ( 
  IN EFI_TIMER_ARCH_PROTOCOL  *This, 
  IN UINT64                   TimerPeriod 
  ) 
{ 
 UINT64  Count; 
 UINT32  Data; 
. . . 
 Count = DivU64x32 (MultU64x32 (TimerPeriod, OST_CRYSTAL_FREQ) + 5000000,  
                    10000000, NULL); 
 mCpuIo->Mem.Read  (mCpuIo,EfiWidthUint32,OSCR_BASE_PHYSICAL,1,&Data); 
 Data += (UINT32)Count; 
 mCpuIo->Mem.Write (mCpuIo,EfiWidthUint32,OSMR0_BASE_PHYSICAL,1,&Data); 
 mCpuIo->Mem.Read  (mCpuIo,EfiWidthUint32,OIER_BASE_PHYSICAL,1,&Data); 
 Data |= (UINT32)1; 
 mCpuIo->Mem.Write (mCpuIo,EfiWidthUint32,OIER_BASE_PHYSICAL,1,&Data); 
 mCpuIo->Mem.Read  (mCpuIo,EfiWidthUint32,ICMR_PHYSICAL,1,&Data); 
 Data |= (UINT32)(1 << SA_OST0_IRQ_No); 
 mCpuIo->Mem.Write (mCpuIo,EfiWidthUint32,ICMR_PHYSICAL,1,&Data); 
. . . 
} 
 

Figure 7.10 AP from Intel® Atom™

Finally, for the PC/AT and the circa mid-1980s ISA I/O hardware, there 
is an additional implementation of the AP service. Figure 7.11 shows the same 
set timer service when accessing the 8254 timer-counter and then registering 
an interrupt with the 8259 Programmable Interrupt Controller (PIC). This is 
often referred to as a PC/AT version of the AP since all PCs since the PC-XT 
have supported these hardware interfaces. For the PC example in this chapter, 
these ISA I/O resources are supported by the PCH component, versus discrete 
components in the original PC.



132  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

EFI_STATUS 
TimerDriverSetTimerPeriod ( 
  IN EFI_TIMER_ARCH_PROTOCOL  *This, 
  IN UINT64                   TimerPeriod 
  ) 
{ 
 UINT64  Count; 
 UINT8   Data; 
. . . 
 Count = DivU64x32 (MultU64x32(119318, (UINTN) TimerPeriod) + 500000,  
                    1000000, NULL);  
 Data = 0x36; 
 mCpuIo->Io.Write(mCpuIo,EfiCpuIoWidthUint8,TIMER_CONTROL_PORT, 1, &Data); 
 mCpuIo->Io.Write(mCpuIo,EfiCpuIoWidthFifoUint8,TIMER0_COUNT_PORT,2,&Count); 
 mLegacy8259->EnableIrq (mLegacy8259, Efi8259Irq0, FALSE); 
. . . 
} 
 

Figure 7.11 AP for PC/AT

Beyond the many implementation options for an AP to provide the breadth 
of platform porting, additional capabilities in DXE support various platform 
targets. In UEFI, the interaction with the platform occurs through the input 
and output console services. The console input for a PC is typically a PS/2 
or USB keyboard, and the output is a VGA or enhanced video display. But 
the I/O card studied earlier has no traditional “head” or display. These deeply 
embedded platforms may only have a simple serial interface to the system. 
Interestingly, the same PC hardware can also run without a traditional display 
and interact with the user via a simple serial interface. Figure 7.12 displays a 
console stack for a UEFI system built upon a serial interface. 



  Chapter 7:  Different Types of Platforms  n  133

 

BDS / EFI Shell 

Simple Input  
Protocol 

Simple Text 
Output Protocol 

Simple Input  
Protocol 

Simple Text 
Output Protocol 

Serial I/O Protocol 

ISA I/O Protocol 

PCI I/O Protocol 

ISA ACPI Protocol PCI Root Bridge  
I/O Protocol 

PCI Host Bridge Resource  
Allocation Protocol 

Virtual 
Console 

Physical  
Console 

Figure 7.12 Console Stack on a PC

In order to build out this stack, the boot-device selection (BDS) or the 
UEFI shell provides an application or command line interface (CLI) to the 
user. The Simple Input and output protocols are published via a console driver 
that layers upon the Serial I/O protocol. For the PCI-based PC, a PCI root 
bridge protocol allows access to the serial port control and status registers; for 
the Intel Atom platform with an internally-integrated UART/serial port, an 
alternate low-level protocol may exist to access these same registers. 

For this platform layering, the components listed in Figure 7.13 describe 
the DXE and UEFI components needed to build out this console stack. Just 
as in the case of the PEI modules, different interests can deliver the DXE and 
UEFI drivers. For example, the Super I/O vendor may deliver the ISA ACPI 
driver, the silicon vendor PCI root bridge (such as the GMCH in this PC), a 
platform console driver, and then a set of reusable components based upon the 
PC/AT ISA hardware. 



134  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

BDS / EFI Shell Generic

Console Splitter Generic

Terminal Generic

ISA Serial PCAT

ISA Bus Generic

PCI Bus Generic

Console Platform Platform Platform Specific Policy

PCI Root Bridge Uncore Work with Chipset Vendor

PCI Host Bridge Uncore Work with Chipset Vendor

ISA ACPI Super I/O Work with Super I/O Vendor

Figure 7.13 Components for Console Stack

Beyond the console components, several other PEI modules and DXE 
components need to be included into the firmware volume. These other 
components, listed in Figure 7.14, provide for other capabilities. These include 
the platform-specific means by which to store UEFI variables, platform policy 
for security, and configuration. 



  Chapter 7:  Different Types of Platforms  n  135

 

Status Code PEI

PEI

PEI

PEI

DXE

DXE

DXE

DXE

DXE

DXE

DXE

Platform

Memory Controller North Bridge

SMBUS South Bridge

Motherboard Platform

Security Platform

Status Code Platform

Variable Platform

Console Platform Platform

PCI Root Bridge Uncore

PCI Host Bridge Uncore

ISA ACPI Super I/O

Figure 7.14 DXE Drivers on a PC

The UEFI variables can be stored in various regions of the flash part (or 
a service processor on a server), so a driver needs to abstract this store. For 
security, the vendor may demand that field component updates be signed or 
that modules dispatched be hash-extended into a Trusted Platform Module 
(TPM). The security driver will abstract these security capabilities. 

A final feature to describe the component layering of DXE drivers is support 
for the disk subsystem, namely the Integrated Device Electronics (IDE) and 
a UEFI file system. The protocol layering for the disk subsystem up to the file 
system instance are shown in Figure 7.15. 



136  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

BDS / EFI Shell 

PCI I/O Protocol 

IDE Controller Init PCI Root Bridge  
I/O Protocol 

PCI Host Bridge Resource  
Allocation Protocol 

Partition 

Physical Disk 

File Sys Protocol 

Disk I/O Protocol 

Block I/O Protocol 

Disk I/O Protocol 

Block I/O Protocol 

File Sys Protocol 

Disk I/O Protocol 

Block I/O Protocol 

Disk I/O Protocol 

Block I/O Protocol 

Figure 7.15 IDE Stack

The same UEFI shell or BDS resides at the top of the protocol layering. 
Instances of the simple file system (FS) protocol provide the read/write/open/
close capability to applications. The FS protocols layer atop disk I/O protocol. 
A disk I/O provides byte-level access to a sector-oriented block device. As such, 
disk I/O is a software-only driver that provides this mapping from hardware-
specific block I/O abstractions. The disk I/O layer binds to a series of block 
I/O instances. The block I/O protocol is published by the block device interest, 
such as the PCH driver in DXE that abstracts the Serial AT-Attachment (SATA) 
disk controller in the PCH. The disk driver uses the PCI Block I/O protocol to 
access the control and status registers in the PCH component. 

The components that provide these capabilities in the file system stack 
can be found in Figure 7.16. The file system components include the File 
Allocation Table (FAT) driver, a driver that provides FAT12/16/32 support. 
FAT is the original file system for MS-DOS on the original PC that has been 



  Chapter 7:  Different Types of Platforms  n  137

extended over time, culminating in the 32-bit evolution of FAT in Windows95 
as FAT32. In addition, providing different performance options of the storage 
channel can be abstracted via the IDE Controller Initialization component. 
This provides an API so that a platform setup/configuration program or 
diagnostic can change the PCH settings of this feature.
 

Generic

Generic

Generic

Generic

PCAT

Generic

Uncore

Uncore

South Bridge

BDS / EFI Shell

FAT

Partition

Disk I/O

IDE Bus

PCI Bus

PCI Root Bridge

PCI Host Bridge

IDE Controller Init IDE Channel Attributes

Figure 7.16 Components for IDE Init

This same console stack for the serial port and file system stack for the 
SATA controller only depends upon the PCH components, a PCI abstraction, 
and appropriate support components. As such, putting this same PCH, or a 
logically-equivalent version of this chip integrated into another application-
specific integrated circuit (ASIC), will admit reusage of these same binaries 
on other like systems (such as an x64 desktop to an x64 server). Beyond this 
binary reuse across IA32 and x64 platform classes, the C code allows for reuse. 
The use of this PCH, whether the literal component or the aforementioned 
logical integration, on the Itanium Processor, can occur via a recompilation of 
the component C code with the Itanium Processor as the target for the binary.



138  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Summary
This chapter has provided an overview of some platforms that are based 

upon UEFI and PI firmware technology. The power of the abstractions 
of the interfaces comes into play as the firmware can be implemented on a  
PC/AT system, Itanium, and non-PC/AT system on a chip (SoC). In addition 
to the portability of the abstractions, this chapter has also shown how various 
modules are integrated in order to provide a full console and storage stack. 
It is through these detailed platform realizations that the composition of the 
industry APIs and their interoperation comes into light.



 139

Chapter 8
DXE Basics: Core, 
Dispatching, and 

Drivers
I do not fear computers. I fear the lack of them.

—Isaac Asimov

This chapter describes the makeup of the Driver Execution Environment 
(DXE) and how it operates during the platform evolution. In addition, 

it describes some of the fundamental concepts of how information is handed 
off between phases of the platform boot process and how the underlying 
components are launched. The launching description also provides some 
insight into how launch orders are constructed, since they do deviate from 
what is commonly referred to as POST tables in legacy firmware. 

The DXE phase contains an implementation of UEFI that is compliant 
with the PI (Platform Initialization) Specification. As a result, both the DXE 
Core and DXE drivers share many of the attributes of UEFI images. The DXE 
phase is the phase where most of the system initialization is performed. The 
Pre-EFI Initialization (PEI) phase is responsible for initializing permanent 
memory in the platform so the DXE phase can be loaded and executed. 
The state of the system at the end of the PEI phase is passed to the DXE 
phase through a list of position-independent data structures called Hand-Off 
Blocks (HOBs). The DXE phase consists of several components:



140  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n DXE Core

 n DXE Dispatcher

 n DXE Drivers
The DXE Core produces a set of Boot Services, Runtime Services, and DXE 
Services. The DXE Dispatcher is responsible for discovering and executing DXE 
drivers in the correct order. The DXE drivers are responsible for initializing 
the processor, chipset, and platform components as well as providing software 
abstractions for console and boot devices. These components work together 
to initialize the platform and provide the services required to boot an OS. 
The DXE and Boot Device Selection (BDS) phases work together to establish 
consoles and attempt the booting of operating systems. The DXE phase is 
terminated when an OS successfully begins its boot process—that is, when the 
BDS phase starts. Only the runtime services provided by the DXE Core and 
services provided by runtime DXE drivers are allowed to persist into the OS 
runtime environment. The result of DXE is the presentation of a fully formed 
UEFI interface.

Figure 8.1 shows the phases that a platform with UEFI compatible firmware 
goes through on a cold boot. This chapter covers the following:

 n Transition from the PEI to the DXE phase

 n The DXE phase

 n The DXE phase’s interaction with the BDS phase



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  141

 

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Boot Services
Runtime Services

DXE Services

OS-Absent
App

Transient OS
Environment

DXE
Dispatcher

Boot
Dispatcher

Exposed
API

Previously
Exposed

Framework
APIs
Now

Limited

Security

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

Figure 8.1 Platform Boot Phases

DXE Core
The DXE Core is designed to be completely portable with no processor, chipset, 
or platform dependencies. This portability is accomplished by incorporating 
several features:

 n The DXE Core depends only upon a HOB list for its initial state. This 
single dependency means that the DXE Core does not depend on any 
services from a previous phase, so all the prior phases can be unloaded 
once the HOB list is passed to the DXE Core.

 n The DXE Core does not contain any hard-coded addresses. As a result, 
the DXE Core can be loaded anywhere in physical memory, and it 



142  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

can function correctly no matter where physical memory or where 
firmware volumes are located in the processor’s physical address space.

 n The DXE Core does not contain any processor-specific, chipset-specific, 
or platform-specific information. Instead, the DXE Core is abstracted 
from the system hardware through a set of architectural protocol 
interfaces. These architectural protocol interfaces are produced by a 
set of DXE drivers that are invoked by the DXE Dispatcher.

Below is an illustration which shows how data is handed off between the PEI 
and DXE phases.

System
Memory 

PHIT
HOB HOB HOB HOB HOB .. HOB

I/O
Resources 

MMO
Resources 

Firmware
Devices 

Firmware
Volumes 

DXE
Drivers 

DXE
Drivers 

DXE Drivers 

Pre-EFI
Initialization

(PEI) 

Power On Platform Initialization

Driver Execution
Environment

(DXE) 

H
O

B
 L

is
t 

D
X

E
 F

ou
nd

at
io

n

A
rc

hi
te

ct
ur

al
 P

ro
to

co
ls

Figure 8.2 Early Initialization Illustrating a Handoff between PEI and DXE



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  143

The DXE Core produces the EFI System Table and its associated set of 
EFI Boot Services and EFI Runtime Services. The DXE Core also contains the 
DXE Dispatcher, whose main purpose is to discover and execute DXE drivers 
stored in firmware volumes. The order in which DXE drivers are executed is 
determined by a combination of the optional a priori file (see the section on 
the DXE dispatcher) and the set of dependency expressions that are associated 
with the DXE drivers. The firmware volume file format allows dependency 
expressions to be packaged with the executable DXE driver image. DXE drivers 
utilize a PE/COFF image format, so the DXE Dispatcher must also contain a 
PE/COFF loader to load and execute DXE drivers.

The DXE Core must also maintain a handle database. A handle database 
is a list of one or more handles, and a handle is a list of one or more unique 
protocol GUIDs. A protocol is a software abstraction for a set of services. Some 
protocols abstract I/O devices, and other protocols abstract a common set of 
system services. A protocol typically contains a set of APIs and some number of 
data fields. Every protocol is named by a GUID, and the DXE Core produces 
services that allow protocols to be registered in the handle database. As the 
DXE Dispatcher executes DXE drivers, additional protocols are added to the 
handle database including the DXE Architectural Protocols that are used to 
abstract the DXE Core from platform-specific details.

Hand-Off Block (HOB) List

The HOB list contains all the information that the DXE Core requires to 
produce its memory-based services. The HOB list contains information on 
the boot mode, the processor’s instruction set, and the memory that was 
discovered in the PEI phase. It also contains a description of the system 
memory that was initialized by the PEI phase, along with information about 
the firmware devices that were discovered in the PEI phase. The firmware device 
information includes the system memory locations of the firmware devices 
and of the firmware volumes that are contained within those firmware devices. 
The firmware volumes may contain DXE drivers, and the DXE Dispatcher is 
responsible for loading and executing the DXE drivers that are discovered in 
those firmware volumes. Finally, the HOB list may contain the I/O resources 
and memory-mapped I/O resources that were discovered in the PEI phase.

Figure 8.3 shows an example HOB list. The first entry in the HOB list 
is always the Phase Handoff Information Table (PHIT) HOB that contains 
the boot mode. The rest of the HOB list entries can appear in any order. This 



144  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

example shows the different types of system resources that can be described in 
a HOB list. The most important ones to the DXE Core are the HOBs that 
describe system memory and the HOBs that describe firmware volumes. A 
HOB list is always terminated by an end-of-list HOB. The one additional 
HOB type that is not shown in Figure 8.3 is the GUID extension HOB that 
allows a PEIM to pass private data to a DXE driver. Only the DXE driver 
that recognizes the GUID value in the GUID extension HOB can understand 
the data in that HOB. The HOB entries are all designed to be position-
independent. This independence allows the DXE Core to relocate the HOB 
list to a different location if it is not suitable to the DXE Core.

System
Memory 

PHIT
HOB HOB HOB HOB HOB ..... HOB

I/O
Resources 

MMIO
Resources 

Firmware
Devices 

Firmware
Volumes 

DXE
Drivers 

DXE
Drivers 

 

Figure 8.3 HOB List

DXE Architectural Protocols

The DXE Core is abstracted from the platform hardware through a set of DXE 
Architectural Protocols. The DXE Core consumes these protocols to produce 
the EFI Boot Services and EFI Runtime Services. DXE drivers that are loaded 
from firmware volumes produce the DXE Architectural Protocols. This design 
means that the DXE Core must have enough services to load and start DXE 
drivers before even a single DXE driver is executed.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  145

The DXE Core is passed a HOB list that must contain a description of 
some amount of system memory and at least one firmware volume. The system 
memory descriptors in the HOB list are used to initialize the UEFI services that 
require only memory to function correctly. The system is also guaranteed to be 
running on only one processor in flat physical mode with interrupts disabled. 
The firmware volume is passed to the DXE Dispatcher, which must contain a 
read-only FFS driver to search for the a priori file and any DXE drivers in the 
firmware volumes. When a driver is discovered that needs to be loaded and 
executed, the DXE Dispatcher uses a PE/COFF loader to load and invoke the 
DXE driver. The early DXE drivers produce the DXE Architectural Protocols, 
so the DXE Core can produce the full complement of EFI Boot Services and 
EFI Runtime Services. Figure 8.4 shows the HOB list being passed to the 
DXE Core. The DXE Core consumes the services of the DXE Architectural 
Protocols shown in the figure and then produces the EFI System Table, EFI 
Boot Services Table, and the EFI Runtime Services Table.



146  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

System
Memory 

PHIT
HOB

HOB List

EFI Boot
Services Table DXE Services

DXE Foundations / DXE Dispatcher

EFI System Table
EFI Runtime

Services Table

HOB HOB HOB HOB ..... HOB

I/O
Resources 

MMIO
Resources 

Firmware
Devices 

Firmware
Volumes 

DXE
Drivers 

DXE
Drivers 

Runtime
Architectural

Protocol 

BDS
Architectural

Protocol 

Metronome
Architectural

Protocol 

Security
Architectural

Protocol 

Status
Code

Architectural
Protocol 

Monotonic
Counter

Architectural
Protocol 

Variable
Write

Architectural
Protocol 

Variable
Architectural

Protocol 

Watchdog
Timer

Architectural
Protocol 

Timer
Architectural

Protocol 

CPU
Architectural

Protocol 

Real Time
Clock

Architectural
Protocol 

Reset
Architectural

Protocol 

Hardware

 

Figure 8.4 DXE Architectural Protocols

Figure 8.4 shows all the major components present in the DXE phase. 
The EFI Boot Services Table and DXE Services Table shown on the left are 
allocated from UEFI boot services memory. This allocation means that the EFI 
Boot Services Table and DXE Services Table are freed when the OS runtime 
phase is entered. The EFI System Table and EFI Runtime Services Table on 
the right are allocated from EFI Runtime Services memory, and they do persist 
into the OS runtime phase. 

The DXE Architectural Protocols shown on the left in Figure 8.4 are used 
to produce the EFI Boot Services. The DXE Core, DXE Dispatcher, and 
the protocols shown on the left are freed when the system transitions to the 
OS runtime phase. The DXE Architectural Protocols shown on the right are 



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  147

used to produce the EFI Runtime Services. These services persist in the OS 
runtime phase. The Runtime Architectural Protocol in the middle is special. 
This protocol provides the services that are required to transition the runtime 
services from physical mode to virtual mode under the direction of an OS. 
Once this transition is complete, these services can no longer be used.

The following is a brief summary of the DXE Architectural Protocols:

 n Security Architectural Protocol: Allows the DXE Core to authenticate 
files stored in firmware volumes before they are used.

 n CPU Architectural Protocol: Provides services to manage caches, 
manage interrupts, retrieve the processor’s frequency, and query any 
processor-based timers.

 n Metronome Architectural Protocol: Provides the services required to 
perform very short calibrated stalls.

 n Timer Architectural Protocol: Provides the services required to install 
and enable the heartbeat timer interrupt required by the timer services 
in the DXE Core.

 n BDS Architectural Protocol: Provides an entry point that the DXE 
Core calls once after all of the DXE drivers have been dispatched from 
all of the firmware volumes. This entry point is the transition from the 
DXE phase to the BDS phase, and it is responsible for establishing 
consoles and enabling the boot devices required to boot an OS.

 n Watchdog Timer Architectural Protocol: Provides the services required 
to enable and disable a watchdog timer in the platform.

 n Runtime Architectural Protocol: Provides the services required 
to convert all runtime services and runtime drivers from physical 
mappings to virtual mappings.

 n Variable Architectural Protocol: Provides the services to retrieve 
environment variables and set volatile environment variables.



148  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Variable Write Architectural Protocol: Provides the services to set 
nonvolatile environment variables.

 n Monotonic Counter Architectural Protocol: Provides the services 
required by the DXE Core to manage a 64-bit monotonic counter.

 n Reset Architectural Protocol: Provides the services required to reset or 
shut down the platform.

 n Status Code Architectural Protocol: Provides the services to send 
status codes from the DXE Core or DXE drivers to a log or device.

 n Real Time Clock Architectural Protocol: Provides the services to 
retrieve and set the current time and date as well as the time and date 
of an optional wakeup timer.

EFI System Table

The DXE Core produces the EFI System Table, which is consumed by 
every DXE driver and executable image invoked by BDS. It contains all the 
information that is required for these components to use the services provided 
by the DXE Core and any previously loaded DXE driver. Figure 8.5 shows the 
various components that are available through the EFI System Table.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  149

Boot Services and Structures
Only Available Prior to OS Runtime

Runtime Services and Structures
Available Before and During OS Runtime

Standard Error Console

Output Consoles

Input Consoles

Active Consoles

Handle Database

EFI Boot Services Table

Task Priority Level Services

Memory Services

Event and Timer Services

Protocol Handler Services

Image Services

Driver Support Services

System Configuration Table

DXE Services Table

HOB List

ACPI Table

SMBIOS Table

…
SAL System Table

EFI Runtime Services Table

Variable Services

Real Time Clock Services

Reset Services

Status Code Services

Virtual Memory Services

Version Information

EFI Specification Version

Firmware Vendor

Firmware Revision

    DXE Services Table 

Global Coherency Domain Services

Dispatcher Services

Protocol Interface 

EFI
System
Table

 

Figure 8.5 EFI System Table and Related Components

The DXE Core produces the EFI Boot Services, EFI Runtime Services, 
and DXE Services with the aid of the DXE Architectural Protocols. The EFI 
System Table provides access to all the active console devices in the platform 
and the set of EFI Configuration Tables. The EFI Configuration Tables are 



150  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

an extensible list of tables that describe the configuration of the platform 
including pointers to tables such as DXE Services, the HOB list, ACPI, System 
Management BIOS (SMBIOS), and the SAL System Table. This list may be 
expanded in the future as new table types are defined. Also, through the use of 
the Protocol Handle Services in the EFI Boot Services Table, any executable 
image can access the handle database and any of the protocol interfaces that 
have been registered by DXE drivers.

When the transition to the OS runtime is performed, the handle database, 
active consoles, EFI Boot Services, and services provided by boot service DXE 
drivers are terminated. This termination frees more memory for use by the 
OS and leaves the EFI System Table, EFI Runtime Services Table, and the 
system configuration tables available in the OS runtime environment. You also 
have the option of converting all of the EFI Runtime Services from a physical 
address space to an operating system specific virtual address space. This address 
space conversion may only be performed once.

EFI Boot Services Table

The following is a brief summary of the services that are available through the 
EFI Boot Services Table:

 n Task Priority Services: Provides services to increase or decrease the 
current task priority level. This priority mechanism can be used to 
implement simple locks and to disable the timer interrupt for short 
periods of time. These services depend on the CPU Architectural 
Protocol.

 n Memory Services: Provides services to allocate and free pages in  
4 KB increments and allocate and free pool on byte boundaries. It also 
provides a service to retrieve a map of all the current physical memory 
usage in the platform.

 n Event and Timer Services: Provides services to create events, signal 
events, check the status of events, wait for events, and close events. 
One class of events is timer events, which supports periodic timers 
with variable frequencies and one-shot timers with variable durations. 
These services depend on the CPU Architectural Protocol, Timer 
Architectural Protocol, Metronome Architectural Protocol, and 
Watchdog Timer Architectural Protocol.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  151

 n Protocol Handler Services: Provides services to add and remove 
handles from the handle database. It also provides services to add and 
remove protocols from the handles in the handle database. Additional 
services are available that allow any component to look up handles 
in the handle database and open and close protocols in the handle 
database.

 n Image Services: Provides services to load, start, exit, and unload 
images using the PE/COFF image format. These services depend on 
the Security Architectural Protocol.

 n Driver Support Services: Provides services to connect and disconnect 
drivers to devices in the platform. These services are used by the BDS 
phase to either connect all drivers to all devices, or to connect only 
the minimum number of drivers to devices required to establish the 
consoles and boot an OS. The minimal connect strategy is how a fast 
boot mechanism is provided.

EFI Runtime Services Table

The following is a brief summary of the services that are available through the 
EFI Runtime Services Table:

 n Variable Services: Provides services to lookup, add, and remove 
environment variables from nonvolatile storage. These services 
depend on the Variable Architectural Protocol and the Variable Write 
Architectural Protocol.

 n Real Time Clock Services: Provides services to get and set the current 
time and date. It also provides services to get and set the time and date 
of an optional wakeup timer. These services depend on the Real Time 
Clock Architectural Protocol.

 n Reset Services: Provides services to shutdown or reset the platform. 
These services depend on the Reset Architectural Protocol.



152  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Status Code Services: Provides services to send status codes to a system 
log or a status code reporting device. These services depend on the 
Status Code Architectural Protocol.

 n Virtual Memory Services: Provides services that allow the runtime 
DXE components to be converted from a physical memory map to a 
virtual memory map. These services can only be called once in physical 
mode. Once the physical to virtual conversion has been performed, 
these services cannot be called again. These services depend on the 
Runtime Architectural Protocol.

DXE Services Table

The following is a brief summary of the services that are available through the 
DXE Services Table:

 n Global Coherency Domain Services: Provides services to manage 
I/O resources, memory-mapped I/O resources, and system memory 
resources in the platform. These services are used to dynamically add 
and remove these resources from the processor’s Global Coherency 
Domain (GCD).

 n DXE Dispatcher Services: Provides services to manage DXE drivers 
that are being dispatched by the DXE Dispatcher.

Global Coherency Domain Services
The Global Coherency Domain (GCD) Services are used to manage the 
memory and I/O resources visible to the boot processor. These resources are 
managed in two different maps:

 n GCD memory space map

 n GCD I/O space map
If memory or I/O resources are added, removed, allocated, or freed, then 
the GCD memory space map and GCD I/O space map are updated. GCD 
Services are also provided to retrieve the contents of these two resource maps.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  153

The GCD Services can be broken up into two groups. The first manages 
the memory resources visible to the boot processor, and the second manages 
the I/O resources visible to the boot processor. Not all processor types support 
I/O resources, so the management of I/O resources may not be required. 
However, since system memory resources and memory-mapped I/O resources 
are required to execute the DXE environment, the management of memory 
resources is always required.

GCD Memory Resources

The Global Coherency Domain (GCD) Services used to manage memory 
resources include the following:

 n AddMemorySpace()

 n AllocateMemorySpace()

 n FreeMemorySpace()

 n RemoveMemorySpace()

 n SetMemorySpaceAttributes()

The GCD Services used to retrieve the GCD memory space map include the 
following:

 n GetMemorySpaceDescriptor()

 n GetMemorySpaceMap()

The GCD memory space map is initialized from the HOB list that is passed 
to the entry point of the DXE Core. One HOB type describes the number 
of address lines that are used to access memory resources. This information 
is used to initialize the state of the GCD memory space map. Any memory 
regions outside this initial region are unavailable to any of the GCD Services 
that are used to manage memory resources. The GCD memory space map is 
designed to describe the memory address space with as many as 64 address 
lines. Each region in the GCD memory space map can begin and end on a byte 
boundary. Additional HOB types describe the location of system memory, the 
location memory mapped I/O, the location of firmware devices, the location 



154  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

of firmware volumes, the location of reserved regions, and the location of 
system memory regions that were allocated prior to the execution of the DXE 
Core. The DXE Core must parse the contents of the HOB list to guarantee 
that memory regions reserved prior to the execution of the DXE Core are 
honored. As a result, the GCD memory space map must reflect the memory 
regions described in the HOB list. The GCD memory space map provides the 
DXE Core with the information required to initialize the memory services 
such as AllocatePages(), FreePages(), AllocatePool(), 
FreePool(), and GetMemoryMap().

A memory region described by the GCD memory space map can be in one 
of several different states:

 n Nonexistent memory

 n System memory

 n Memory-mapped I/O

 n Reserved memory
These memory regions can be allocated and freed by DXE drivers executing 
in the DXE environment. In addition, a DXE driver can attempt to adjust 
the caching attributes of a memory region. Figure 8.6 shows the possible state 
transitions for each byte of memory in the GCD memory space map. The 
transitions are labeled with the GCD Service that can move the byte from 
one state to another. The GCD services are required to merge similar memory 
regions that are adjacent to each other into a single memory descriptor, which 
reduces the number of entries in the GCD memory space map.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  155

Allocated
MMIO

MMIO

Non Existent

Allocated
System Memory

System Memory

Allocated
Reserved

Reserved

Allocated
Non Existent

SetAttributes

SetAttributes

SetAttributes

FreeAllocate

RemoveAdd

Add

Remove

Add

Remove

AllocateFree

FreeAllocate FreeAllocate

SetAttributes

SetAttributes

SetAttributes

SetAttributes SetAttributes

Operation
Add

Remove

Allocate

Free

SetAttributes

AddMemorySpace()

RemoveMemorySpace()

AllocateMemorySpace()

FreeMemorySpace()

SetMemorySpaceAttributes()

GCD Service

 

Figure 8.6 GCD Memory State Transitions



156  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

GCD I/O Resources

The Global Coherency Domain (GCD) Services used to manage I/O resources 
include the following:

 n AddIoSpace()

 n AllocateIoSpace()

 n FreeIoSpace()

 n RemoveIoSpace()

The GCD Services used to retrieve the GCD I/O space map include the 
following:

 n GetIoSpaceDescriptor()

 n GetIoSpaceMap()

The GCD I/O space map is initialized from the HOB list that is passed to the 
entry point of the DXE Core. One HOB type describes the number of address 
lines that are used to access I/O resources. This information is used to initialize 
the state of the GCD I/O space map. Any I/O regions outside this initial 
region are not available to any of the GCD Services that are used to manage 
I/O resources. The GCD I/O space map is designed to describe the I/O address 
space with as many as 64 address lines. Each region in the GCD I/O space map 
can begin and end on a byte boundary.

An I/O region described by the GCD I/O space map can be in several 
different states. These include nonexistent I/O, I/O, and reserved I/O. These 
I/O regions can be allocated and freed by DXE drivers executing in the DXE 
environment. Figure 8.7 shows the possible state transitions for each byte of 
I/O in the GCD I/O space map. The transitions are labeled with the GCD 
Service that can move the byte from one state to another. The GCD Services 
are required to merge similar I/O regions that are adjacent to each other into 
a single I/O descriptor, which reduces the number of entries in the GCD I/O 
space map.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  157

Non Existent

Allocated
I/O

I/O

Allocated
Reserved

Reserved

Allocated
Non Existent

Add

Remove

Add

Remove

AllocateFree

FreeAllocate FreeAllocate

Operation
Add

Remove

Allocate

Free

AddioSpace()

RemoveioSpace()

AllocateioSpace()

FreeioSpace()

GCD Service

 

Figure 8.7 GCD I/O State Transitions

DXE Dispatcher
After the DXE Core is initialized, control is handed to the DXE Dispatcher. 
The DXE Dispatcher is responsible for loading and invoking DXE drivers 
found in firmware volumes. The DXE Dispatcher searches for drivers in the 
firmware volumes described by the HOB list. As execution continues, other 
firmware volumes might be located. When they are, the DXE Dispatcher 
searches them for drivers as well.



158  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

When a new firmware volume is discovered, a search is made for its a priori 
file. The a priori file has a fixed file name and contains the list of DXE drivers 
that should be loaded and executed first. There can be at most one a priori file 
per firmware volume, although it is acceptable to have no a priori file at all. 
Once the DXE drivers from the a priori file have been loaded and executed, the 
dependency expressions of the remaining DXE drivers in the firmware volumes 
are evaluated to determine the order in which they will be loaded and executed. 
The a priori file provides a strongly ordered list of DXE drivers that are not 
required to use dependency expressions. The dependency expressions provide 
a weakly ordered execution of the remaining DXE drivers. Before each DXE 
driver is executed, it must be authenticated with the Security Architectural 
Protocol. This authentication prevents DXE drivers with unknown origins 
from being executed.

Control is transferred from the DXE Dispatcher to the BDS Architectural 
Protocol after the DXE drivers in the a priori file and all the DXE drivers whose 
dependency expressions evaluate to TRUE have been loaded and executed. 
The BDS Architectural Protocol is responsible for establishing the console 
devices and attempting the boot of operating systems. As the console devices 
are established and access to boot devices is established, additional firmware 
volumes may be discovered. If the BDS Architectural Protocol is unable to 
start a console device or gain access to a boot device, it reinvokes the DXE 
Dispatcher. This invocation allows the DXE Dispatcher to load and execute 
DXE drivers from firmware volumes that have been discovered since the last 
time the DXE Dispatcher was invoked. Once the DXE Dispatcher has loaded 
and executed all the DXE drivers it can, control is once again returned to 
the BDS Architectural Protocol to continue the OS boot process. Figure 8.8 
illustrates this basic flow between the Dispatcher, its launched drivers, and the 
BDS.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  159

Firmware Volume
Protocol Driver

Firmware Volume Block
Protocol Driver

DXE Foundation

DXE Dispatcher

HOB List 

BDS

O/S Loader

Driver Execution Environment
(DXE)

Platform Initialization O/S Boot

Boot Device Selection
(BDS)

DXE Drivers

FLASH

 

Figure 8.8 The Handshake between the Dispatcher and Other Components.



160  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The a priori File

The a priori file is a special file that may be present in a firmware volume. The 
rule is that there may be at most one a priori file per firmware volume present 
in a platform. The a priori file has a known GUID file name, so the DXE 
Dispatcher can always find the a priori file. Every time the DXE Dispatcher 
discovers a firmware volume, it first looks for the a priori file. The a priori file 
contains the list of DXE drivers that should be loaded and executed before any 
other DXE drivers are discovered. The DXE drivers listed in the a priori file 
are executed in the order that they appear. If any of those DXE drivers have         
an associated dependency expression, then those dependency expressions are 
ignored.

The purpose of the a priori file is to provide a deterministic execution 
order of DXE drivers. DXE drivers that are executed solely based on their 
dependency expression are weakly ordered, which means that the execution 
order is not completely deterministic between boots or between platforms. 
Some cases, however, require a deterministic execution order. One example 
would be to list the DXE drivers that are required to debug the rest of the 
DXE phase in the a priori file. These DXE drivers that provide debug services 
might have been loaded much later if only their dependency expressions were 
considered. By loading them earlier, more of the DXE Core and DXE drivers 
can be debugged. Another example is to use the a priori file to eliminate the 
need for dependency expressions. Some embedded platforms may require only 
a few DXE drivers with a highly deterministic execution order. The a priori 
file can provide this ordering, and none of the DXE drivers would require 
dependency expressions. The dependency expressions do have some amount 
of firmware device overhead, so this method might actually conserve firmware 
space. The main purpose of the a priori file is to provide a greater degree of 
flexibility in the firmware design of a platform.

Dependency Grammar

A DXE driver is stored in a firmware volume as a file with one or more 
sections. One of the sections must be a PE/COFF image. If a DXE driver has a 
dependency expression, then it is stored in a dependency section. A DXE driver 
may contain additional sections for compression and security wrappers. The 
DXE Dispatcher can identify the DXE drivers by their file type. In addition, 
the DXE Dispatcher can look up the dependency expression for a DXE driver 



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  161

by looking for a dependency section in a DXE driver file. The dependency 
section contains a section header followed by the actual dependency expression 
that is composed of a packed byte stream of opcodes and operands.

Dependency expressions stored in dependency sections are designed to be 
small to conserve space. In addition, they are designed to be simple and quick 
to evaluate to reduce execution overhead. These two goals are met by designing 
a small, stack-based instruction set to encode the dependency expressions. The 
DXE Dispatcher must implement an interpreter for this instruction set to 
evaluate dependency expressions. Table 8.1 gives a summary of the supported 
opcodes in the dependency expression instruction set.

Table 8.1 Supported Opcodes in the Dependency Expression Instruction Set

Opcode Description

0x00 BEFORE <File Name GUID>

0x01 AFTER <File Name GUID>

0x02 PUSH <Protocol GUID>

0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE

0x07 FALSE

0x08 END

0x09 SOR

Because multiple dependency expressions may evaluate to TRUE at the 
same time, the order in which the DXE drivers are loaded and executed may 
vary between boots and between platforms even though the contents of their 
firmware volumes are identical. This variation is why the ordering is weak for 
the execution of DXE drivers in a platform when dependency expressions are 
used.



162  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

DXE Drivers
DXE drivers have two subclasses:

 n DXE drivers that execute very early in the DXE phase

 n DXE drivers that comply with the UEFI Driver Model
The execution order of the first subclass, the early DXE drivers, depends on 
the presence and contents of an a priori file and the evaluation of dependency 
expressions. These early DXE drivers typically contain processor, chipset, and 
platform initialization code. They also typically produce the DXE Architectural 
Protocols that are required for the DXE Core to produce its full complement 
of EFI Boot Services and EFI Runtime Services. To support the fastest possible 
boot time, as much initialization as possible should be deferred to the second 
subclass of DXE drivers, those that comply with the UEFI Driver Model.

The DXE drivers that comply with the UEFI Driver Model do not perform 
any hardware initialization when they are executed by the DXE Dispatcher. 
Instead, they register a Driver Binding Protocol interface in the handle database. 
The set of Driver Binding Protocols are used by the BDS phase to connect the 
drivers to the devices required to establish consoles and provide access to boot 
devices. The DXE Drivers that comply with the UEFI Driver Model ultimately 
provide software abstractions for console devices and boot devices but only 
when they are explicitly asked to do so.

All DXE drivers may consume the EFI Boot Services and EFI Runtime 
Services to perform their functions. However, the early DXE drivers need to be 
aware that not all of these services may be available when they execute because 
not all of the DXE Architectural Protocols might have been registered yet. 
DXE drivers must use dependency expressions to guarantee that the services 
and protocol interfaces they require are available before they are executed.

The DXE drivers that comply with the UEFI Driver Model do not need 
to be concerned with this possibility. These drivers simply register the Driver 
Binding Protocol in the handle database when they are executed. This operation 
can be performed without the use of any DXE Architectural Protocols. The 
BDS phase will not be entered until all of the DXE Architectural Protocols 
are registered. If the DXE Dispatcher does not have any more DXE drivers to 
execute but not all of the DXE Architectural Protocols have been registered, 
then a fatal error has occurred and the system will be halted.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  163

Boot Device Selection (BDS) Phase
The Boot Device Selection (BDS) Architectural Protocol executes during the 
BDS phase. The BDS Architectural Protocol is discovered in the DXE phase, 
and it is executed when two conditions are met:

 n All of the DXE Architectural Protocols have been registered in the 
handle database. This condition is required for the DXE Core to 
produce the full complement of EFI Boot Services and EFI Runtime 
Services.

 n The DXE Dispatcher does not have any more DXE drivers to load 
and execute. This condition occurs only when all the a priori files 
from all the firmware volumes have been processed and all the DXE 
drivers whose dependency expression have evaluated to TRUE have 
been loaded and executed.

The BDS Architectural Protocol locates and loads various applications that 
execute in the pre-boot services environment. Such applications might 
represent a traditional OS boot loader or extended services that might run 
instead of or prior to loading the final OS. Such extended pre-boot services 
might include setup configuration, extended diagnostics, flash update support, 
OEM services, or the OS boot code.

Vendors such as IBVs, OEMs, and ISVs may choose to use a reference 
implementation, develop their own implementation based on the reference, or 
develop an implementation from scratch.

The BDS phase performs a well-defined set of tasks. The user interface and 
user interaction that occurs on different boots and different platforms may 
vary, but the boot policy that the BDS phase follows is very rigid. This boot 
policy is required so OS installations will behave predictably from platform to 
platform. The tasks include the following:

 n Initialize console devices based on the ConIn, ConOut, and 
StdErr environment variables.

 n Attempt to load all drivers listed in the Driver#### and 
DriverOrder environment variables.



164  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Attempt to boot from the boot selections listed in the Boot#### 
and BootOrder environment variables.

If the BDS phase is unable to connect a console device, load a driver, or boot a 
boot selection, it is required to reinvoke the DXE Dispatcher. This invocation is 
required because additional firmware volumes may have been discovered while 
attempting to perform these operations. These additional firmware volumes 
may contain the DXE drivers required to manage the console devices or boot 
devices. Once all of the DXE drivers have been dispatched from any newly 
discovered firmware volumes, control is returned to the BDS phase. If the BDS 
phase is unable to make any additional forward progress in connecting the 
console device or the boot device, then the connection of that console device 
or boot selection fails. When a failure occurs, the BDS phase moves on to the 
next console device, driver load, or boot selection.

Console Devices

Console devices are abstracted through the Simple Text Output and Simple 
Input Protocols. Any device that produces one or both of these protocols may 
be used as a console device on a UEFI-based platform. Several types of devices 
are capable of producing these protocols, including the following:

 n VGA Adapters: These adapters can produce a text-based display that 
is abstracted with the Simple Text Output Protocol.

 n Video Adapters: These adapters can produce a Graphics Output 
Protocol (GOP) which is a graphical interface that supports Block 
Transfer (BLT) operations. A text-based display that produces the 
Simple Text Output Protocol can be simulated on top of a GOP 
display by using BLT operations to send Unicode glyphs into the 
frame buffer.  GOP is also the means by which graphics is typically 
rendered to the local video device.

 n Serial Terminal: A serial terminal device can produce both the Simple 
Input and Simple Text Output Protocols. Serial terminals are very 
flexible, and they can support a variety of wire protocols such as PC 
ANSI, VT-100, VT-100+, and VTUTF8.



  Chapter 8:  DXE Basics: Core, Dispatching, and Drivers  n  165

 n Telnet: A telnet session can produce both the Simple Input and 
Simple Text Output Protocols. Like the serial terminal, a variety of 
wire protocols can be supported including PC ANSI, VT-100, VT-
100+, and VTUTF8.

 n Remote Graphical Displays (HTTP): A remote graphical display can 
produce both the Simple Input and Simple Text Output Protocols. 
One possible implementation could use HTTP, so standard Internet 
browsers could be used to manage a UEFI-based platform.

Boot Devices

Several types of boot devices are supported in UEFI:

 n Devices that produce the Block I/O Protocol and are formatted with 
a FAT file system

 n Devices that directly produce the File System Protocol

 n Devices that directly produce the Load File Protocol
Disk devices typically produce the Block I/O Protocol, and network devices 
typically produce the Load File Protocol.

A UEFI implementation may also choose to include legacy compatibility 
drivers. These drivers provide the services required to boot a traditional OS, 
and the BDS phase could then also support booting a traditional OS.

Boot Services Terminate

The BDS phase is terminated when an OS loader is executed and an OS is 
successfully booted. An OS loader or an OS kernel may call a single service 
called ExitBootServices() to terminate the BDS phase. Once this 
call is made, all of the boot service components are freed and their resources 
are available for use by the OS. When the call to ExitBootServices() 
returns, the Runtime (RT) phase has been entered.



166  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Summary
In conclusion, the DXE phase encompasses the establishing of the entire 
infrastructure necessary for UEFI compliant components to operate. This 
includes the establishment of the service tables and other requisite architectural 
protocols. As the DXE phase completes and passes control to the BDS, the 
platform then proceeds to complete any initialization required to launch of 
boot target.



 167

Chapter 9
Some Common  

UEFI and PI Functions
Never let the future disturb you. You will meet it, if you have to, with the 
same weapons of reason which today arm you against the present.

—Marcus Aurelius Antoninus

UEFI provides a variety of functions that are used for drivers and 
applications to communicate with the underlying UEFI components. 

Many of the designs for interfaces have historically been short-sighted due 
to their inability to predict changes in technology. An example of such 
shortsightedness might be where a disk interface assumed that a disk might 
never have more than 8 gigabytes of space available. It is often hard to predict 
what changes technology might provide. Many famous statements have been 
made that fret about how a personal computer might never be practical, or 
assure readers that 640 kilobytes of memory would be more than anyone 
would ever need. With these poor past predictions in mind, one can attempt 
to learn from such mistakes and design interfaces that are robust enough for 
common practices today, and make the best attempt at predicting how one 
might use these interfaces years from today.

This chapter describes a selection of common interfaces that show up in 
UEFI as well as the PI specifications:

 n Architectural Protocols: These are a set of protocols that abstract the 
platform hardware from the UEFI drivers and applications. They are 
unusual only in that they are the protocols that are going to be used 



168  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

by the UEFI compatible firmware implementation. These protocols 
in their current form were introduced into the PI specifications.

 n PCI Protocols: These protocols abstract all aspects of interaction with 
the underlying PCI bus, enumeration of said bus, as well as resource 
allocation. These interfaces were introduced for UEFI, and would be 
present in both UEFI and PI implementations.

 n Block I/O: This protocol is used to abstract mass storage devices to 
allow code running in the EFI Boot Services environment to access 
them without specific knowledge of the type of device or controller 
that manages the device. This interface was introduced for UEFI, and 
would be present in both UEFI and PI implementations.

 n Disk I/O: This protocol is used to abstract the block accesses of the 
Block I/O protocol to a more general offset-length protocol. The 
firmware is responsible for adding this protocol to any Block I/O 
interface that appears in the system that does not already have a Disk 
I/O protocol. File systems and other disk access code utilize the Disk 
I/O protocol. This interface was introduced for UEFI, and would be 
present in both UEFI and PI implementations.

 n Simple File System: This protocol allows code running in the EFI 
Boot Services environment to obtain file-based access to a device. 
The Simple File System protocol is used to open a device volume and 
return an EFI_FILE handle that provides interfaces to access files on 
a device volume. This interface was introduced for UEFI, and would 
be present in both UEFI and PI implementations.

Architectural Protocol Examples
A variety of architectural protocols exist in the platform. These protocols 
function just like other protocols in every way. The only difference is that these 
protocols are consumed by the platform’s core services and the remainder of the 
drivers and applications in turn call these core services to act on the platform 
in various ways. Generally, the only users of the architectural protocols are 
the core services themselves. The architectural protocols abstract the hardware 



  Chapter 9:  Some Common UEFI and PI Functions  n  169

and are the only agents in the system that would typically talk directly to the 
hardware in the pre-boot environment. Everything else in the system would 
communicate with a core service to communicate any sort of requests to the 
hardware. Figure 9.1 illustrates this high level software handshake. 
 

Driver Execution Environment (DXE) 
Boot Device

Selection
(BDS)

Core Services 

DXE Drivers 

DXE 
Applications 

A
rc

hi
te

ct
ur

al
 P

ro
to

co
ls

 

Platform Initialization O/S Boot

Figure 9.1 Platform Software Flow Diagram

To show more clearly how some of these architectural protocols are designed 
and how they operate, several key examples will be examined in further detail. 
Note that the following examples are not the full set of architectural protocols 
but are used to illustrate some of their functionality. For the full set, please refer 
to the appropriate DXE specifications. 



170  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

CPU Architectural Protocol

The CPU Architectural Protocol is used to abstract processor-specific functions 
from the DXE Foundation. This includes flushing caches, enabling and 
disabling interrupts, hooking interrupt vectors and exception vectors, reading 
internal processor timers, resetting the processor, and determining the processor 
frequency. This protocol must be produced by a boot service or runtime DXE 
driver and may only be consumed by the DXE Foundation and DXE drivers 
that produce architectural protocols. By allowing this protocol to be produced 
by a boot service driver, it is evident that this abstraction will not persist when 
the platform has the boot services terminated by launching a boot target such 
as an operating system.

The GCD memory space map is initialized by the DXE Foundation based 
on the contents of the HOB list. The HOB list contains the capabilities of 
the different memory regions, but it does not contain their current attributes. 
The DXE driver that produces the CPU Architectural Protocol is responsible 
for maintaining the current attributes of the memory regions visible to the 
processor.

This means that the DXE driver that produces the CPU Architectural 
Protocol must seed the GCD memory space map with the initial state of the 
attributes for all the memory regions visible to the processor. The DXE Service 
SetMemorySpaceAttributes() allows the attributes of a memory 
range to be modified. The SetMemorySpaceAttributes() DXE 
Service is implemented using the SetMemoryAttributes() service of 
the CPU Architectural Protocol.

To initialize the state of the attributes in the GCD memory space map, the 
DXE driver that produces the CPU Architectural Protocol must call the DXE 
Service SetMemorySpaceAttributes() for all the different memory 
regions visible to the processor passing in the current attributes. This, in turn, 
will call back to the SetMemoryAttributes() service of the CPU 
Architectural Protocol, and all of these calls must return EFI_SUCCESS, since 
the DXE Foundation is only requesting that the attributes of the memory region 
be set to their current settings. This forces the current attributes in the GCD 
memory space map to be set to these current settings. After this initialization is 
complete, the next call to the DXE Service GetMemorySpaceMap() will 
correctly show the current attributes of all the memory regions. In addition, 
any future calls to the DXE Service SetMemorySpaceAttributes() 
will in turn call the CPU Architectural Protocol to see if those attributes can 



  Chapter 9:  Some Common UEFI and PI Functions  n  171

be modified, and if they can, the GCD memory space map will be updated 
accordingly.

The CPU Architectural Protocol uses the following protocol definition:

Protocol Interface Structure
typedef struct _EFI_CPU_ARCH_PROTOCOL {
  EFI_CPU_FLUSH_DATA_CACHE              FlushDataCache;
  EFI_CPU_ENABLE_INTERRUPT              EnableInterrupt;
  EFI_CPU_DISABLE_INTERRUPT             DisableInterrupt;
  EFI_CPU_GET_INTERRUPT_STATE           GetInterruptState;
  EFI_CPU_INIT                          Init;
  EFI_CPU_REGISTER_INTERRUPT_HANDLER    RegisterInterruptHandler;
  EFI_CPU_GET_TIMER_VALUE               GetTimerValue;
  EFI_CPU_SET_MEMORY_ATTRIBUTES         SetMemoryAttributes;
  UINT32                                NumberOfTimers;
  UINT32                                DmaBufferAlignment;
} EFI_CPU_ARCH_PROTOCOL;

 n FlushDataCache – Flushes a range of the processor’s data cache. If 
the processor does not contain a data cache, or the data cache is fully 
coherent, then this function can just return EFI_SUCCESS. If the 
processor does not support flushing a range of addresses from the data 
cache, then the entire data cache must be flushed. This function is 
used by the root bridge I/O abstractions to flush data caches for DMA 
operations.

 n EnableInterrupt – Enables interrupt processing by the processor. See 
the EnableInterrupt() function description. This function is 
used by the Boot Service RaiseTPL() and RestoreTPL().

 n DisableInterrupt – Disables interrupt processing by the processor. See 
the DisableInterrupt() function description. This function 
is used by the Boot Service RaiseTPL() andRestoreTPL().

 n GetInterruptState – Retrieves the processor’s current interrupt state. 

 n Init – Generates an INIT on the processor. This function may be 
used by the Reset Architectural Protocol depending upon a specified 
boot path. If a processor cannot programmatically generate an INIT 
without help from external hardware, then this function returns  
EFI_UNSUPPORTED.



172  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n RegisterInterruptHandler – Associates an interrupt service routine 
with one of the processor’s interrupt vectors. This function is typically 
used by the EFI_TIMER_ARCH_PROTOCOL to hook the timer 
interrupt in a system. It can also be used by the debugger to hook 
exception vectors.

 n GetTimerValue – Returns the value of one of the processor’s internal 
timers. 

 n SetMemoryAttributes – Attempts to set the attributes of a memory 
region.

 n NumberOfTimers – Gives the number of timers that are available in a 
processor. The value in this field is a constant that must not be modified 
after the CPU Architectural Protocol is installed. All consumers must 
treat this as a read-only field.

 n DmaBufferAlignment – Gives the size, in bytes, of the alignment 
required for DMA buffer allocations. This is typically the size of the 
largest data cache line in the platform. This value can be determined 
by looking at the data cache line sizes of all the caches present in the 
platform, and returning the largest. This is used by the root bridge 
I/O abstraction protocols to guarantee that no two DMA buffers ever 
share the same cache line. The value in this field is a constant that must 
not be modified after the CPU Architectural Protocol is installed. All 
consumers must treat this as a read-only field.

Real Time Clock Architectural Protocol

The Real Time Clock Architectural Protocol provides the services required to 
access a system’s real time clock hardware. This protocol must be produced by 
a runtime DXE driver and may only be consumed by the DXE Foundation.

The DXE driver that produces this protocol must be a runtime driver. 
This driver is responsible for initializing the GetTime(), SetTime(), 
GetWakeupTime(), and SetWakeupTime() fields of the EFI Runtime 
Services Table. See the section “Time Services” in Chapter 5 for details on 
these services. After the four fields of the EFI Runtime Services Table have 
been initialized, the driver must install the Real Time Clock Architectural 



  Chapter 9:  Some Common UEFI and PI Functions  n  173

Protocol on a new handle with a NULL interface pointer. The installation of 
this protocol informs the DXE Foundation that the real time clock-related 
services are now available and that the DXE Foundation must update the 32-
bit CRC of the EFI Runtime Services Table.

Timer Architectural Protocol

The Timer Architectural Protocol provides the services to initialize a periodic 
timer interrupt and to register a handler that is called each time the timer 
interrupt fires. It may also provide a service to adjust the rate of the periodic timer 
interrupt. When a timer interrupt occurs, the handler is passed the amount of 
time that has passed since the previous timer interrupt. This protocol enables 
the use of the SetTimer() Boot Service. This protocol must be produced by 
a boot service or runtime DXE driver and may only be consumed by the DXE 
Foundation or DXE drivers that produce other DXE Architectural Protocols. 
By allowing this protocol to be produced by a boot service driver, it is evident 
that this abstraction will not persist when the platform has the boot services 
terminated by launching a boot target, such as an operating system.

Protocol Interface Structure
typedef struct _EFI_TIMER_ARCH_PROTOCOL {
  EFI_TIMER_REGISTER_HANDLER          RegisterHandler;
  EFI_TIMER_SET_TIMER_PERIOD          SetTimerPeriod;
  EFI_TIMER_GET_TIMER_PERIOD          GetTimerPeriod;
  EFI_TIMER_GENERATE_SOFT_INTERRUPT   GenerateSoftInterrupt;
} EFI_TIMER_ARCH_PROTOCOL;

 n RegisterHandler – Registers a handler that is called each time the timer 
interrupt fires. TimerPeriod defines the minimum time between timer 
interrupts, so TimerPeriod is also the minimum time between calls to 
the registered handler.

 n SetTimerPeriod – Sets the period of the timer interrupt in 100 
nanosecond units. This function is optional and may return  
EFI_UNSUPPORTED. If this function is supported, then the timer 
period is rounded up to the nearest supported timer period.

 n GetTimerPeriod – Retrieves the period of the timer interrupt in 100 
nanosecond units.



174  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n GenerateSoftInterrupt – Generates a soft timer interrupt that simulates 
the firing of the timer interrupt. This service can be used to invoke the 
registered handler if the timer interrupt has been masked for a period 
of time.

Reset Architectural Protocol

The Reset Architectural Protocol provides the service required to reset a 
platform. This protocol must be produced by a runtime DXE driver and may 
only be consumed by the DXE Foundation. This driver is responsible for 
initializing the ResetSystem() field of the EFI Runtime Services Table. 
After this field of the EFI Runtime Services Table has been initialized, the 
driver must install the Reset Architectural Protocol on a new handle with a 
NULL interface pointer. The installation of this protocol informs the DXE 
Foundation that the reset system service is now available and that the DXE 
Foundation must update the 32-bit CRC of the EFI Runtime Services Table.

Boot Device Selection Architectural Protocol

The Boot Device Selection (BDS) Architectural Protocol transfers control from 
DXE to an operating system or a system utility, as illustrated in Figure 9.2. 
This protocol must be produced by a boot service or runtime DXE driver and 
may only be consumed by the DXE Foundation. By allowing this protocol to 
be produced by a boot service driver, it is evident that this abstraction will not 
persist when the platform has the boot services terminated by launching a boot 
target such as an operating system.

If not enough drivers have been initialized when this protocol is used to 
access the required boot device(s), then this protocol should add drivers to the 
dispatch queue and return control back to the dispatcher. Once the required 
boot devices are available, then the boot device can be used to load and invoke 
an OS or a system utility. 



  Chapter 9:  Some Common UEFI and PI Functions  n  175

 

OS
Booted

Failure 

Standard
firmware
platform
initialization

Drivers and 
applications
loaded
iteratively

Boot from
ordered list
of EFI operating 
system loaders

Operation
handed off
to operating
system loader

St d d

Platform
Init

B t f

BDS

D i d

Dispatch

EFI
Boot Code

Booted

OS Loader

EFI
Application 

EFI
Driver 

Boot Target
Accessible?

Failure Retry Operation

Boot Services
Terminate

Figure 9.2 Basic Dispatch and BDS Software Flow

Protocol Interface Structure
typedef struct _EFI_BDS_ARCH_PROTOCOL {
  EFI_BDS_ENTRY             Entry;
} EFI_BDS_ARCH_PROTOCOL;

 n Entry – The entry point to BDS. See the Entry() function 
description. This call does not take any parameters, and the return 
value can be ignored. If it returns, then the dispatcher must be invoked 
again, if it never returns, then an operating system or a system utility 
have been invoked.

Variable Architectural Protocol

The Variable Architectural Protocol provides the services required to get and set 
environment variables. This protocol must be produced by a runtime DXE driver 
and may be consumed only by the DXE Foundation. This driver is responsible 
for initializing the GetVariable(), GetNextVariableName(), 



176  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

and SetVariable() fields of the EFI Runtime Services Table. See the 
section “Variable Services” in Chapter 5 for details on these services. After 
the three fields of the EFI Runtime Services Table have been initialized, the 
driver must install the Variable Architectural Protocol on a new handle with 
a NULL interface pointer. The installation of this protocol informs the DXE 
Foundation that the read-only and the volatile environment variable related 
services are now available and that the DXE Foundation must update the 
32-bit CRC of the EFI Runtime Services Table. The full complement of 
environment variable services is not available until both this protocol and 
Variable Write Architectural Protocol are installed. DXE drivers that require 
read-only access or read/write access to volatile environment variables must 
have this architectural protocol in their dependency expressions. DXE drivers 
that require write access to nonvolatile environment variables must have the 
Variable Write Architectural Protocol in their dependency expressions.

Watchdog Timer Architectural Protocol

The Watchdog Timer Architectural Protocol is used to program the watchdog 
timer and optionally register a handler when the watchdog timer fires. This 
protocol must be produced by a boot service or runtime DXE driver and may 
be consumed only by the DXE Foundation or DXE drivers that produce other 
DXE Architectural Protocols. If a platform wishes to perform a platform-specific 
action when the watchdog timer expires, then the DXE driver containing the 
implementation of the BDS Architectural Protocol should use this protocol’s 
RegisterHandler() service.

This protocol provides the services required to implement the Boot Service 
SetWatchdogTimer(). It provides a service to set the amount of time to 
wait before firing the watchdog timer, and it also provides a service to register 
a handler that is invoked when the watchdog timer fires. This protocol can 
implement the watchdog timer by using the event and timer Boot Services, or 
it can make use of custom hardware. When the watchdog timer fires, control 
will be passed to a handler if a handler has been registered. If no handler has 
been registered, or the registered handler returns, then the system will be reset 
by calling the Runtime Service ResetSystem().



  Chapter 9:  Some Common UEFI and PI Functions  n  177

Protocol Interface Structure 
typedef struct _EFI_WATCHDOG_TIMER_ARCH_PROTOCOL { 
  EFI_WATCHDOG_TIMER_REGISTER_HANDLER  RegisterHandler; 
  EFI_WATCHDOG_TIMER_SET_TIMER_PERIOD  SetTimerPeriod; 
  EFI_WATCHDOG_TIMER_GET_TIMER_PERIOD  GetTimerPeriod; 
} EFI_WATCHDOG_TIMER_ARCH_PROTOCOL;

 n RegisterHandler – Registers a handler that is invoked when the 
watchdog timer fires.

 n SetTimerPeriod – Sets the amount of time in 100 nanosecond units to 
wait before the watchdog timer is fired. If this function is supported, 
then the watchdog timer period is rounded up to the nearest supported 
watchdog timer period.

 n GetTimerPeriod – Retrieves the amount of time in 100 nanosecond 
units that the system will wait before the watchdog timer is fired.

PCI Protocols
This section describes a series of protocols that are all related to abstracting 
various aspects of PCI related interaction such as resource allocation and I/O. 

PCI Host Bridge Resource Allocation Protocol

The PCI Host Bridge Resource Allocation Protocol is used by a PCI bus 
driver to program a PCI host bridge. The registers inside a PCI host bridge 
that control configuration of PCI root buses are not governed by the PCI 
specification and vary from chipset to chipset. The PCI Host Bridge Resource 
Allocation Protocol implementation is therefore specific to a particular chipset. 

Each PCI host bridge is composed of one or more PCI root bridges, and 
hardware registers are associated with each PCI root bridge. These registers 
control the bus, I/O, and memory resources that are decoded by the PCI root 
bus that the PCI root bridge produces and all the PCI buses that are children 
of that PCI root bus.

The PCI Host Bridge Resource Allocate Protocol allows for future 
innovation of the chipsets. It abstracts the PCI bus driver from the chipset 



178  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

details. This design allows system designers to make changes to the host bridge 
hardware without impacting a platform independent PCI bus driver.

Figure 9.3 shows a platform with a set of processors (CPUs) and a set 
of core chipset components that produce n host bridges. Most systems with 
one PCI host bus controller contain a single instance of the PCI Host Bridge 
Allocation Protocol. More complex systems may contain multiple instances of 
this protocol.
 

Front Side Bus 

Core Chipset Component 

Host Bridge 1 Host Bridge 2 Host Bridge n 

Figure 9.3 Example Host Bus Controllers

Figure 9.4 shows how the PCI Host Bridge Resource Allocation Protocol 
is used to identify the associated PCI root bridges. After the steps shown in 
Figure 9.4 are completed, the PCI Host Bridge Resource Allocation Protocol 
can then be queried to identify the device handles of the associated PCI root 
bridges.



  Chapter 9:  Some Common UEFI and PI Functions  n  179

 

DXE driver produces
PCI Host Bridge

Resource Allocation
Protocol.

Protocol is placed on
the device handle

corresponding to the 
PCI host bridge.

Same driver creates
device handles for all 
associated PCI root

bridges.

Same driver installs an
instance of the 
PCI Root Bridge

I/O Protocol on each
handle.

Figure 9.4 Producing the PCI Host Bridge Resource Allocation Protocol

Sample Desktop System with One PCI Root Bridge

Figure 9.5 shows an example of a PCI host bus with one PCI root bridge. This 
PCI root bridge produces one PCI local bus that can contain PCI devices on 
the motherboard and/or PCI slots. This setup would be typical of a desktop 
system. In this system, the PCI root bridge needs minimal setup. Typically, the 
PCI root bridge decodes the following:

 n The entire bus range on Segment 0

 n The entire I/O space of the processor



180  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n All the memory above the top of system memory
The firmware for this platform would produce the following:

 n One instance of the PCI Host Bridge Resource Allocation Protocol

 n One instance of PCI Root Bridge I/O Protocol
 

Core Chipset Components 

PCI Host Bridge 

PCI Root Bridge 

Figure 9.5 Desktop System with One PCI Root Bridge

Sample Server System with Four PCI Root Bridges

Figure 9.6 shows an example of a larger server with one PCI host Bus with 
four PCI root bridges (RBs). The PCI devices that are attached to the PCI root 
bridges are all part of the same coherency domain, which means they share the 
following:

 n A common PCI I/O space

 n A common PCI memory space

 n A common PCI prefetchable memory space
As a result, each PCI root bridge must get resources out of a common pool. 
Each PCI root bridge produces one PCI local bus that can contain PCI devices 
on the motherboard or PCI slots. The firmware for this platform would produce 
the following:



  Chapter 9:  Some Common UEFI and PI Functions  n  181

 n One instance of the PCI Host Bridge Resource Allocation Protocol

 n Four instances of the PCI Root Bridge I/O Protocol
 

Core Chipset Components 

PCI Host Bridge 

PCI RB

PCI 

PCI RB

PCI 

PCI RB

PCI 

PCI RB

PCI 

Figure 9.6 Server System with Four PCI Root Bridges

Sample Server System with 2 PCI Segments

Figure 9.7 shows an example of a server with one PCI host bus and two PCI root 
bridges (RBs). Each of these PCI root bridges is on a different PCI segment, 
which allows the system to have up to 512 PCI buses. A single PCI segment 
is limited to 256 PCI buses. These two segments do not share the same PCI 
configuration space, but they do share the following, which is why they can be 
described with a single PCI host bus:

 n A common PCI I/O space

 n A common PCI memory space

 n A common PCI prefetchable memory space
The firmware for this platform would produce the following:

 n One instance of the PCI Host Bridge Resource Allocation Protocol

 n Two instances of the PCI Root Bridge I/O Protocol



182  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Core Chipset Components 

PCI Host Bridge 

PCI RB

PCI Segment 0 

PCI RB

PCI Segment 1 

Figure 9.7 Server System with 2 PCI Segments

 

Core Chipset Components 

PCI Host Bus 0 PCI Host Bus 1 

PCI RB

PCI Segment 0 

PCI RB

PCI Segment 1 

Figure 9.8 Sample Server System with Two PCI Host Buses

Figure 9.8 shows a server system with two PCI host buses and one PCI root 
bridge (RB) per PCI host bus. Like the server system with 2 PCI segments, 
this system supports up to 512 PCI buses, but the following resources are not 
shared between the two PCI root bridges:

 n PCI I/O space

 n PCI memory space



  Chapter 9:  Some Common UEFI and PI Functions  n  183

 n PCI prefetchable memory space
The firmware for this platform would produce the following:

 n Two instances of the PCI Host Bridge Resource Allocation Protocol

 n Two instances of the PCI Root Bridge I/O Protocol

PCI Root Bridge I/O

The interfaces provided in the PCI Root Bridge I/O Protocol are for performing 
basic operations to memory, I/O, and PCI configuration space. The system 
provides abstracted access to basic system resources to allow a driver to have a 
programmatic method to access these basic system resources.

The PCI Root Bridge I/O Protocol allows for future innovation of the 
platform. It abstracts device-specific code from the system memory map. This 
allows system designers to make changes to the system memory map without 
impacting platform-independent code that is consuming basic system resources.

PCI Root Bridge I/O Protocol instances are either produced by the 
system firmware or by a UEFI driver. When a PCI Root Bridge I/O Protocol 
is produced, it is placed on a device handle along with an EFI Device Path 
Protocol instance. The PCI Root Bridge I/O Protocol does not abstract access 
to the chipset-specific registers that are used to manage a PCI Root Bridge. 
This functionality is hidden within the system firmware or the UEFI driver 
that produces the handles that represent the PCI Root Bridges.

Protocol Interface Structure
typedef struct _EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL {
  EFI_HANDLE                                       ParentHandle;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM      PollMem;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_POLL_IO_MEM      PollIo;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS           Mem;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS           Io;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ACCESS           Pci;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_COPY_MEM         CopyMem;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_MAP              Map;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_UNMAP            Unmap;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_ALLOCATE_BUFFER  AllocateBuffer;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FREE_BUFFER      FreeBuffer;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_FLUSH            Flush;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_GET_ATTRIBUTES   GetAttributes;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_SET_ATTRIBUTES   SetAttributes;
  EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION    Configuration;
  UINT32                                           SegmentNumber;



184  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

} EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL;

 n ParentHandle – Gives the EFI_HANDLE of the PCI Host Bridge of 
which this PCI Root Bridge is a member.

 n PollMem – Polls an address in memory mapped I/O space until an exit 
condition is met, or a timeout occurs.

 n PollIo – Polls an address in I/O space until an exit condition is met, or 
a timeout occurs.

 n Mem – Allows reads and writes for memory mapped I/O space. 

 n Io – Allows reads and writes for I/O space.

 n Pci – Allows reads and writes for PCI configuration space.

 n CopyMem – Allows one region of PCI root bridge memory space to be 
copied to another region of PCI root bridge memory space. 

 n Map – Provides the PCI controller–specific addresses needed to access 
system memory for DMA. 

 n Unmap – Releases any resources allocated by Map(). 

 n AllocateBuffer – Allocates pages that are suitable for a common buffer 
mapping.

 n FreeBuffer – Frees pages that were allocated with AllocateBuffer(). 

 n Flush – Flushes all PCI posted write transactions to system memory. 

 n GetAttributes – Gets the attributes that a PCI root bridge supports 
setting with SetAttributes(), and the attributes that a PCI 
root bridge is currently using. 

 n SetAttributes – Sets attributes for a resource range on a PCI root bridge. 



  Chapter 9:  Some Common UEFI and PI Functions  n  185

 n Configuration – Gets the current resource settings for this PCI root 
bridge. 

 n SegmentNumber – The segment number that this PCI root bridge 
resides.

PCI I/O

The interfaces provided in the PCI I/O Protocol are for performing basic 
operations to memory, I/O, and PCI configuration space. The system 
provides abstracted access to basic system resources to allow a driver to have a 
programmatic method to access these basic system resources. The main goal of 
this protocol is to provide an abstraction that simplifies the writing of device 
drivers for PCI devices. This goal is accomplished by providing the following 
features:

 n A driver model that does not require the driver to search the PCI 
busses for devices to manage. Instead, drivers are provided the location 
of the device to manage or have the capability to be notified when a 
PCI controller is discovered.

 n A device driver model that abstracts the I/O addresses, Memory 
addresses, and PCI Configuration addresses from the PCI device 
driver. Instead, BAR (Base Address Register) relative addressing is 
used for I/O and Memory accesses, and device relative addressing is 
used for PCI Configuration accesses. The BAR relative addressing is 
specified in the PCI I/O services as a BAR index. A PCI controller may 
contain a combination of 32-bit and 64-bit BARs. The BAR index 
represents the logical BAR number in the standard PCI configuration 
header starting from the first BAR. The BAR index does not represent 
an offset into the standard PCI Configuration Header because those 
offsets will vary depending on the combination and order of 32-bit 
and 64-bit BARs.

 n The Device Path for the PCI device can be obtained from the same 
device handle that the PCI I/O Protocol resides.



186  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n The PCI Segment, PCI Bus Number, PCI Device Number, and PCI 
Function Number of the PCI device if they are required. The general 
idea is to abstract these details away from the PCI device driver. 
However, if these details are required, then they are available.

 n Details on any nonstandard address decoding that are not covered by 
the PCI device’s Base Address Registers.

 n Access to the PCI Root Bridge I/O Protocol for the PCI Host Bus for 
which the PCI device is a member.

 n A copy of the PCI Option ROM if it is present in system memory. 

 n Functions to perform bus mastering DMA. This includes both packet 
based DMA and common buffer DMA.

Protocol Interface Structure
typedef struct _EFI_PCI_IO_PROTOCOL {
  EFI_PCI_IO_PROTOCOL_POLL_IO_MEM        PollMem;
  EFI_PCI_IO_PROTOCOL_POLL_IO_MEM        PollIo;
  EFI_PCI_IO_PROTOCOL_ACCESS             Mem;
  EFI_PCI_IO_PROTOCOL_ACCESS             Io;
  EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS      Pci;
  EFI_PCI_IO_PROTOCOL_COPY_MEM           CopyMem;
  EFI_PCI_IO_PROTOCOL_MAP                Map;
  EFI_PCI_IO_PROTOCOL_UNMAP              Unmap;
  EFI_PCI_IO_PROTOCOL_ALLOCATE_BUFFER    AllocateBuffer;
  EFI_PCI_IO_PROTOCOL_FREE_BUFFER        FreeBuffer;
  EFI_PCI_IO_PROTOCOL_FLUSH              Flush;
  EFI_PCI_IO_PROTOCOL_GET_LOCATION       GetLocation;
  EFI_PCI_IO_PROTOCOL_ATTRIBUTES         Attributes; 
  EFI_PCI_IO_PROTOCOL_GET_BAR_ATTRIBUTES GetBarAttributes ;
  EFI_PCI_IO_PROTOCOL_SET_BAR_ATTRIBUTES SetBarAttributes;
  UINT64                                 RomSize;
  VOID                                   *RomImage;
} EFI_PCI_IO_PROTOCOL;

 n PollMem – Polls an address in PCI memory space until an exit 
condition is met, or a timeout occurs. 

 n PollIo – Polls an address in PCI I/O space until an exit condition is 
met, or a timeout occurs. 



  Chapter 9:  Some Common UEFI and PI Functions  n  187

 n Mem – Allows BAR relative reads and writes for PCI memory space. 

 n Io – Allows BAR relative reads and writes for PCI I/O space. 

 n Pci – Allows PCI controller relative reads and writes for PCI 
configuration space.

 n CopyMem – Allows one region of PCI memory space to be copied to 
another region of PCI memory space. 

 n Map – Provides the PCI controller–specific address needed to access 
system memory for DMA.

 n Unmap – Releases any resources allocated by Map(). 

 n AllocateBuffer – Allocates pages that are suitable for a common buffer 
mapping.

 n FreeBuffer – Frees pages that were allocated with AllocateBuffer(). 

 n Flush – Flushes all PCI posted write transactions to system memory. 

 n GetLocation – Retrieves this PCI controller’s current PCI bus number, 
device number, and function number. 

 n Attributes – Performs an operation on the attributes that this PCI 
controller supports. The operations include getting the set of 
supported attributes, retrieving the current attributes, setting the 
current attributes, enabling attributes, and disabling attributes. 

 n GetBarAttributes – Gets the attributes that this PCI controller supports 
setting on a BAR using SetBarAttributes(), and retrieves the 
list of resource descriptors for a BAR. 

 n SetBarAttributes – Sets the attributes for a range of a BAR on a PCI 
controller. 



188  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n RomSize – Gives the size, in bytes, of the ROM image.

 n RomImage – Returns a pointer to the in memory copy of the ROM 
image. The PCI Bus Driver is responsible for allocating memory for 
the ROM image, and copying the contents of the ROM to memory. 
The contents of this buffer are either from the PCI option ROM that 
can be accessed through the ROM BAR of the PCI controller, or from 
a platform-specific location. The Attributes() function can be 
used to determine from which of these two sources the RomImage 
buffer was initialized.

Block I/O
The Block I/O Protocol is used to abstract mass storage devices to allow code 
running in the UEFI boot services environment to access them without specific 
knowledge of the type of device or controller that manages the device. Functions 
are defined to read and write data at a block level from mass storage devices as 
well as to manage such devices in the UEFI boot services environment. 

The Block interface constructs a logical abstraction of the storage device. 
Figure 9.9 shows how a typical device that has multiple partitions will have 
a variety of Block interfaces constructed on it. For example, a partition that 
is a logical designation of how a disk might be apportioned will have a block 
interface for it. It should be noted that a particular storage device will have a 
block interface that has a scope that spans the entire storage device, and the 
logical partitions will have a scope that is a subset of the device. For instance, 
in the example shown in Figure 9.8, Block I/O #1 has access to the entire disk, 
while Block I/O #2 has its first LBA starting at the physical location of the 
partition it is associated with. 



  Chapter 9:  Some Common UEFI and PI Functions  n  189

 

DISK Block I/O 

Partition Table 

Partition

Partition

Pointers to
partitions 

Partition

Partition

Callers to the Block I/O interface will interact with
the device using Logical Block Addressing (LBA)

Pointers to
partitions 

Partition Table 

#2 #1 #3

Figure 9.9 Software Layering of the Storage Device

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO_PROTOCOL {
  UINT64                  Revision;

  EFI_BLOCK_IO_MEDIA      *Media;

  EFI_BLOCK_RESET         Reset;
  EFI_BLOCK_READ          ReadBlocks;
  EFI_BLOCK_WRITE         WriteBlocks;
  EFI_BLOCK_FLUSH         FlushBlocks;

} EFI_BLOCK_IO_PROTOCOL;

 n Revision – The revision to which the block IO interface adheres. All 
future revisions must be backward compatible. If a future version is 
not backward compatible it is not the same GUID.



190  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Media – A pointer to the EFI_BLOCK_IO_MEDIA data for this 
device. Type EFI_BLOCK_IO_MEDIA is defined in the next code 
sample.

 n Reset – Resets the block device hardware. 

 n ReadBlocks – Reads the requested number of blocks from the device. 

 n WriteBlocks – Writes the requested number of blocks to the device. 

 n FlushBlocks – Flushes and cache blocks. This function is optional and 
only needs to be supported on block devices that cache writes.

Protocol Interface Structure
typedef struct {
  UINT32              MediaId;
  BOOLEAN             RemovableMedia;
  BOOLEAN             MediaPresent;

  BOOLEAN             LogicalPartition;
  BOOLEAN             ReadOnly;
  BOOLEAN             WriteCaching;

  UINT32              BlockSize;
  UINT32              IoAlign;

  EFI_LBA             LastBlock;

} EFI_BLOCK_IO_MEDIA;

Disk I/O
The Disk I/O protocol is used to abstract the block accesses of the Block I/O 
protocol to a more general offset-length protocol. The firmware is responsible 
for adding this protocol to any Block I/O interface that appears in the system 
that does not already have a Disk I/O protocol. File systems and other disk 
access code utilize the Disk I/O protocol.

The disk I/O functions allow I/O operations that need not be on the 
underlying device’s block boundaries or alignment requirements. This is done 
by copying the data to/from internal buffers as needed to provide the proper 
requests to the block I/O device. Outstanding write buffer data is flushed by 
using the Flush() function of the Block I/O protocol on the device handle.



  Chapter 9:  Some Common UEFI and PI Functions  n  191

The firmware automatically adds a Disk I/O interface to any Block I/O 
interface that is produced. It also adds file system, or logical block I/O, 
interfaces to any Disk I/O interface that contains any recognized file system 
or logical block I/O devices. UEFI compliant firmware must automatically 
support the following required formats:

 n The UEFI FAT12, FAT16, and FAT32 file system type.

 n The legacy master boot record partition block. (The presence of this 
on any block I/O device is optional, but if it is present the firmware is 
responsible for allocating a logical device for each partition).

 n The extended partition record partition block.

 n The El Torito logical block devices.
The Disk I/O interface provides a very simple interface that allows for a more 
general offset-length abstraction of the underlying Block I/O protocol.

Protocol Interface Structure
typedef struct _EFI_DISK_IO_PROTOCOL {
  UINT64              Revision;
  EFI_DISK_READ       ReadDisk;
  EFI_DISK_WRITE      WriteDisk;
} EFI_DISK_IO_PROTOCOL;

 n Revision – The revision to which the disk I/O interface adheres. All 
future revisions must be backwards compatible. If a future version is 
not backwards compatible, it is not the same GUID.

 n ReadDisk – Reads data from the disk. 

 n WriteDisk – Writes data to the disk.



192  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Simple File System
The Simple File System protocol allows code running in the UEFI boot services 
environment to obtain file based access to a device. The Simple File System 
protocol is used to open a device volume and return an EFI File Handle that 
provides interfaces to access files on a device volume. This protocol is a bit 
different from most, since its use exposes a secondary protocol that will directly 
act on the device on top of which the Simple File System was layered. Figure 
9.10 illustrates this concept.
 

DISK Block I/O 

Partition Table 

Partition

Partition

Pointers to
partitions 

Partition

Partition

Application/Driver issues an OpenVolume command  
on this Simple File System instance. It then receives  
access to the EFI File Protocol for this volume. 

The firmware has layered onto this partition a Simple File
System Protocol because it was a recognized File System.  EFI_FILE Protocol 

Pointers to
partitions 

Partition Table 

FAT 32

Figure 9.10 Simple File System Software Layering

Protocol Interface Structure
typedef struct {
     UINT64             Revision;
     EFI_VOLUME_OPEN    OpenVolume;
} EFI_SIMPLE_FILE_SYSTEM_PROTOCOL;



  Chapter 9:  Some Common UEFI and PI Functions  n  193

 n Revision – The version of the EFI Simple File System Protocol. The 
version specified by this specification is 0x00010000. All future 
revisions must be backward compatible. If a future version is not 
backward compatible, it is not the same GUID.

 n OpenVolume – Opens the volume for file I/O access. 

EFI File Protocol

On requesting the file system protocol on a device, the caller gets the instance 
of the Simple File System protocol to the volume. This interface is used to open 
the root directory of the file system when needed. The caller must Close() 
the file handle to the root directory and any other opened file handles before 
exiting. While open files are on the device, usage of underlying device protocol(s) 
that the file system is abstracting must be avoided. For example, when a file 
system is layered on a DISK_IO / BLOCK_IO protocol, direct block access to 
the device for the blocks that comprise the file system must be avoided while 
open file handles to the same device exist.

A file system driver may cache data relating to an open file. A Flush() 
function is provided that flushes all dirty data in the file system, relative to the 
requested file, to the physical medium. If the underlying device may cache 
data, the file system must inform the device to flush as well.

Protocol Interface Structure
typedef struct _EFI_FILE {
  UINT64                  Revision;
  EFI_FILE_OPEN           Open;
  EFI_FILE_CLOSE          Close;
  EFI_FILE_DELETE         Delete;
  EFI_FILE_READ           Read;
  EFI_FILE_WRITE          Write;
  EFI_FILE_GET_POSITION   GetPosition;
  EFI_FILE_SET_POSITION   SetPosition;
  EFI_FILE_GET_INFO       GetInfo;
  EFI_FILE_SET_INFO       SetInfo;
  EFI_FILE_FLUSH          Flush;
} EFI_FILE;



194  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Revision – The version of the EFI_FILE interface. The version specified 
by this specification is 0x00010000. Future versions are required to be 
back-ward compatible to version 1.0.

 n Open – Opens or creates a new file. 

 n Close – Closes the current file handle. 

 n Delete – Deletes a file. 

 n Read – Reads bytes from a file. 

 n Write – Writes bytes to a file. 

 n GetPosition – Returns the current file position. 

 n SetPosition – Sets the current file position. 

 n GetInfo – Gets the requested file or volume information. 

 n SetInfo – Sets the requested file information. 

 n Flush – Flushes all modified data associated with the file to the device. 

Configuration Infrastructure
The modern UEFI configuration infrastructure that was first described in the 
UEFI 2.1 specification is known as the Human Interface Infrastructure (HII). 
HII includes the following set of services:

 n Database Services. A series of UEFI protocols that are intended to 
be an in-memory repository of specialized databases. These database 
services are focused on differing types of information:

 – Database Repository – This is the interface that drivers interact 
with to manipulate configuration related contents. It is most 
often used to register data and update keyboard layout related 
information.



  Chapter 9:  Some Common UEFI and PI Functions  n  195

 – String Repository – This is the interface that drivers interact with 
to manipulate string-based data. It is most often used to extract 
strings associated with a given token value.

 – Font Repository – The interface to which drivers may contribute 
font-related information for the system to use. Otherwise, it is 
primarily used by the underlying firmware to extract the built-
in fonts to render text to the local monitor. Note that since not 
all platforms have inherent support for rendering fonts locally 
(think headless platforms), general purpose UI designs should 
not presume this capability.

 – Image Repository – The interface to which drivers may contribute 
image-related information for the system to use. This is for 
purposes of referencing graphical items as a component of a user 
interface. Note that since not all platforms have inherent support 
for rendering images locally (think headless platforms), general 
purpose UI designs should not pre-sume this capability.

 n Browser Services. The interface that is provided by the platform’s BIOS 
to interact with the built-in browser. This service’s look-and-feel is 
implementation-specific, which allows for platform differentiation.

 n Configuration Routing Services. The interface that manages the 
movement of configuration data from drivers to target configuration 
applications. It then serves as the single point to receive configuration 
information from configuration applications, routing the results to 
the appropriate drivers.

 n Configuration Access Services. The interface that is exposed by a driver’s 
configuration handler and is called by the configuration routing 
services. This service abstracts a driver’s configuration settings and also 
provides a means by which the platform can call the driver to initiate 
driver-specific operations.



196  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Using the Configuration Infrastructure
The overview introduced the components of the UEFI configuration 
infrastructure. This section discusses with a bit more detail how one goes about 
using aspects of this infrastructure. The following steps are initiated by a driver 
that is concerned with using the configuration infrastructure:

 n Initialize hardware. The primary job of a device driver is typically to 
initialize the hardware that it owns. During this process of physically 
initializing the device, the driver is also responsible for establishing the 
proper configuration state information for that device. These typically 
include doing the following:

 – Installing required protocols. Protocols are interfaces that will 
be used to communicate with the driver. One of the more 
pertinent protocols associated with configuration would be the 
Configuration Access protocol. This is used by the system BIOS 
and agents in the BIOS to interact with the driver. This is also 
the mechanism by which a driver can provide an abstraction to a 
proprietary nonvolatile storage that under normal circumstances 
would not be usable by anyone other than the driver itself. This 
is how configuration data can be exposed for add-in devices and 
others can send configuration update requests without needing 
direct knowledge of that device.

 – Creating an EFI device path on an EFI handle. A device path is a 
binary description of the device and typically how it is attached 
to the system. This provides a unique name for the managed 
device and will be used by the system to refer to the device later.

 n Register Configuration Content. One of the latter parts of the driver 
initialization (once a device path has been established) is the registration 
of the configuration data with the underlying UEFI-compatible 
BIOS. The configuration data typically consists of sets of forms and 
strings that contain sufficient information for the platform to render 
pages for a user to interact with. It should also be noted that now that 
the configuration data is encapsulated in a binary format, what was 
previously an opaque meaningless set of data is now a well-known 
and exportable set of data that greatly expands the configurability of 



  Chapter 9:  Some Common UEFI and PI Functions  n  197

the device by both local and remote agents as well as BIOS and OS-
present components.

 n Respond to Configuration Event. Once the initialization and registration 
functions have completed, the driver could potentially remain 
dormant until called upon. A driver would most often be called upon 
to act on a configuration event. A configuration event is an event 
that occurs when a BIOS component calls upon one of the interfaces 
that the driver exposed (such as the Configuration Access protocol) 
and sends the driver a directive. These directives typically would be 
something akin to “give me your current settings” or “adjust setting 
X’s value to a 5”.

Much more detail on this particular infrastructure is covered later in the book.

Driver Model Interactions
The drivers that interact with the UEFI configuration infrastructure are often 
compliant with the UEFI driver model, as the examples shown in Figure 
9.11 and Figure 9.12. Since driver model compliance is very common (and 
highly recommended) for device drivers, several examples are shown below 
that describe in detail how such a driver would most effectively leverage the 
configuration infrastructure. 



198  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Device driver managing
configuration data

for a device

Loaded Image Protocol
EFI

Image Handle

Driver Binding Protocol

Device Path Protocol

PCI I/O Protocol

Configuration Access Protocol

EFI
Device Handle

HII
Database

1

2

3

4

Single driver managing a device

I/O Controller

Figure 9.11 A Single Driver that Is Registering Its Configuration Data and 
Establishing Its Environment in a Recommended Fashion

 n Step 1. During driver initialization, install services on the controller 
handle.



  Chapter 9:  Some Common UEFI and PI Functions  n  199

 n Step 2. During driver initialization, discover the managed device. 
Create a device handle and then install various services on it.

 n Step 3. During driver initialization, configuration data for the device is 
registered with the HII database (through the NewPackageList() 
API) using the device’s device handle. A unique HII handle is created 
during the registration event. 

 n Step 4. During system operation, when a configuration event occurs, 
the system addresses (through the Configuration Access protocol) the 
configuration services associated with the device. 



200  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Device driver managing
configuration data

for a device

Loaded Image Protocol

EFI
Image Handle

Driver Binding Protocol

Device Path Protocol

PCI I/O Protocol

Configuration Access Protocol

Managed
Device Handle

HII
Database

1

2

34

Single driver managing more than one device

I/O Controller

Device Path Protocol

PCI I/O Protocol

Managed
Device Handle

I/O Controller

Figure 9.12 A Single Driver that Is Managing Multiple Devices, Registering 
Its Configuration Data, and Establishing Its Environment in a 
Recommended Fashion

 n Step 1. During driver initialization, install services on the controller 
handle.



  Chapter 9:  Some Common UEFI and PI Functions  n  201

 n Step 2. During driver initialization, discover the managed device(s). 
Create device handle(s) and then install various services on them.

 n Step 3. During driver initialization, configuration data for each device is 
registered with the HII database (through the NewPackageList() 
API) using each device’s device handle. A unique HII handle is created 
during the registration event. 

 n Step 4. During system operation, when a configuration event occurs, 
the system addresses (through the Configuration Access protocol) the 
configuration services associated with the driver. In this example, the 
configuration services will be required to disambiguate references to 
each of its managed devices by the passed in HII handle.

Provisioning the Platform
Figure 9.13 is an illustration that builds on the previously introduced concepts 
and shows how the remote interaction would introduce the concept of bare-
metal provisioning (putting content on a platform without the aid of a formal 
operating system). This kind of interaction could be used in the manufacturing 
environment to achieve the provisioning of the platform or in the after-market 
environment where one is remotely managing the platform and updating it.



202  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Provisioning Scenario

2

Configuration Access Protocol
I/O Controller

Download configuration data
n MB file

13

Figure 9.13 Remote Interaction Occurs with a Target System; the System in Turn 
Accesses the Configuration Abstractions Associated with a Device or 
Set of Devices

 n Step 1. Remote administrator sends a query to a target workstation. 
This query could actually be a component of a broadcast by the 
administrator to all members of the network.

 n Step 2. Request received and an agent (possibly a shell-based one) 
proxies the request to the appropriate device. 

 n Step 3. The agent responds based on interaction with the platform’s 
underlying configuration infrastructure. 



  Chapter 9:  Some Common UEFI and PI Functions  n  203

Summary
In conclusion, this chapter describes a series of the common protocols one 
would encounter in a UEFI enabled platform, and also highlights the common 
scenarios where one would leverage their use. With these protocols, one should 
be armed well for the future environments (both hardware and software) that 
will be encountered as the platform ecosystem evolves.



204  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 205

Chapter 10
Platform Security  

and Trust
We will bankrupt ourselves in the vain search for absolute security.

—Dwight D. Eisenhower

The Unified Extensible Firmware Interface (UEFI) and Platform 
Initialization (PI) specifications describe the platform elements that take 

control of the system across the various restart events. These elements are also 
responsible for ceding control to hypervisors, operating systems, or staying 
in the UEFI boot services environment as the “runtime.” These modules and 
drivers can provide support for various secure boot and trusted computing 
scenarios.

Beyond the feature drivers and boot flow, the UEFI and PI specifications 
describe interfaces and binary image encoding of executable modules for 
purposes of interoperability. This allows for business-to-business engagements, 
such as a chipset or CPU vendor providing drivers to a system board vendor 
for purposes of building a whole solution. This is the positive side of the 
extensibility. The darker side of extensibility, though, entails the need to have 
some assurance that the final system board design meets various security 
goals, such as integrity, availability, and confidentiality. In other words, how 
can the platform manufacturer who ships a system board have confidence 
that the UEFI and PI modules have been safely composed?

This chapter describes some of the security and trusted computing 
capabilities. Then it discusses how to construct and integrate elements.



206  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Trust Overview
We begin the discussion of trusted platforms with some background on trust—
specifically, the definition of trust, and some related concepts, measurement and 
security:

 n Trust. An entity can be trusted if it always behaves in the expected 
manner for the intended purpose. 

 n Measurement. The process of obtaining the identity of an entity.

 n Security. Maintenance that ensures a state of inviolability from hostile 
acts or influences (from http://www.thefreedictionary.com/security).

In fact, trust is an amalgam of several elements of the platform that span the 
enterprise to consumer, including reliability, safety, confidentiality, integrity, 
and availability, as illustrated in Figure 10.1.

Reliability

Safety

Confidentiality

Integrity

Availability

 

Figure 10.1 The Elements of Trust



  Chapter 10:  Platform Security and Trust  n  207

Where should the solution reside, given the problems to be solved and 
some of the capabilities like security, trust, and measurement to help effect the 
solution?

In fact, the implementation of trust and security entail a security architecture 
that spans the entire system, starting at the base with hardware and spanning 
all of the way to the end-user application.

Figure 10.2 shows all of the layers of a security architecture. The network 
layer is broken out with a few examples, such as protocols (SSL, IPSec); 
this chapter does not delve too deeply into this layer. The firmware layer is 
highlighted to show that a single-layer of security is not sufficient.

Userman Uman UUUHumHum UUmm

GUIGUI

tiontionnnonnplicatplicatttAppApp ttpp

esesbrariebraririeieeerieriLiLi eebb

rsrsDrDrDriverriverrrDriDriDD rrDD

rkrkwowoetwoetwwowoNN rree

OSOSO

arearermwarmwaaaFirFir aarr

areareardwaardwaaaHaHa aaaa

App 1     App 3     App 2

Security Architecture

SSL, IPsec, etc.

Single Layer “Security”

 

Figure 10.2 All Layers of a Security Architecture

In fact, the scope of this chapter largely treats firmware. Some description 
of hardware elements and interaction are provided. Figure 10.3 highlights the 
area that this chapter discusses in more depth.



208  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Human UserHuman User

GUIGUI

ApplicationApplication

LibrariesLibraries

DriversDrivers

NetworkNetwork

OSOS

FirmwareFirmware

HardwareHardware
 

Figure 10.3 Layers Examined in this Chapter

As seen in Figure 10.3, all layers are important, but if you do not have 
firmware/hardware assurance, you cannot have a security architecture. As 
the logicians would say, it’s “necessary but not sufficient” to have appropriate 
design in these layers. And as will be described later, the layer of hardware and 
firmware provide a “root of trust” for the rest of the security architecture.

So now that we have trust, security, measurement, and a layered picture of 
the security architecture, the goals of the security architecture and assets that 
are protected are as follows.

The first security goal is integrity, and this entails the protection of content 
and information from unauthorized modification. The next goal is authenticity, 
and this provides guarantee or assurance in the source of the code or data. 
Another important goal is availability, or the ability to ensure behavior and 
the responsiveness of the system. Availability also protects from destruction or 
denial of access. And finally, another goal is confidentiality, or the protection of 
information from unauthorized access.

Through the subsequent discussion of trusted platforms and UEFI, some 
of these integrity, authenticity, and availability goals will be discussed in more 
detail.



  Chapter 10:  Platform Security and Trust  n  209

It is outside the scope of this chapter to describe confidentiality since 
this is typically a concern of higher-level applications, but errors in lower 
layers of the trusted platform may imperil this goal. Specifically, this relates 
to the introduction of vulnerability via a flaw in integrity or authenticity 
implementations of a layer that wants to provide confidentiality (say an 
application) when the hardware or firmware or network underneath is errant.

A final item that is discussed in this chapter is a final goal that spans all 
of the above, namely assurance. By assurance we mean having some guarantee 
of the correctness of an implementation. And for this study, assurance will be 
treated in detail for the case when platform firmware and trusted computing 
hardware elements are the embodiment of the platform.

And given the trust definition above, we see that these features are especially 
important in the enterprise, such as a high-end server, where reliability and 
safety goals are co-equal to the other concerns like integrity and confidentiality. 

Trusted Platform Module (TPM) and Measured Boot
In building out the hardware layer of the security architecture, one problem 
with open platforms is that there hasn’t been a location on the system to have 
a root of trust. The trusted platform module (TPM) and the infrastructure 
around this component are an industry attempt to build a series of roots of 
trust in the platform.

The maintenance and evolution of the capabilities of the TPM are managed 
through an industry standards body known as the Trusted Computing 
Group (TCG). The TCG members include systems manufacturers, TPM 
manufacturers, CPU and chipset vendors, operating system vendors, and other 
parties that contribute hardware and software elements into a trusted platform. 
HP and IBM are examples of vendors that span many of these categories. Intel 
also participates in the TCG as CPU and chipset vendor.

To begin, what is a trusted platform module? It features a series of protected 
regions and capabilities. Typically, a TPM is built as a microcontroller with 
integrated flash/storage that is attached to the LPC bus on PC, but it can also 
be a virtual device or more deeply integrated in the platform chipset complex. 
The TPM interacts with the system through a host interface. The TPM 
Interface Specification (TIS) in the TCG PC Client working group describes 
the memory-mapped I/O interfaces; the TIS is just one such interface. The 
TPM main specification describes the ordinals or the byte stream of commands 
that are sent into the TPM. These commands are the required actions that a 



210  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

TPM must carry out in service of the host. Figure 10.4 shows some of the 
specifications that describe the TPM and its integration into the platform.

TCG Documentation
Roadmap & Glossary

Platform-Specific
Design Guide

PC Platform
Specification

Server
Specification

Mobile Phone
Specification

Other
Platform

PC Platform
Compliance

Server
Compliance

atforo m
lliaaaanancece

SeServe
CCCoCompmplililil aaaEFI Platform &

Protocol
Specifications

Mobile Phone
Compliance

Other
Compliance

TCG Main Specification
Parts 1-4

TCG Software Stack
(TSS)

Common
Criteria

Common
Evaluation

Methodology

Architectural
Overview

- Normative Reference -

ISO-15408 Common Criteria
Protection Profiles

 

Figure 10.4 TCG Specification Hierarchy

The interoperability of the Trusted Computing elements is managed 
through the Trusted Computing Group (TCG) and a series of specifications. 
For purposes of this review, the TPM main specification, platform design 
guides, protection profiles, and the UEFI collateral will be of interest, as 
highlighted above. 

Figure 10.6 shows an instance of a TPM diagrammatically. Given the 
existence of the specifications mentioned earlier, multiple vendors can provide 
conformant instances of this technology with the ability to differentiate their 
implementations.



  Chapter 10:  Platform Security and Trust  n  211

 

• TCG Defines TPM’s Functionality
 - Protected Capabilities
 - Shielded Locations

• Not the Implementation
 - Vendors are free to differentiate
   the TPM implementation
 - Must still meet the protected capabilities
   and shielded locations requirements

TPMTPM

Figure 10.5 TPM Overview

Figure 10.6 is a picture of the elements that are typically found within a 
TPM. The protected execution and storage of the TPM allow for hosting the 
RSA asymmetric key pairs, such as the endorsement key (EK), the attestation 
identity key (AIK), and storage root keys (SRKs). Recall that in RSA 
cryptography, the public key can be known to all, but the private key must 
be shrouded from users. The TPM and its isolated execution can both host 
the key-pairs and keep the private RSA keys away from attacks/errant agents 
on the host. In today’s platforms without a TPM, only a custom hardware 
security module (HSM) or other additional hardware can be used for hosting 
key-pairs. But in these latter solutions, there is no guarantee on construction 
of platform, surety of the host interface, and so on. The Trusted Computing 
Group attempts to both describe the requirements on the TPM and the binding 
into the platform in order to have a trusted building block (TBB) via design 
guides, protection profiles, conformance tests, and so on. 



212  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Packaging

Trusted Platform Module (TPM)

Program CodeExec Engine

Opt-In

SHA-1

RNG

AIK

RSA
Engine

Key
Generation

Non-Volatile
Storage

Volatile
Storage

Platform
Configuration
Register (PCR)

Exec Engine

I/O

 

Figure 10.6 TPM Block Diagram

What Is a Trusted Building Block (TBB)?

The TBB includes the components that make up the platform. These can 
include the TPM, how the TPM is bound to the platform, flash with the system 
board firmware, and portions of the firmware that must be trusted. The TBB 
goes beyond TPM ordinals. It leads into prescriptions on the construction of 
the physical platform. As such, it is not just an issue at one layer of the stack.

A S-CRTM is a “static core root of trust for measurement.” The S-CRTM 
is the portion of the platform firmware that must be “implicitly trusted.” The 
S-CRTM makes the first measurements, starts TPM, and detects physical 
presence per the TCG privacy model.

And it is where the S-CRTM portion of the TBB intersects with the 
platform firmware and other roots-of-trust in the platform. S-CRTM, CRTM, 
and SRTM are used interchangeably later in the section.



  Chapter 10:  Platform Security and Trust  n  213

Following is a quick overview to clarify the roots-of-trust in the platform 
and which business entity delivers them.

Taxonomy of terms in the platform:

 n RTM

 – Generic term for “Root of Trust for Measurement”
 – SRTM is the static root of trust for measurement (SRTM) –

CRTM + unbreakable measurement chain to OS
 – DRTM is the dynamic root of trust for measurement (DRTM)

 n CRTM

 – Static CRTM (S-CRTM) or CRTM. Portion of platform 
firmware that must be implicitly trusted.

 n RTR

 – Root of trust for Reporting
 – These are the Platform Configuration Registers (PCRs) in the 

TPM
 – 20-byte non-resettable registers to store the state or measurements 

of code + data
 – Typically SHA1 (new info || former PCR value), where “||” is the 

catenation of data

 n RTS

 – Root of trust for storage
 – Endorsement key (EK) – unique per TPM
 – Storage root keys (SRKs) – used by OS and others to build key 

hierarchies

 n TPM Owner 

 – Applies the authentication value
 – Several commands are “owner authorized”



214  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n SRTM

 – Static root of trust for measurement
 – CRTM (CRTM) + platform firmware measuring all code and 

data prior to boot
 – Records information into non-resettable or “static” PCRs (0-15); 

Described by TCG BIOS and UEFI specifications

 n DRTM

 – Dynamic root of trust for measurement
 – Initiate the measurement later in boot. Includes resettable PCRs 

16 and above; these resettable PCRs zeroed upon initiation of the 
DRTM launch

 n Physical presence

 – Administrative model of the TPM. Assertion by operator of 
presence in order to perform privacy or administrative activities 
with the TPM.

In general, a hardware instantiation of the trusted platform module (TPM) is 
a passive hardware device on the system board. It serves as the root of trust for 
storage (RTS) and root of trust for reporting (RTR). The former is the use of 
the storage root key (SRK) and the Platform Configuration Registers (PCRs). 
Figure 10.7 shows the synthesis of the various roots in the platform. 



  Chapter 10:  Platform Security and Trust  n  215

TPM
Root of Trust for Reporting RTP

•  Provides cryptographic
   mechanism to digitally sign
   TPM state and information

Root of Trust for Storage RTS

•  Provides cryptographic
   mechanism to protect 
   information held outside
   of the TPM

Protected
Capabilities

Shielded
Locations

RTR RTS

RTM

Root of Trust for Measurement

•  Provided by platform to measure platform state
•  Defined by platform specification

Interaction between RTR and RTS is important TPM capability

 

Figure 10.7 Functions of a TPM

The active agent on the platform is the root of trust for measurement 
(RTM). The RTM can be either static or dynamic (SRTM versus DRTM, 
respectively). The SRTM, on the other hand, entails the creation of a trust 
chain from the platform reset vector going forward.

The definition of the SRTM for UEFI is defined in the UEFI TCG 
Protocol Specification and the TCG UEFI Platform Specification. The flow of 
the SRTM into the operating system is shown in Figure 10.8.



216  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Static
OS

S

Static R
TM

RTS /
RTR

(TPM)

Measurement and execution of
Framework/EFI, BIOS, Option

ROM, IPL, etc.

 

Figure 10.8 Boot Flow that Includes a Static Root of Trust

There need to be UEFI APIs available so that the UEFI OS loader can 
continue to measure the operating system kernel, pass commands to the 
TPM to possibly unseal a secret, and perform other TPM actions prior to the 
availability of the OS TPM driver. In addition, this API can be installed at 
the beginning of DXE to enable measurement of the DXE and UEFI images. 
Figure 10.9 shows where the UEFI TCG APIs would appear relative to the 
other interfaces.



  Chapter 10:  Platform Security and Trust  n  217

OPERATING SYSTEM

Legacy OS LOADER

Compatibility

UEFI OS LOADER/APPLICATION/DRIVER

PLATFORM  INITIALIZATION FIRMWARE (BIOS/SAL/PIWG)

PLATFORM  HARDWARE

UEFI BOOT SERVICES UEFI
RUNTIME
SERVICES

M
em

ory

Tim
er

D
river

Boot
Devices

Protocols +
Handlers

(OTHER)(O(OTHTHERER))
SMBIOSSMSMBIBIOSOS

ACPIACACPIPI
Interfaces

From
Other

Required
Specs

UEFI API

TC
G

 A
P

I

 

Figure 10.9 UEFI API Layering

The UEFI specifications are cross-listed in the TCG PC and Server Working 
Groups such that both consumer and enterprise-class operating systems can 
participate in this boot flow behavior. 

The UEFI TCG Platform specification describes which objects to measure 
in a UEFI system, such as the images, on-disk data structures, and UEFI 
variables. Figure 10.10 shows which objects in a UEFI system correspond to 
measures in PCRs.



218  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

OPERATING SYSTEM

Legacy OS LOADER EFI OS LOADER

PLATFORM  FIRMWARE FROM SYSTEM BOARD ROM

PLATFORM  HARDWARE

EFI BOOT SERVICES EFI
RUNTIME
SERVICES

Boot
Devices
Protocols +
Handlers

(OTHER)
SMBIOS

ACPI
Interfaces

From
Other

Required
Specs

Driver in System
Board Flash

D
rivers loaded from
H

B
A

’s, disk, etc.

PCR2

PCR0

PCR5

PCR1

PCR4

PCR8
+

PCR4

PCR0

PCR0

 

Figure 10.10 Measured Objects in UEFI

Prior to the UEFI phase of platform execution, the PI describe the PEI 
and DXE phases. In these phases the CRTM is mapped to the PEI phase and 
what is thought of as BIOS POST is mapped to DXE. There are interfaces 
in PEI (namely, the PEIM-to-PEIM interface, or PPI) to allow for fine-grain 
measurement in that phase of execution, too. Figure 10.11 shows one possible 
PEI-based CRTM and the flow into the operating system.



  Chapter 10:  Platform Security and Trust  n  219

Physical
Presence

Measure
FV_MAIN

PCR, Event
Log

SHA1 Algo

TPM Init
OpROM Scan

Measure ROMs

Update PCR2,
Log Event.

Legacy Boot,
Measure IPL,
Update PCR4,

Log Events, etc.

ASL Code

OS Environment

SEC PEI DXE BDS OS
S-CRTM

FV_REC

FV_MAIN

 

Figure 10.11 SRTM Boot Flow

What Is the Point of Measurements?

The process of measurements records the state of the platform, for both 
executable code and data hashes, into the TPM’s platform configuration 
registers (PCRs). These PCRs are write-only and cleared upon a platform 
reset (at least the static PCRs for SRTM). The PCRs reflect the platform state. 
They are used such that software, when installed upon the platform, can “seal” 
some information to the platform. A Seal operation is like an encryption that 
also includes PCRs. There is a corresponding Unseal operation, which is a 
decryption that also uses the PCRs.

What this practically means is that if the state of the platform changes 
between the installation of some software (and the Seal operation) and successive 
invocations of software on later restarts (and the use of Unseal operation), 
unauthorized changes to the platform in the interim will be detected (that is, 
PCRs changed). 

This is sort of the Resurrecting Duckling security model wherein the 
initial state of the platform (that is, PCR values upon installing application) is 
considered safe or acceptable.

UEFI offers an opportunity here. PI and UEFI have specification-based 
components written in a high-level language (for example, C). The software 
development lifecycle (SDL) for drivers and other system software can be 
applied, as can static analysis tools (such as Klockwork† and Coverity†). Later 



220  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

in the chapter we’ll talk about additional practices to complement the SDL 
that address domain-specific issues with platform firmware.

With all these elements of security and protections in place how the 
CRTM is updated becomes critical and much more challenging. Since the 
CRTM is the root, and is itself inherently trusted, it must be a very controlled 
and secure process. The TCG describes CRTM maintenance in the Trusted 
Building Block (TBB) protection profile. Either the CRTM is immutable, or 
never changed in the field, or appropriate cryptographic techniques need to be 
employed in order to update the CRTM. 

Regarding the cryptographic-based update, Figure 10.12 shows a possible 
implementation where the firmware volume (FV) update is enveloped using 
an RSA-2048/SHA-256-based update. This is just one possible UEFI PI 
implementation that leverages the UEFI PI-based firmware volume construct 
and the WIN_CERT that can be found in the UEFI 2.0 specification. 

Today’s
Capsule
FV to be
Updated

WIN_CERT w/
Signature of Capsule FV

GUID of the
Capsule Update

Capsule

Capsule FV

Signature of the FV

 

Figure 10.12 Firmware Volume Update

As noted above, a signed capsule is one implementation path. The system 
flash is not directly updated by a flash utility but instead the CRTM update 
capsule is stored in a staging area. The next time the CRTM gains control of the 
system (at reset), it will check for any pending updates. If updates are found, 
they will be validated and then cryptographically verified. If they are valid, the 
CRTM update can be applied. It’s important to note that when validating the 
update this all must be done by using only CRTM code and data. Code or data 
outside the CRTM cannot be trusted until verified. 



  Chapter 10:  Platform Security and Trust  n  221

UEFI Secure Boot
There are several terms that will be introduced in the context of UEFI and 
trust. These include executable verification, driver signing, user identification, 
network authentication, and network security.

To begin, the UEFI evolution described below appear as elements of the 
UEFI main specification in version 2.3. These features entail updates to the 
boot behavior and the features briefly treated will include image verification, 
networking enhancements such as IPSec, and user identification.

Figure 10.13 shows where in the stack the emergent UEFI features described 
in this chapter exist, namely in the UEFI Services and boot manager. 

Operating System

UEFI ShellUEFI Shell

Boot Manager

UEFI Services

Platform Initialization

 

Figure 10.13 UEFI Software Stack



222  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

UEFI Executable Verification
The first feature from UEFI to discuss is driver signing or executable verification. 
Driver signing:

 n Expands the types of signatures recognized by UEFI

 – SHA-1, SHA-256, RSA2048/SHA-1, RSA2048/SHA-256 and 
Authenticode

 n Standard method for configuring the “known-good” and “known-
bad” signature databases.

 n Provides standard behavior when execution is denied to provide 
policy-based updates to the lists.

One evolution beyond the SRTM described in earlier chapters, is that UEFI 
can provide “verification.” Recall that the SRTM records the state of the code 
and data in the platform such that a later entity may assess the measurements. 
For verification, or enforcement, of some policy, the UEFI firmware can act as 
a root-of-trust-for-enforcement (RTE) or root-of-trust-for-verification (RTV) 
wherein the boot process can change as part of policy. This policy can include 
the UEFI image verification using Authenticode-signed images, for example.

Figure 10.14 shows the steps necessary for signing of UEFI images. The 
signing can include RSA asymmetric encryption and the hash function a 
member of the security hash algorithm family.



  Chapter 10:  Platform Security and Trust  n  223

UEFI
Executable

UEFI
Executable

Digital
Signature

Hash
Function

Signing
FunctionHash Result

To
Verifier

Private Key

UEFI Executable Developer
Using SignTool/Signing Server

 

Figure 10.14 Driver Signing

This preparation would happen at the manufacturer facility or could be 
facilitated by a third party, such as VeriSign† Certificate Authority (CA).

Once the signed images are deployed in the field, whether loaded across the 
network, from a host-bus adapter card, or via the UEFI system partition, the 
UEFI 2.3 firmware verifies the image integrity, as illustrated in Figure 10.15.



224  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Form
Signer

UEFI
Executable

Digital
Signature

Hash
Function

Verification
Function

Hash Result

Public Key

UEFI Firmware Verification
During UEFI Driver or

Application Discovery/Launch

Valid Y/N?

 

Figure 10.15 Verification of UEFI Images

The combination of robust UEFI implements and interoperable trust 
infrastructure will allow for evolving the extensibility of UEFI in a safe, robust 
fashion.

UEFI Networking
Another element that appears in UEFI entails additional network security, 
including IPsec support. Trusted hardware like the TPM can be used to help 
store the IPsec credentials, but to be stronger, assurance around the UEFI 
firmware implementation of the IPsec cryptography and the networking code 
will need to follow the guidelines in the preceding portion of this chapter. IPsec 
can be used for platform network boot to harden scenarios such as ISCSI-based 
provisioning.

Figure 10.16 shows the EFI IPsec implementation using the UEFI IPsec 
protocol and IPV6 network stack, including a pre-deployed security association 
(SA).



  Chapter 10:  Platform Security and Trust  n  225

 

IPsecConfig

TCP6 Driver

MNP Crypto Driver

UDP6 Driver

Shell Environment

EFI Drivers

IP6 Driver

IPsec DB
SPD, SAD AH/ESP

ND MLD

ICMPV6

EFI_IPSEC_CONFIG

IP6_CONFIG_PROTOCOL

EFI_IP6_PROTOCOL

By Child

By Child

By Child

By Proto

Call SetData()
-Add an SPD entry (for TRAFFIC1, Manual SA)
-Add required manual SA for this SPD entry

Outbound Packet

Update
SPD/SAD DB

Find SA, and Encapsulate AH/ESP
Header per SA Info

Find SA, and Process AH/ESP
HeaderInbound Packet

Figure 10.16 UEFI IPsec

IPsec in the platform will allow for performing both an IPV4 and IPV6-
based iSCSI boot and provisioning. Figure 10.17 shows an iSCSI layering on 
top of the UEFI network stack, for example.



226  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

MNP

ARP 

MNP

IP4 

UDP4

DHCP4

MNP

ARP 

MNP

IP4 

TCP4

MNP

IP6

UDP6

DHCP6

MNP

IP6

TCP6

iSCSI

IP4CONFIG_SB

DHCP4_SB

TCP4_SB

UDP_SB

IP4_SB

ARP_SB

MNP_SB

By Child

IP6CONFIG_SB

DHCP6_SB

TCP6_SB

UDP6_SB

IP6_SB

NIC

 

Figure 10.17 An iSCSI Application with UEFI Network Stack

Beyond the IP6 and IPsec UEFI interfaces, the wire-protocol for network 
booting has commensurate evolution to the UEFI APIs. Specifically, in the 
DHCPv6 extensions for IPV6 network booting, the boot file information is 
sent as a Uniform Resource Locator (URL); the network boot option details 
are described in both the UEFI 2.3 specification and in IETF Request For 
Comment (RFC) 5970. As such, the UEFI client machine and the boot server 



  Chapter 10:  Platform Security and Trust  n  227

can negotiate various types of downloads, including TFTP, FTP, HTTP, NFS, 
or iSCSI. This allows the network capabilities to track the needs of the market 
and the machine’s firmware capabilities.

UEFI User Identification (UID)
A final ingredient in UEFI includes the user identity support. This is 
infrastructure that allows for loading drivers from token vendors to abstract 
authentication of the user, including many factors, and a policy engine to 
assign rights to certain users. This can include limiting service access for certain 
users. Figure 10.18 shows this capability.

Operating System

Boot Manager

UEFI Services

Platform Initialization

User Identity
Manager

Fingerpint Sensor

Password

Smart Card

• Standard framework for user-authentication devices such as
  smart cards, smart tokens, & fingerprint sensors.

• User UEFI HII to display information to the user.

• Introduces optional policy controls for connecting to devices,
  loading images, and accessing setup pages.

 

Figure 10.18 UEFI 2.3 User Identity

Implementation of these UEFI features would also build upon and require 
the assurance/best practices in firmware discussed earlier. More information on 
the UEFI-based features can be found in the UEFI main specification.



228  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Hardware Evolution: SRTM-to-DRTM
As a final element getting introduced into the platform going forward is the 
dynamic root of trust for measurement, or D-RTM. The D-RTM provides 
platform hardware capabilities to support a measured launch environment 
(MLE). An S-RTM and D-RTM feature set can exist on the same platform, 
or each feature can exist independently. Figure 10.19 compares the two RTMs 
and their temporal evolution and features.

• S-RTM measurement chain starts at reset and includes
  components from various sources.

• D-RTM measurement chain starts with a trusted secure event
  trigger such as SINIT. D-RTM leads to a smaller TCB, reduced 
  attack surface and thus a more secure system.

• MLE provider must make assurances that the MLE maintains the
  TCB. Smaller TCB simplifies MLE design.

S-RTM (Chain of Trust)

INT
19 PCR

Ext
end

VMM
Loader

PCR
Ext
end

OS
Loader

PCR
Ext
end

Boot
Loader

PCR
Ext
end

MBR
PCR
Ext
end

CRTM
PCR
Ext
end

BIOS

Platform
Reset

BIOS
NVRAM

Option
RAM

PCR
Extend

Opt
NVRAM

D-RTM (Late Launch)

PCR
Extend

VMM
Loader

PCR
ExtendVMM

Platform
Reset

Any
Operations

 

Figure 10.19 DRTM Boot Flow

A DRTM implementation can also include a root-of-trust for verifica-
tion (RTV), too. More information on Intel’s D-RTM implementation can 
be found in the following book by David Grawrock, Dynamics of a Trusted 
Platform from Intel Press.



  Chapter 10:  Platform Security and Trust  n  229

Platform Manufacturer
There are several terms that will be introduced in order to facilitate the following 
discussion. The first includes the entity that produces the final system board 
that includes the collection of UEFI and PI modules shown in Figure 10.20. 
This will be called the platform manufacturer or PM. The authority to perform 
updates or changes to the configuration of the UEFI and PI modules that 
ship from the factory are mediated by PM_AUTH or Platform Manufacturer 
Authority. PM_AUTH essentially describes the administrative roles that an 
entity who authenticates or proves itself to be the PM or delegate of the PM 
can perform. These actions can include but are not limited to the update of 
modules, firmware, or early PI settings. PM_AUTH typically is used to ensure 
the integrity of the PI and UEFI modules, and this integrity, or ensuring that the 
modules came from the manufacturer, can be accomplished via cryptographic 
updates of modules or signed UEFI capsules, for example.

As noted above, integrity forms one of the key security goals of the 
platform. If a third party can replace or impersonate a PI module without the 
PM’s knowledge, there is an opportunity to introduce a vulnerability into the 
system.



230  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Startup

Chipset
Init

Board
Init

Architectural
Protocols

OS-Absent
App

UEFI Shell

EFI Driver
Dispatcher

Boot
Manager

UEFI
Interfaces
&
Boundary
for PM_AUTH

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

Transient
System Load

(TSL) 
Run Time

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

Temp
Ram

CPU
Init 

PEI
Core 

OEM/PM
Extensible

3rd Party
Extensible

 

Figure 10.20 Overall View of Boot Time Line

When we refer to PM_AUTH, we mean “components that are under the 
authority of the Platform manufacturer.” This can include provenance of the 
PI code and data at rest (in the system board ROM container) and also the 
temporal state of the code in memory during system boot and runtime. The 
PM_AUTH can include the PEI and DXE driver dispatch responsive to an S5 
restart, the SMM code running during the operating system runtime x64, and 
data at rest in the ROM after field updates.

The PM_AUTH really means that we do not have arbitrary third party 
extensibility. Arbitrary third party code could include an operating system 
loader deposited on the EFI System Partition during a post-ship OS install 



  Chapter 10:  Platform Security and Trust  n  231

or upgrade, or a PC/AT option ROM from a host bus adapter plugged into a 
system.

So for this model of integrity analysis, PM_AUTH = {SEC, PEI Core, 
PEIMs, DXE core, DXE drivers, firmware volumes, UEFI variables used only 
by PEI + DXE, BDS, PMI, SMM, UEFI runtime, ACPI tables, SMBIOS 
tables}. 

Non-PM_AUTH is non-signed UEFI drivers from a host-bus adapter 
(HBA), non-signed UEFI OS loaders. 

Vulnerability Classification
There are several terms that will be introduced in this section. These include 
spoofing, tampering, repudiation, information disclosure, denial of service, 
and elevation of privilege.

In order to talk about platform security, some terms will be introduced. 
Specifically, a vulnerability in a software or firmware product can subject the 
computer on which it is running to various attacks. Attacks may be grouped in 
the following categories:

 n Spoofing. An attacker pretends that he is someone else, perhaps in order 
to inflict some damage on the person or organization impersonated.

 n Tampering. An attacker is able to modify data or program behavior.

 n Repudiation. An attacker, who has previously taken some action, is 
able to deny that he took it. 

 n Information Disclosure. An attacker is able to obtain access to 
information that he is not allowed to have.

 n Denial of Service. An attacker prevents the system attacked from 
providing services to its legitimate users. The victim may become 
bogged down in fake workload, or even shut down completely.

 n Elevation of Privilege. An attacker, who has entered the system at a low 
privilege level (such as a user), acquires higher privileges (such as those 
of an administrator).



232  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Roots of Trust/Guards
When discussing integrity, a more formal model helps define some of the 
terms. A popular commercial integrity model includes that defined by Clark-
Wilson (CW). In the CW model, there are controlled data items (CDIs) and 
uncontrolled data items (UDIs). The former must have some administrative 
control for changes, whereas the latter do not.

An example of a UDI can include a UEFI variable like the language code, 
whereas a CDI can include an authenticated variable such as the signature 
data base used for managing the x509V3 certificates. Figure 10.21 shows an 
example of a CDI, such as UEFI variables, and the Guard. Typically the caller 
would be a UEFI or OS application, the “request” would be the “set variable,” 
the Guard would be the UEFI implementation of the variable services, and 
the variable itself could include the EFI_VARIABLE_AUTHENTICATED_
WRITE_ACCESS bit set.

Source Request Guard Resource

Caller
(Pre-OS or OS)

Variable
Write

Platform
Firmware

UEFI
Variable

 

Figure 10.21 Flow of Actors in Access Control Model

Summary
This chapter has reviewed the static root of trust for measurement, or trusted 
boot, and the associated trusted computing hardware, including the TPM. It 
then described other preventive security technology, such as UEFI secure boot. 



  Chapter 10:  Platform Security and Trust  n  233

This chapter then described some background and guidance on how to 
prepare and integrate components that meet the platform assurance goals and 
also realize the purported capabilities of the security and trusted computing 
elements. This includes the concepts of trust and security. It also reviewed 
trusted computing technology, such as the Trusted Platform Module, SRTM, 
CRTM, and the TBB. Finally, the technology in the UEFI2.3 specification for 
security, such as driver signing, network authentication, and user identification 
was treated.



234  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 235

Chapter 11
Boot Device 

 Selection 
I just invent, then wait until man comes around to needing
what I invented.

—R. Buckminster Fuller

UEFI has over time evolved a very basic paradigm for establishing a 
firmware policy engine. The concept was developed from the concept 

of a single boot manager whose sole purpose was exercising the policy 
established by some architecturally defined global NVRAM variables. As the 
firmware design evolved, and several distinct boot phases such as SEC, PEI, 
DXE, BDS, Runtime, and Afterlife were defined, the BDS (Boot Device 
Selection) phase became a distinct boot manager-like phase. In this chapter, 
the architectural components that steer the policy of the boot manager are 
reviewed. This content forms the architectural basis for what eventually 
became the BDS phase. 

In fact, the differences between what is known as the boot manager in 
earlier firmware designs and what is known as the BDS in PI-based solutions 
is easy to illustrate. Figure 11.1 shows the software flow in an early firmware 
design environment, and Figure 11.2 shows one that is PI-compatible.



236  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Reset
Vector

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Boot Services API Availability
Runtime Services API Availability

OS-Absent
App

Transient OS
Environment

Boot
Manager

Exposed
Runtime
Interface

Device,
Bus, or
Service
Driver

Reset
Vector

Early
Platform

Initialization

Launch
EFI

Infrastructure

After-
life

(AL)

Transient
System Load

(TSL) 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

 

Figure 11.1 Earlier Firmware Designs with a Boot Manager Component



  Chapter 11:  Boot Device Selection  n  237

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Intrinsic
Services

OS-Absent
App

Transient OS
Environment

EFI Driver
Dispatcher

Boot
Manager

Exposed
Platform

Interfaces

Security

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

 

Figure 11.2 PI-based Solution with a BDS Component

As you can see from comparing the two figures, there is much overlap. 
The BDS phase subsumes the direction described in this chapter and is further 
explained in Chapter 8.

The UEFI boot manager is a firmware policy engine that can be configured 
by modifying architecturally defined global NVRAM variables. The boot 
manager attempts to load UEFI drivers and UEFI applications (including 
UEFI OS boot loaders) in an order defined by the global NVRAM variables. 
The platform firmware must use the boot order specified in the global NVRAM 
variables for normal boot. The platform firmware may add extra boot options 
or remove invalid boot options from the boot order list.

The platform firmware may also implement value-added features in the 
boot manager if an exceptional condition is discovered in the firmware boot 
process. One example of a value-added feature would be not loading a UEFI 
driver if booting failed the first time the driver was loaded. Another example 



238  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

would be booting to an OEM-defined diagnostic environment if a critical error 
was discovered during the boot process.

The boot sequence for UEFI consists of the following:

 n The platform firmware reads the boot order list from a globally defined 
NVRAM variable. The boot order list defines a list of NVRAM 
variables that contain information about what is to be booted. Each 
NVRAM variable defines a Unicode name for the boot option that 
can be displayed to a user.

 n The variable also contains a pointer to the hardware device and to a file 
on that hardware device that contains the UEFI image to be loaded.

 n The variable might also contain paths to the OS partition and di-
rectory along with other configuration-specific directories.

The NVRAM can also contain load options that are passed directly to the 
UEFI image. The platform firmware has no knowledge of what is contained 
in the load options. The load options are set by higher level software when it 
writes to a global NVRAM variable to set the platform firmware boot policy. 
This information could be used to define the location of the OS kernel if it was 
different than the location of the UEFI OS loader.

Firmware Boot Manager
The boot manager is a component in the UEFI firmware that determines which 
UEFI drivers and UEFI applications should be explicitly loaded and when. 
Once the UEFI firmware is initialized, it passes control to the boot manager. 
The boot manager is then responsible for determining what to load and any 
interactions with the user that may be required to make such a decision. Much 
of the behavior of the boot manager is left up to the firmware developer to 
decide, and details of boot manager implementation are outside the scope of 
this specification. In particular, likely implementation options might include 
any console interface concerning boot, integrated platform management of 
boot selections, possible knowledge of other internal applications or recovery 
drivers that may be integrated into the system through the boot manager. 

Programmatic interaction with the boot manager is accomplished through 
globally defined variables. On initialization the boot manager reads the values 



  Chapter 11:  Boot Device Selection  n  239

that comprise all of the published load options among the UEFI environment 
variables. By using the SetVariable() function the data that contain 
these environment variables can be modified.

Each load option entry resides in a Boot#### variable or a Driver#### 
variable where the #### is replaced by a unique option number in printable 
hexadecimal representation using the digits 0–9, and the uppercase versions 
of the characters A–F (0000–FFFF). The #### must always be four digits, 
so small numbers must use leading zeros. The load options are then logically 
ordered by an array of option numbers listed in the desired order. There are 
two such option ordering lists. The first is DriverOrder that orders the 
Driver#### load option variables into their load order. The second is 
BootOrder that orders the Boot#### load options variables into their 
load order.

For example, to add a new boot option, a new Boot#### variable would 
be added. Then the option number of the new Boot#### variable would be 
added to the BootOrder ordered list and the BootOrder variable would 
be rewritten. To change boot option on an existing Boot####, only the 
Boot#### variable would need to be rewritten. A similar operation would 
be done to add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS the 
boot manager stops processing the BootOrder variable and presents a boot 
manager menu to the user. If a boot via Boot#### returns a status other 
than EFI_SUCCESS, the boot has failed and the next Boot#### in the 
BootOrder variable will be tried until all possibilities are exhausted.

The boot manager may perform automatic maintenance of the database 
variables. For example, it may remove unreferenced load option variables, 
any unparseable or unloadable load option variables, and rewrite any ordered 
list to remove any load options that do not have corresponding load option 
variables. In addition, the boot manager may automatically update any ordered 
list to place any of its own load options where it desires. The boot manager can 
also, based on its platform-specific behavior, provide for manual maintenance 
operations as well. Examples include choosing the order of any or all load 
options, activating or deactivating load options, and so on.

The boot manager is required to process the Driver load option entries 
before the Boot load option entries. The boot manager is also required to 
initiate a boot of the boot option specified by the BootNext variable as 



240  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

the first boot option on the next boot, and only on the next boot. The boot 
manager removes the BootNext variable before transferring control to the 
BootNext boot option. If the boot from the BootNext boot option fails 
the boot sequence continues utilizing the BootOrder variable. If the boot 
from the BootNext boot option succeeds by returning EFI_SUCCESS the 
boot manager will not continue to boot utilizing the BootOrder variable.

The boot manager must call LoadImage(), which supports at least 
SIMPLE_FILE_PROTOCOL and LOAD_FILE_PROTOCOL for resolving 
load options. If LoadImage() succeeds, the boot manager must enable the 
watchdog timer for 5 minutes by using the SetWatchdogTimer() boot 
service prior to calling StartImage(). If a boot option returns control to 
the boot manager, the boot manager must disable the watchdog timer with an 
additional call to the SetWatchdogTimer() boot service.

If the boot image is not loaded via LoadImage(), the boot manager 
is required to check for a default application to boot. Searching for a default 
application to boot happens on both removable and fixed media types. This 
search occurs when the device path of the boot image listed in any boot option 
points directly to a SIMPLE_FILE_SYSTEM device and does not specify the 
exact file to load. The file discovery method is explained in the section “Default 
Behavior for Boot Option Variables” later in this chapter. The default media 
boot case of a protocol other than SIMPLE_FILE_SYSTEM is handled by the 
LOAD_FILE_PROTOCOL for the target device path and does not need to be 
handled by the boot manager.

The boot manager must also support booting from a short-form device path 
that starts with the first element being a hard drive media device path. The boot 
manager must use the GUID or signature and partition number in the hard 
drive device path to match it to a device in the system. If the drive supports 
the GPT partitioning scheme the GUID in the hard drive media device path is 
compared with the UniquePartitionGuid field of the GUID Partition 
Entry. If the drive supports the PC-AT MBR scheme the signature in the hard 
drive media device path is compared with the UniqueMBRSignature in the 
Legacy Master Boot Record. If a signature match is made, then the partition 
number must also be matched. The hard drive device path can be appended to 
the matching hardware device path and normal boot behavior can then be used. 
If more than one device matches the hard drive device path, the boot manager 
picks one arbitrarily. Thus the operating system must ensure the uniqueness of 
the signatures on hard drives to guarantee deterministic boot behavior.



  Chapter 11:  Boot Device Selection  n  241

Each load option variable contains an EFI_LOAD_OPTION descriptor 
that is a byte-packed buffer of variable-length fields. Since some of the fields are 
of variable length, an EFI_LOAD_OPTION cannot be described as a standard 
C data structure. Instead, the fields are listed here in the order that they appear 
in an EFI_LOAD_OPTION descriptor:

UINT32              Attributes;
UINT16              FilePathListLength;
CHAR16              Description[];
EFI_DEVICE_PATH     FilePathList[];
UINT8               OptionalData[];

 n Attributes – The attributes for this load option entry. All unused bits 
must be zero and are reserved by the UEFI specification for future 
growth. See “Related Definitions.”

 n FilePathListLength – Length in bytes of the FilePathList. Option-
alData starts at offset sizeof(UINT32) + sizeof(UINT16) + StrS-
ize(Description) + FilePathListLength of the EFI_LOAD_OPTION 
descriptor.

 n Description – The user readable description for the load option. This 
field ends with a Null Unicode character.

 n FilePathList – A packed array of UEFI device paths. The first ele-
ment of the array is a UEFI device path that describes the device 
and location of the Image for this load option. The FilePathList[0] 
is specific to the device type. Other device paths may optionally exist 
in the FilePathList, but their usage is OSV specific. Each element in 
the array is variable length, and ends at the device path end structure. 
Because the size of Description is arbitrary, this data structure is not 
guaranteed to be aligned on a natural boundary. This data structure 
may have to be copied to an aligned natural boundary before it is 
used.

 n OptionalData – The remaining bytes in the load option descriptor 
are a binary data buffer that is passed to the loaded image. If the field 
is zero bytes long, a Null pointer is passed to the loaded image. The 



242  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

number of bytes in OptionalData can be computed by subtracting 
the starting offset of OptionalData from total size in bytes of the EFI_
LOAD_OPTION.

Related Definitions

The load option attributes are defined by the values below.

//
// Attributes
//
#define LOAD_OPTION_ACTIVE          0x00000001
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002

Calling SetVariable() creates a load option. The size of the 
load option is the same as the size of the DataSize argument to the 
SetVariable() call that created the variable. When creating a new load 
option, all undefined attribute bits must be written as zero. When updating 
a load option, all undefined attribute bits must be preserved. If a load option 
is not marked as LOAD_OPTION_ACTIVE, the boot manager will not 
automatically load the option. This provides an easy way to disable or enable 
load options without needing to delete and reload them. If any Driver#### 
load option is marked as LOAD_OPTION_FORCE_RECONNECT, then 
all of the UEFI drivers in the system will be disconnected and reconnected 
after the last Driver#### load option is processed. This allows a UEFI 
driver loaded with a Driver#### load option to override a UEFI driver that 
was loaded prior to the execution of the UEFI Boot Manager.

Globally-Defined Variables
This section defines a set of variables that have architecturally defined meanings. 
In addition to the defined data content, each such variable has an architecturally 
defined attribute that indicates when the data variable may be accessed. The 
variables with an attribute of NV are nonvolatile. This means that their values 
are persistent across resets and power cycles. The value of any environment 
variable that does not have this attribute will be lost when power is removed 
from the system and the state of firmware reserved memory is not otherwise 
preserved. The variables with an attribute of BS are only available before 



  Chapter 11:  Boot Device Selection  n  243

ExitBootServices() is called. This means that these environment 
variables can only be retrieved or modified in the preboot environment. 
They are not visible to an operating system. Environment variables with an 
attribute of RT are available before and after ExitBootServices() is 
called. Environment variables of this type can be retrieved and modified in 
the preboot environment, and from an operating system. All architecturally 
defined variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \
        {8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

To prevent name collisions with possible future globally defined variables, 
other internal firmware data variables that are not defined here must be saved 
with a unique VendorGuid other than EFI_GLOBAL_VARIABLE. Table 11.1 
lists the global variables.

Table 11.1 Global Variables

Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports.

Lang NV, BS, RT The language code that the system is configured for.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds, 
before initiating the default boot selection.

ConIn NV, BS, RT The device path of the default input console.

ConOut NV, BS, RT The device path of the default output console.

ErrOut NV, BS, RT The device path of the default error output device.

ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

Boot#### NV, BS, RT A boot load option, where #### is a printed hex value. 
No 0x or h is included in the hex value.

BootOrder NV, BS, RT The ordered boot option load list.

BootNext NV, BS, RT The boot option for the next boot only.

BootCurrent BS, RT The boot option that was selected for the current boot.

Driver#### NV, BS, RT A driver load option, where #### is a printed hex 
value.

DriverOrder NV, BS, RT The ordered driver load option list.



244  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The LangCodes variable contains an array of 3-character (8-bit ASCII 
characters) ISO-639-2 language codes that the firmware can support. At 
initialization time the firmware computes the supported languages and creates 
this data variable. Since the firmware creates this value on each initialization, 
its contents are not stored in nonvolatile memory. This value is considered 
read-only.

The Lang variable contains the 3-character (8-bit ASCII characters) 
ISO-639-2 language code for which the machine has been configured. This 
value may be changed to any value supported by LangCodes; however, the 
change does not take effect until the next boot. If the language code is set to an 
unsupported value, the firmware chooses a supported default at initialization 
and sets Lang to a supported value.

The Timeout variable contains a binary UINT16 (unsigned 16 bit value) 
that supplies the number of seconds that the firmware waits before initiating 
the original default boot selection. A value of 0 indicates that the default boot 
selection is to be initiated immediately on boot. If the value is not present, 
or contains the value of 0xFFFF, then firmware waits for user input before 
booting. This means the default boot selection is not automatically started by 
the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI_
DEVICE_PATH descriptor that defines the default device to use on boot. 
Changes to these values do not take effect until the next boot. If the firmware 
cannot resolve the device path, it is allowed to automatically replace the value(s) 
as needed to provide a console for the system.

The ConInDev, ConOutDev, and ErrOutDev variables each contain 
an EFI_DEVICE_PATH descriptor that defines all the possible default de-
vices to use on boot. These variables are volatile, and are set dynamically on 
every boot. ConIn, ConOut, and ErrOut are always proper subsets of 
ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each 
Boot#### variable is the name “Boot” appended with a unique four digit 
hexadecimal number. For example, Boot0001, Boot0002, Boot0A02, 
and so on.

The BootOrder variable contains an array of UINT16s that make up 
an ordered list of the Boot#### options. The first element in the array is the 
value for the first logical boot option, the second element is the value for the 



  Chapter 11:  Boot Device Selection  n  245

second logical boot option, and so on. The BootOrder order list is used by 
the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### 
option that is to be tried first on the next boot. After the BootNext boot 
option is tried the normal BootOrder list is used. To prevent loops, the boot 
manager deletes this variable before transferring control to the preselected boot 
option.

The BootCurrent variable is a single UINT16 that defines the 
Boot#### option that was selected on the current boot. 

Each Driver#### variable contains an EFI_LOAD_OPTION. 
Each load option variable is appended with a unique number, for example 
Driver0001, Driver0002, and so on.

The DriverOrder variable contains an array of unsigned 16 bit values 
that make up an ordered list of the Driver#### variable. The first element 
in the array is the value for the first logical driver load option, the second 
element is the value for the second logical driver load option, and so on. The 
DriverOrder list is used by the firmware’s boot manager as the default load 
order for UEFI drivers that it should explicitly load.

Default Behavior for Boot Option Variables
The default state of globally defined variables is firmware vendor specific. 
However the boot options require a standard default behavior in the ex-
ceptional case that valid boot options are not present on a platform. The default 
behavior must be invoked any time the BootOrder variable does not exist or 
only points to nonexistent boot options.

If no valid boot options exist, the boot manager enumerates all removable 
UEFI media devices followed by all fixed UEFI media devices. The order 
within each group is undefined. These new default boot options are not saved 
to nonvolatile storage. The boot manger then attempts to boot from each boot 
option. If the device supports the SIMPLE_FILE_SYSTEM protocol then 
the removable media boot behavior (see the section “Removable Media Boot 
Behavior”) is executed. Otherwise the firmware attempts to boot the device via 
the LOAD_FILE protocol.

It is expected that this default boot will load an operating system or a 
maintenance utility. If this is an operating system setup program it is then 
responsible for setting the requisite environment variables for subsequent 



246  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

boots. The platform firmware may also decide to recover or set to a known set 
of boot options.

Boot Mechanisms
UEFI can boot from a device using the SIMPLE_FILE_SYSTEM protocol 
or the LOAD_FILE protocol. A device that supports the SIMPLE_FILE_
SYSTEM protocol must materialize a file system protocol for that device to be 
bootable. If a device does not support a complete file system it may produce 
a LOAD_FILE protocol that allows it to create an image directly. The boot 
manager will attempt to boot using the SIMPLE_FILE_SYSTEM protocol 
first. If that fails, then the LOAD_FILE protocol will be used.

Boot via Simple File Protocol

When booting via the SIMPLE_FILE_SYSTEM protocol, the FilePath pa-
rameter will start with a device path that points to the device that “speaks” the 
SIMPLE_FILE_SYSTEM protocol. The next part of the FilePath will point to 
the file name, including subdirectories that contain the bootable image. If the 
file name is a null device path, the file name must be discovered on the media 
using the rules defined for removable media devices with ambiguous file names 
(see the section “Removable Media Boot Behavior”).

The format of the file system specified by UEFI is contained in the UEFI 
specification. While the firmware must produce a SIMPLE_FILE_SYSTEM 
protocol that understands the UEFI file system, any file system can be abstracted 
with the SIMPLE_FILE_SYSTEM protocol interface.

Removable Media Boot Behavior

On a removable media device it is not possible for the FilePath to contain a file 
name, including subdirectories. The FilePath is stored in nonvolatile memory 
in the platform and cannot possibly be kept in sync with a media that can 
change at any time. A FilePath for a removable media device will point to a 
device that “speaks” the SIMPLE_FILE_SYSTEM protocol. The FilePath will 
not contain a file name or subdirectories.

The system firmware will attempt to boot from a removable media FilePath 
by adding a default file name in the form \EFI\BOOT\BOOT{machine type 
short-name}.EFI. Where machine type short-name defines a PE32+ image 



  Chapter 11:  Boot Device Selection  n  247

format architecture. Each file only contains one UEFI image type, and a system 
may support booting from one or more images types. Table 11.2 lists the UEFI 
image types.

Table 11.2 UEFI Image Types

Architecture File name convention PE Executable machine type*

IA-32 BOOTIA32.EFI 0x14c

x64 BOOTx64.EFI 0x8664

Itanium® architecture BOOTIA64.EFI 0x200

ARM† architecture BOOTARM.EFI 0x01c2

*Note: The PE Executable machine type is contained in the machine field 
of the COFF file header as defined in the Microsoft Portable Executable and 
Common Object File Format Specification, Revision 6.0.

A media may support multiple architectures by simply having a \EFI\
BOOT\BOOT{machine type short-name}.EFI file of each possible machine 
type.

Non-removable Media Boot Behavior

On a non-removable media device it is possible for the FilePath to contain a file 
name, including subdirectories. The FilePath will be used for the boot target 
and the platform will launch the target according to normal system policy.

The platform policy will leverage the BOOT#### variables referenced by 
the BootOrder variable in the system.  These BOOT#### variables are the ones 
which contain the FilePath data for the boot target and are what typically are 
used for the boot process to occur.

Boot via LOAD_FILE Protocol

When booting via the LOAD_FILE protocol, the FilePath is a device path 
that points to a device that “speaks” the LOAD_FILE protocol. The image is 
loaded directly from the device that supports the LOAD_FILE protocol. The 
remainder of the FilePath contains information that is specific to the device. 
UEFI firmware passes this device-specific data to the loaded image, but does 
not use it to load the image. If the remainder of the FilePath is a null device 



248  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

path it is the loaded image’s responsibility to implement a policy to find the 
correct boot device.

The LOAD_FILE protocol is used for devices that do not directly support 
file systems. Network devices commonly boot in this model where the image is 
materialized without the need of a file system.

Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) 
BIOS Support Specification that is part of the Wired for Management Baseline 
specification. PXE specifies UDP, DHCP, and TFTP network protocols 
that a booting platform can use to interact with an intelligent system load 
server. UEFI defines special interfaces that are used to implement PXE. These 
interfaces are contained in the PXE_BASE_CODE protocol defined in the 
UEFI specification.

Future Boot Media

Since UEFI defines an abstraction between the platform and the operating 
system and its loader it should be possible to add new types of boot media 
as technology evolves. The OS loader will not necessarily have to change to 
support new types of boot. The implementation of the UEFI platform services 
may change, but the interface will remain constant. The operating system will 
require a driver to support the new type of boot media so that it can make the 
transition from UEFI boot services to operating system control of the boot 
media.

Summary
In conclusion, this chapter indicates the mechanism by which a UEFI compliant 
system determines what the boot target(s) is and in what order such execution 
would occur. This methodology also provides a cooperative mechanism that is 
highly extensible and that third parties (such as an OS vendor) can use for their 
own installation and execution.



 249

Chapter 12
Boot Flows

Two roads diverged in a wood….
—Robert Frost, “The Road Less Taken”

T   he restart of a system admits to many possibilities, or paths of execution. 
The restart of a CPU execution for a given CPU can have many causes 

and different environment states that impinge upon it. These can include 
requests to the firmware for an update of the flash store, resumption of a 
power management event, initial startup of the system, and other possible 
restarts. This chapter describes some of these possible flows and how the 
UEFI PI handles the events. 

To begin, the normal code flow in the UEFI PI passes through a suc-
cession of phases, in the following order:

1. SEC

2. PEI 

3. DXE 

4. BDS

5. Runtime 

6. Afterlife 
This chapter describes alternatives to this ordering, which can also be seen in 
Figure 12.1.



250  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Boot Services
Runtime Services

DXE Services

OS-Absent
App

Transient OS
Environment

DXE
Dispatcher

Boot
Dispatcher

Exposed
API

Previously
Exposed

Framework
APIs Now

Limited

Security

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

Figure 12.1 Ordering of UEFI PI Execution Phases

The PEI Foundation is unaware of the boot path required by the system. 
It relies on the PEIMs to determine the boot mode and to take appropriate 
action depending on the mode. To implement this determination of the boot 
mode, each PEIM has the ability to manipulate the boot mode using the PEI 
Service SetBootMode() described in the discussion of PEI in Chapter 13. 
Note that the PEIM does not change the order in which PEIMs are dispatched 
depending on the boot mode.

Defined Boot Modes
The list of possible boot modes and their corresponding priorities is shown in 
the following section. UEFI PI architecture avoids defining an upgrade path 
specifically, should new boot modes need be defined. This is necessary as the 
nature of those additional boot modes may work in conjunction with or may 
conflict with the previously defined boot modes.



  Chapter 12:  Boot Flows  n  251

Priority of Boot Paths
Within a given PEIM, a priority of the boot modes must be observed, as shown 
in Figure 12.2. The priority ordering of the sources of boot mode should be as 
follows (from highest priority to lowest):

1. BOOT_IN_RECOVERY_MODE   

2. BOOT_ON_FLASH_UPDATE   

3. BOOT_ON_S3_RESUME   

4. BOOT_WITH_MINIMAL_CONFIGURATION   

5. BOOT_WITH_FULL_CONFIGURATION   

6. BOOT_ASSUMING_NO_CONFIGURATION_CHANGES   

7. BOOT_WITH_FULL_CONFIGURATION_PLUS_
DIAGNOSTICS   

8. BOOT_WITH_DEFAULT_SETTINGS   

9. BOOT_ON_S4_RESUME   

10. BOOT_ON_S5_RESUME   

11. BOOT_ON_S2_RESUME   



252  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Special PEIM
Warm/Cold Start Detect

PEI_SPECIAL_BOOT_MODE_PEIM_PPI

S3 DetectS3 Detect

Boot Path Type PEIM
-Ascertain this state, incl. Full
Config, Min config, etc.

Boot Path Type PEIM
-Ascertain this state, incl. Full
Config, Min config, etc.

PEI_S_STATE_BOOT_MODE_PEIM_PPI

Master/Special PEIM

PEI_MASTER_BOOT_MODE_PEIM_PPI Any PEIMs
that need different
behavior on
Boot ModeOther PEIM NOther PEIM 1

Figure 12.2 Priority of the Boot Modes

Table 12.1 lists the assumptions that can and cannot be made about the 
system for each sleep state.

Table 12.1 Boot Path Assumptions

System State Description Assumptions

R0 Cold Boot Cannot assume that the previously stored 
configuration data is valid.

R1 Warm Boot May assume that the previously stored configuration 
data is valid.



  Chapter 12:  Boot Flows  n  253

S3 ACPI Save to 
RAM Resume

The previously stored configuration data is valid and 
RAM is valid. RAM configuration must be restored 
from nonvolatile storage (NVS) before RAM may 
be used. The firmware may only modify previously 
reserved RAM. There are two types of reserved 
memory. One is the equivalent of the BIOS INT15h, 
E820 type-4 memory and indicates that the RAM is 
reserved for use by the firmware. The suggestion is 
to add another type of memory that allows the OS to 
corrupt the memory during runtime but that may be 
overwritten during resume.

S4,  
S5

Save to Disk 
Resume,  
“Soft Off”

S4 and S5 are identical from a PEIM’s point of view. 
The two are distinguished to support follow-on phases. 
The entire system must be reinitialized but the PEIMs 
may assume that the previous configuration is still 
valid.

Boot on Flash  
Update

This boot mode can be either an INIT, S3, or other 
means by which to restart the machine. If it is an S3, 
for example, the flash update cause will supersede the 
S3 restart. It is incumbent upon platform code, such as 
the Memory Initialization PEIM, to determine the exact 
cause and perform correct behavior (that is, S3 state 
restoration versus INIT behavior).

Reset Boot Paths
The following sections describe the boot paths that are followed when a system 
encounters several different types of reset.

Intel® Itanium® Processor Reset

Intel® Itanium® architecture contains enough hooks to authenticate PAL-A and 
PAL-B code that is distributed by the processor vendor. The internal microcode 
on the processor silicon, which starts up on a PowerGood reset, finds the first 
layer of processor abstraction code (called PAL-A) that is located in the Boot 
Firmware Volume (BFV) using architecturally defined pointers in the BFV. It is 
the responsibility of this microcode to authenticate that the PAL-A code layer 
from the processor vendor has not been tampered with. If the authentication 
of the PAL-A layer passes, control then passes to the PAL-A layer, which then 
authenticates the next layer of processor abstraction code (called PAL-B) 
before passing control to it. In addition to this microarchitecture-specific 



254  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

authentication, the SEC phase of UEFI PI is still responsible for locating the 
PEI Foundation and verifying its authenticity.

In an Itanium-based system, it is also imperative that the firmware modules 
in the BFV be organized such that at least the PAL-A is contained in the fault-
tolerant regions. This processor-specific PAL-A authenticates the PAL-B code, 
which is usually contained in the regions of the firmware system that do not 
support fault-tolerant updates. The PAL-A and PAL-B binary components are 
always visible to all the processors in a node at the time of power-on; the system 
fabric should not need to be initialized.

Non-Power-on Resets

Non-power-on resets can occur for many reasons. Some PEI and DXE sys-
tem services reset and reboot the entire platform, including all processors and 
devices. It is important to have a standard variant of this boot path for cases 
such as the following:

 n Resetting the processor to change frequency settings

 n Restarting hardware to complete chipset initialization 

 n Responding to an exception from a catastrophic error
This reset is also used for Configuration Values Driven through Reset (CVDR) 
configuration.

Normal Boot Paths
A traditional BIOS executes POST from a cold boot (G3 to S0 state), on 
resumes, or in special cases like INIT. UEFI covers all those cases but provides 
a richer and more standardized operating environment.

The basic code flow of the system needs to be changeable due to different 
circumstances. The boot path variable satisfies this need. The initial value of the 
boot mode is defined by some early PEIMs, but it can be altered by other, later 
PEIMs. All systems must support a basic S0 boot path. Typically a system has 
a richer set of boot paths, including S0 variations, S-state boot paths, and one 
or more special boot paths. 



  Chapter 12:  Boot Flows  n  255

The architecture for multiple boot paths presented here has several benefits:

 n The PEI Foundation is not required to be aware of system-specific 
requirements such as multi-processor capability and various power 
states. This lack of awareness allows for scalability and headroom for 
future expansion.

 n Supporting the various paths only minimally impacts the size of the 
PEI Foundation.

 n The PEIMs required to support the paths scale with the complexity 
of the system.

Note that the Boot Mode Register becomes a variable upon transition to the 
DXE phase. The DXE phase can have additional modifiers that affect the boot 
path more than the PEI phase. These additional modifiers can indicate if the 
system is in manufacturing mode, chassis intrusion, or AC power loss or if 
silent boot is enabled. 

In addition to the boot path types, modifier bits might be present. The 
recovery-needed modifier is set if any PEIM detects that it has become 
corrupted.

Basic G0-to-S0 and S0 Variation Boot Paths 

The basic S0 boot path is boot with full configuration. This path setting informs 
all PEIMs to do a full configuration. The basic S0 boot path must be supported. 

The UEFI PI architecture also defines several optional variations to the 
basic S0 boot path. The variations that are supported depend on the following:

 n Richness of supported features

 n If the platform is open or closed

 n Platform hardware
For example, a closed system or one that has detected a chassis intrusion could 
support a boot path that assumes no configuration changes from last boot 
option, thus allowing a very rapid boot time. Unsupported variations default 
to basic S0 operation. The following are the defined variations to the basic boot 
path:



256  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Boot with minimal configuration: This path is for configuring the 
minimal amount of hardware to boot the system.

 n Boot assuming no configuration changes: This path uses the last 
configuration data.

 n Boot with full configuration plus diagnostics: This path also causes any 
diagnostics to be executed.

 n Boot with default settings: This path uses a known set of safe values for 
programming hardware.

S-State Boot Paths

The following optional boot paths allow for different operation for a resume 
from S3, S4, and S5:

 n S3 (Save to RAM Resume): Platforms that support S3 resume must 
take special care to preserve/restore memory and critical hardware. 

 n S4 (Save to Disk): Some platforms may want to perform an ab-
breviated PEI and DXE phase on a S4 resume.

 n S5 (Soft Off): Some platforms may want an S5 system state boot to be 
differentiated from a normal boot—for example, if buttons other than 
the power button can wake the system.

An S3 resume needs to be explained in more detail because it requires 
cooperation between a G0-to-S0 boot path and an S3 resume boot path. The 
G0-to-S0 boot path needs to save hardware programming information that the 
S3 resume path needs to retrieve. This information is saved in the Hardware 
Save Table using predefined data structures to perform I/O or memory writes. 
The data is stored in a UEFI equivalent of the INT15 E820 type 4 (firmware 
reserved memory) area or a firmware device area that is reserved for use by 
UEFI. The S3 resume boot path code can access this region after memory has 
been restored.



  Chapter 12:  Boot Flows  n  257

Recovery Paths
All of the previously described boot paths can be modified or aborted if the 
system detects that recovery is needed. Recovery is the process of reconstituting 
a system’s firmware devices when they have become corrupted. The corruption 
can be caused by various mechanisms. Most firmware volumes on nonvolatile 
storage devices (flash, disk) are managed as blocks. If the system loses power 
while a block, or semantically bound blocks, are being updated, the storage 
might become invalid. On the other hand, the device might become corrupted 
by an errant program or by errant hardware. The system designers must 
determine the level of support for recovery based on their perceptions of the 
probabilities of these events occurring and their consequences.

The following are some reasons why system designers may choose not to 
support recovery:

 n A system’s firmware volume storage media might not support 
modification after being manufactured. It might be the functional 
equivalent of ROM.

 n Most mechanisms of implementing recovery require additional 
firmware volume space, which might be too expensive for a particular 
application.

 n A system may have enough firmware volume space and hardware 
features that the firmware volume can be made sufficiently fault 
tolerant to make recovery unnecessary.

Discovery

Discovering that recovery is required may be done using a PEIM (for example, 
by checking a “force recovery” jumper) or the PEI Foundation itself. The PEI 
Foundation might discover that a particular PEIM has not validated correctly 
or that an entire firmware has become corrupted.

General Recovery Architecture

The concept behind recovery is to preserve enough of the system firmware so 
that the system can boot to a point where it can do the following:



258  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Read a copy of the data that was lost from chosen peripherals.

 n Reprogram the firmware volume with that data.
Preserving the recovery firmware is a function of the way the firmware volume 
store is managed, which is generally beyond the scope of this book. For the 
purpose of this description, it is expected that the PEIMs and other contents 
of the firmware volumes required for recovery are marked. The architecture of 
the firmware volume store must then preserve marked items, either by making 
them unalterable (possibly with hardware support) or must protect them using 
a fault-tolerant update process. Note that a PEIM is required to be in a fault-
tolerant area if it indicates it is required for recovery or if a PEIM required for 
recovery depends on it. This architecture also assumes that it is fairly easy to 
determine that firmware volumes have become corrupted.

The PEI Dispatcher then proceeds as normal. If it encounters PEIMs 
that have been corrupted (for example, by receiving an incorrect hash value), 
it itself must change the boot mode to recovery. Once set to recovery, other 
PEIMs must not change it to one of the other states. After the PEI Dispatcher 
has discovered that the system is in recovery mode, it will restart itself, 
dispatching only those PEIMs that are required for recovery. A PEIM can also 
detect a catastrophic condition or a forced-recovery event and inform the PEI 
Dispatcher that it needs to proceed with a recovery dispatch. A PEIM can alert 
the PEI Foundation to start recovery by OR ing the BOOT_IN_RECOVERY_
MODE_MASK bit onto the present boot mode. The PEI Foundation then resets 
the boot mode to BOOT_IN_RECOVERY_MODE and starts the dispatch 
from the beginning with BOOT_IN_RECOVERY_MODE as the sole value for 
the mode. 

It is possible that a PEIM could be built to handle the portion of the 
recovery that would initialize the recovery peripherals (and the buses they 
reside on) and then to read the new images from the peripherals and update 
the firmware volumes. 

It is considered far more likely that the PEI will transition to DXE be-
cause DXE is designed to handle access to peripherals. This transition has 
the additional benefit that, if DXE then discovers that a device has become 
corrupted, it may institute recovery without transferring control back to the 
PEI.

If the PEI Foundation does not have a list of what it is to dispatch, how 
does it know whether an area of invalid space in a firmware volume should 



  Chapter 12:  Boot Flows  n  259

have contained a PEIM or not? It seems that the PEI Foundation may discover 
most corruption as an incidental result of its search for PEIMs. In this case, if 
the PEI Foundation completes its dispatch process without discovering enough 
static system memory to start DXE, then it should go into recovery mode.

Special Boot Path Topics
The remaining sections in this chapter discuss special boot paths that might 
be available to all processors or specific considerations that apply only for Intel 
Itanium processors.

Special Boot Paths

The following are special boot paths in the UEFI PI architecture. Some of these 
paths are optional and others are processor-family specific.

 n Forced recovery boot: A jumper or an equivalent mechanism indicates 
a forced recovery.

 n Intel Itanium architecture boot paths: See the next section.

 n Capsule update: This boot mode can be an INIT, S3, or some other 
means by which to restart the machine. If it is an S3, for example, 
the capsule cause will supersede the S3 restart. It is incumbent upon 
platform code, such as a memory initialization PEIM, to determine 
the exact cause and perform the correct behavior—that is, S3 state 
restoration versus INIT behavior.

Special Intel Itanium® Architecture Boot Paths

The architecture requires the following special boot paths:

 n Boot after INIT: An INIT has occurred.

 n Boot after MCA: A Machine Check Architecture (MCA) event has 
occurred.

Intel Itanium processors possess several unique boot paths that also invoke the 
dispatcher located at the System Abstraction Layer entry point SALE_ENTRY. 



260  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The processor INIT and MCA are two asynchronous events that start up 
the SEC code/dispatcher in an Itanium-based system. The UEFI PI security 
module is transparent during all the code paths except for the recovery check 
call that happens during a cold boot. The PEIMs or DXE drivers that handle 
these events are architecture-aware and do not return the control to the core 
dispatcher. They call their respective architectural handlers in the OS.

Intel Itanium® Architecture Access to the Boot Firmware Volume

Figure 12.3 shows the reset boot path that an Intel Itanium processor follows. 
Figure 12.4 shows the boot flow.
 

Microcode
Startup

PAL-A
Authenticate

PAL-B
Authenticate

PowerGood

Framework SEC Phase Starts Up

Figure 12.3 Intel® Itanium® Architecture Resets



  Chapter 12:  Boot Flows  n  261

 

RESET

M

All Processors
run PAL-A

PAL Handoff State (Regs)

PEIM Dispatcher (SALE_Entry)

PEIM Dispatcher Invoked

PEIM behavior depends on the handoff
state and the boot flag

Some PEIMs work in MP mode

A

Rec. Mode
Check PEIM

First Phase Done Second Phase Done

Rec. Mode Non Rec. Mode Begin Phase-2 Load DXE/Handoff

A A DXEM

Figure 12.4 Intel® Itanium® Processor Boot Flow (MP versus UP on Other CPUs)



262  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

In Intel Itanium architecture, the microcode starts up the first layer of the 
PAL code, provided by the processor vendor, that resides in the Boot Firmware 
Volume (BFV). This code minimally initializes the processor and then finds 
and authenticates the second layer of PAL code (called PAL-B). The location 
of both PAL-A and PAL-B can be found by consulting either the architected 
pointers in the ROM near the 4-gigabyte region or by consulting the Firmware 
Interface Table (FIT) pointer in the ROM. The PAL layer communicates with 
the OEM boot firmware using a single entry point called SALE_ENTRY. 

The Intel Itanium architecture defines the initialization described above. 
In addition, however, Itanium-based systems that use the UEFI PI architecture 
must do the following: 

 n A “special” PEIM must be resident in the BFV to provide information 
about the location of the other firmware volumes. 
The PEI Foundation will be located at the SALE_ENTRY point on 
the BFV. The Intel Itanium architecture PEIMs may reside in the BFV 
or other firmware volumes, but a special PEIM must be resident in the 
BFV to provide information about the location of the other firmware 
volumes. 

 n The BFV of a particular node must be accessible by all the processors 
running in that node.

All the processors in each node start up and execute the PAL code and 
subsequently enter the PEI Foundation. The BFV of a particular node 
must be accessible by all the processors running in that node. This 
distinction also means that some of the PEIMs in the Intel Itanium 
architecture boot path will be multi-processor-aware.

 n Firmware modules in a BFV must be organized such that PAL-A, PAL-B, 
and FIT binaries are always visible to all the processors in a node at the 
time of power-on. 

These binaries must be visible without any initialization of the system 
fabric.



  Chapter 12:  Boot Flows  n  263

//*******************************************************
// EFI_BOOT_MODE
//*******************************************************
typedef UINT32     EFI_BOOT_MODE;

#define 
BOOT_WITH_FULL_CONFIGURATION                         0x00
#define BOOT_WITH_MINIMAL_CONFIGURATION               0x01
#define 
BOOT_ASSUMING_NO_CONFIGURATION_CHANGES               0x02
#define 
BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOSTICS        0x03
#define 
BOOT_WITH_DEFAULT_SETTINGS                           0x04
#define 
BOOT_ON_S4_RESUME                                    0x05
#define 
BOOT_ON_S5_RESUME                                    0x06
#define 
BOOT_ON_S2_RESUME                                    0x10
#define 
BOOT_ON_S3_RESUME                                    0x11
#define 
BOOT_ON_FLASH_UPDATE                                 0x12
#define 
BOOT_IN_RECOVERY_MODE                                0x20

0x21 – 0xF..F Reserved Encodings

Table 12.2 lists the values and descriptions of the boot modes.  

Table 12.2 Boot Mode Register

REGISTER BIT(S) VALUES DESCRIPTIONS

MSBit-0 000000b Boot with full configuration

000001b Boot with minimal configuration

000010b Boot assuming no configuration changes from 
last boot

000011b Boot with full configuration plus diagnostics

000100b Boot with default settings

000101b Boot on S4 resume

000110b Boot in S5 resume

000111b-001111b Reserved for boot paths that configure memory



264  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

010000b Boot on S2 resume

010001b Boot on S3 resume

010010b Boot on flash update restart

010011b-011111b Reserved for boot paths that preserve memory 
context

100000b Boot in recovery mode

100001b-111111b Reserved for special boots

Architectural Boot Mode PPIs
In the PEI chapter the concept of a PEIM-to-PEIM interface (PPI) is in-
troduced as the unit of interoperability in this phase of execution. PEI modules 
can ascertain the boot mode via the GetBootMode service once the module 
is dispatched, but a system designer may not want a PEIM to even run unless 
in a given boot mode. A possible hierarchy of boot mode PPIs abstracts the 
various producers of the boot mode. It is a hierarchy in that there should be 
an order of precedence in which each mode can be set. The PPIs and their 
respective GUIDs are described in Required Architectural PPIs for the PEI 
phase that can be found in the PEI Core Interface Specification and Optional 
Architectural PPIs. The hierarchy includes the master PPI, which publishes 
a PPI depended upon by the appropriate PEIMs, and some subsidiary PPI. 
For PEIMs that require that the boot mode is finally known, the Master Boot 
Mode PPI can be used as a dependency.

Table 12.3 lists the architectural boot mode PPIs.

Table 12.3 Architectural Boot Mode PPIs

PPI Name Required or Optional? PPI Definition in Section...

Master Boot Mode PPI Required Architectural PPIs: Required 
Architectural PPIs

Boot in Recovery Mode PPI Optional Architectural PPIs: Optional 
Architectural PPIs



  Chapter 12:  Boot Flows  n  265

Recovery
This section describes platform firmware recovery. Recovery is an option to 
provide higher RASUM (Reliability, Availability, Usability, Manageability) in 
the field. Recovery is the process of reconstituting a system’s firmware devices 
when they have become corrupted. The corruption can be caused by various 
mechanisms. Most firmware volumes (FVs) in nonvolatile storage (NVS) 
devices (flash or disk, for example) are managed as blocks. If the system loses 
power while a block, or semantically bound blocks, are being updated, the 
storage might become invalid. On the other hand, an errant program or 
hardware could corrupt the device. The system designers must determine the 
level of support for recovery based on their perceptions of the probabilities of 
these events occurring and the consequences.

Discovery

Discovering that recovery is required may be done using a PEIM (for example, 
by checking a “force recovery” jumper) or the PEI Foundation itself. The PEI 
Foundation might discover that a particular PEIM has not validated correctly 
or that an entire firmware has become corrupted.

Note At this point a physical reset of the system has not occurred. 
The PEI Dispatcher has only cleared all state information and 
restarted itself.

It is possible that a PEIM could be built to handle the portion of the 
recovery that would initialize the recovery peripherals (and the buses they reside 
on) and then to read the new images from the peripherals and update the FVs. 

It is considered far more likely that the PEI will transition to DXE be-
cause DXE is designed to handle access to peripherals. This has the additional 
benefit that, if DXE then discovers that a device has become corrupted, it may 
institute recovery without transferring control back to the PEI.

Since the PEI Foundation does not have a list of what to dispatch, how 
does it know if an area of invalid space in an FV should have contained a PEIM 
or not? The PEI Foundation should discover most corruption as an incidental 
result of its search for PEIMs. In this case, if the PEI Foundation completes 
its dispatch process without discovering enough static system memory to start 
DXE, then it should go into recovery mode. 



266  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Summary
This chapter has described the various boot modes that the UEFI PI firmware 
can support. This concept is important to understand as both a provider of 
PEI modules and DXE drivers, along with platform integrators. The former 
constituency needs to design their code to handle the boot modes appropriately, 
whereas the latter group of engineers needs to understand how to compose a 
set of modules and drivers for the respective boot paths of a resultant system.



 267

Chapter 13
Pre-EFI Initialization 

(PEI)
Small is Beautiful

—E.F. Schumacher

The UEFI Platform Initialization (PI) Pre-EFI initialization (PEI) phase 
of execution has two primary roles in a platforms life: determine the 

source of the restart and provide a minimum amount of permanent memory 
for the ensuing DXE phase. Words such as small and minimal are often 
used to describe PEI code because of hardware resource constraints that 
limit the programming environment. Specifically, the Pre-EFI Initialization 
(PEI) phase provides a standardized method of loading and invoking specific 
initial configuration routines for the processor, chipset, and system board. 
The PEI phase occurs after the Security (SEC) phase. The primary purpose 
of code operating in this phase is to initialize enough of the system to allow 
instantiation of the Driver Execution Environment (DXE) phase. At a 
minimum, the PEI phase is responsible for determining the system boot 
path and initializing and describing a minimum amount of system RAM 
and firmware volume(s) that contain the DXE Foundation and DXE 
Architectural Protocols. As an application of Occam’s razor to the system 
design, the minimum amount of activity should be orchestrated and located 
in this phase of execution; no more, no less.



268  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Scope
The PEI phase is responsible for initializing enough of the system to provide 
a stable base for subsequent phases. It is also responsible for detecting and 
recovering from corruption of the firmware storage space and providing the 
restart reason (boot-mode).

Today’s PC generally starts execution in a very primitive state, from the 
perspective of the boot firmware, such as BIOS or the UEFI PI. Processors 
might need updates to their internal microcode; the chipset (the chips that 
provide the interface between processors and the other major components of the 
system) require considerable initialization; and RAM requires sizing, location, 
and other initialization. The PEI phase is responsible for initializing these basic 
subsystems. The PEI phase is intended to provide a simple infrastructure by 
which a limited set of tasks can easily be accomplished to transition to the more 
advanced DXE phase. The PEI phase is intended to be responsible for only a 
very small subset of tasks that are required to boot the platform; in other words, 
it should perform only the minimal tasks that are required to start DXE. As 
improvements in the hardware occur, some of these tasks may migrate out of 
the PEI phase of execution.

Rationale
The design for PEI is essentially a miniature version of DXE that addresses 
many of the same issues. The PEI phase consists of several parts: 

 n A PEI Foundation 

 n One or more Pre-EFI Initialization Modules (PEIMs)
The goal is for the PEI Foundation to remain relatively constant for a particular 
processor architecture and to support add-in modules from various vendors 
for particular processors, chipsets, platforms, and other components. These 
modules usually cannot be coded without some interaction between one 
another and, even if they could, it would be inefficient to do so.

PEI is unlike DXE in that DXE assumes that reasonable amounts of 
permanent system RAM are present and available for use. PEI instead assumes 
that only a limited amount of temporary RAM exists and that it could be 
reconfigured for other uses during the PEI phase after permanent system RAM 



  Chapter 13:  Pre-EFI Initialization (PEI)  n  269

has been initialized. As such, PEI does not have the rich feature set that DXE 
does. The following are the most obvious examples of this difference:

 n DXE has a rich database of loaded images and protocols bound to 
those images.

 n PEI lacks a rich module hierarchy such as the DXE driver model.

Overview

The PEI phase consists of some Foundation code and specialized drivers known 
as PEIMs that customize the PEI phase operations to the platform. It is the 
responsibility of the Foundation code to dispatch the plug-ins in a sequenced 
order and provide basic services. The PEIMs are analogous to DXE drivers and 
generally correspond to the components being initialized. It is expected that 
common practice will be that the vendor of the component will provide the 
PEIM, possibly in source form so the customer can quickly debug integration 
problems.

The implementation of the PEI phase is more dependent on the processor 
architecture than any other UEFI PI phase. In particular, the more resources 
that the processor provides at its initial or near initial state, the richer the PEI 
environment will be. As such, several parts of the following discussion note 
requirements for the architecture but are otherwise left less completely defined 
because they are specific to the processor architecture. 

PEI can be viewed from both temporal and spatial perspectives. Figure 13.1 
provides the overall UEFI PI boot phase. The spatial view of PEI can be found 
in Figure 13.2. This picture describes the layering of the UEFI PI components. 
This figure has often been referred to as the “H”. PEI compromises the lower 
half of the “H”. The temporal perspective entails “when” the PEI foundation 
and its associated modules execute. Figure 13.3 highlights the portions of 
Figure 13.1 that include PEI.



270  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Intrinsic
Services

OS-Absent
App

Transient OS
Environment

EFI Driver
Dispatcher

Boot
Manager

Exposed
Platform
Interface

Security

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Run Time

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

Figure 13.1 Overall Boot Flow



  Chapter 13:  Pre-EFI Initialization (PEI)  n  271

 

A
rchitecture S

pecification   

Chipset/Processor
Function EFI Driver

Specs   

OEM, ISV &
Intel® BU EFI Driver

Specs   

Driver Execution Environment (DXE) Spec 

Pre-EFI Initialization (PEI) Spec 

Legend 
API

CPU Module Spec(s) CS Module Spec(s)

E
FI D

river 

E
FI D

river 

E
FI D

river 

E
FI D

river 

E
FI D

river 
E

FI D
river 

E
FI D

river 
E

FI D
river 

E
FI D

river 

E
FI D

river 

E
FI D

river 

E
FI

D
river

E
FI

D
river

E
FI

D
river

Figure 13.2 System Components



272  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Intrinsic
Services

OS-Absent
App

Transient OS
Environment

EFI Driver
Dispatcher

Boot
Manager

Exposed
Platform
Interface

Security

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Run Time

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

A
rchitecture S

pecification   

Chipset/Processor Function
DXE Driver Specs   

OEM, ISV & Intel® BU EFI Driver
Specs   

Driver Execution Environment (DXE) Spec 

Pre-EFI Initialization (PEI) Spec 

CS Module Spec(s)
D

X
E

 D
river 

D
X

E
 D

river 

D
X

E
 D

river 

D
X

E
 D

river 
CPU Module Spec(s)

D
X

E
D

river

D
X

E
D

river

D
X

E
D

river
D

X
E

D
river

E
FI D

river 

C
S

M

E
FI D

river 

E
FI

D
river

E
FI

D
river

E
FI

D
river

Figure 13.3 Portion of the Overall Boot Flow and Components for PEI



  Chapter 13:  Pre-EFI Initialization (PEI)  n  273

Phase Prerequisites
The following sections describe the prerequisites necessary for the successful 
completion of the PEI phase.

Temporary RAM

The PEI Foundation requires that the SEC phase initializes a minimum amount 
of scratch pad RAM that can be used by the PEI phase as a data store until 
system memory has been fully initialized. This scratch pad RAM should have 
access properties similar to normal system RAM—through memory cycles on 
the front side bus, for example. After system memory is fully initialized, the 
temporary RAM may be reconfigured for other uses. Typical provision for the 
temporary RAM is an architectural mode of the processor’s internal caches.

Boot Firmware Volume

The Boot Firmware Volume (BFV) contains the PEI Foundation and PEIMs. 
It must appear in the memory address space of the system without prior 
firmware intervention and typically contains the reset vector for the processor 
architecture. 

The contents of the BFV follow the format of the UEFI PI flash file system. 
The PEI Foundation follows the UEFI PI flash file system format to find 
PEIMs in the BFV. A platform-specific PEIM may inform the PEI Foundation 
of the location of other firmware volumes in the system, which allows the PEI 
Foundation to find PEIMs in other firmware volumes. The PEI Foundation 
and PEIMs are named by unique IDs in the UEFI PI flash file system.

The PEI Foundation and some PEIMs required for recovery must either 
be locked into a nonupdateable BFV or be able to be updated using a fault-
tolerant mechanism. The UEFI PI flash file system provides error recovery; if 
the system halts at any point, either the old (preupdate) PEIM(s) or the newly 
updated PEIM(s) are entirely valid and the PEI Foundation can determine 
which is valid.



274  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Security Primitives

The SEC phase provides an interface to the PEI Foundation to perform 
verification operations. To continue the root of trust, the PEI Foundation will 
use this mechanism to validate various PEIMs.

Concepts
The following sections describe the concepts in the PEI phase design.

PEI Foundation

The PEI Foundation is a single binary executable that is compiled to function 
with each processor architecture. It performs two main functions: 

 n Dispatching PEIMs 

 n Providing a set of common core services used by PEIMs  
The PEI Dispatcher’s job is to transfer control to the PEIMs in an orderly 
manner. The common core services are provided through a service table referred 
to as the PEI Services Table. These services do the following:

 n Assist in PEIM-to-PEIM communication.

 n Abstract management of the temporary RAM.

 n Provide common functions to assist the PEIMs in the following:

 – Finding other files in the FFS
 – Reporting status codes
 – Preparing the handoff state for the next phase of the UEFI PI

When the SEC phase is complete, SEC invokes the PEI Foundation and 
provides the PEI Foundation with several parameters:

 n The location and size of the BFV so that the PEI Foundation knows 
where to look for the initial set of PEIMs. 

 n A minimum amount of temporary RAM that the PEI phase can use.



  Chapter 13:  Pre-EFI Initialization (PEI)  n  275

 n A verification service callback to allow the PEI Foundation to verify 
that PEIMs that it discovers are authenticated to run before the PEI 
Foundation dispatches them.

The PEI Foundation assists PEIMs in communicating with each other. The 
PEI Foundation maintains a database of registered interfaces for the PEIMs, 
as shown in Figure 13.4. These interfaces are called PEIM-to-PEIM Interfaces 
(PPIs). The PEI Foundation provides the interfaces to allow PEIMs to register 
PPIs and to be notified (called back) when another PEIM installs a PPI.
 

PPI
DescriptorGUID Pointer PPI Descriptor Ptr A

PPI Descriptor Ptr B

PPI Descriptor Ptr C1

PPI Descriptor Ptr D

PPI Descriptor Ptr C2

NULL

Example Foundation Database

PPI Pointer

Flags

PPI

GUID

Figure 13.4 How a PPI Is Registered

The PEI Dispatcher consists of a single phase. It is during this phase that 
the PEI Foundation examines each file in the firmware volumes that contain 
files of type PEIM. It examines the dependency expression (depex) within 
each firmware file to decide if a PEIM can run. A dependency expression is 
code associated with each driver that describes the dependencies that must be 
satisfied for that driver to run. The binary encoding of dependency expressions 
for PEIMs is the same as that of dependency expressions associated with a DXE 
driver.



276  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Pre-EFI Initialization Modules (PEIMs)

Pre-EFI Initialization Modules (PEIMs) are executable binaries that encapsulate 
processor, chipset, device, or other platform-specific functionality. PEIMs 
may provide interface(s) that allow other PEIMs or the PEI Foundation to 
communicate with the PEIM or the hardware for which the PEIM abstracts. 
PEIMs are separately built binary modules that typically reside in ROM and 
are therefore uncompressed. A small subset of PEIMs exist that may run from 
RAM for performance reasons. These PEIMs reside in ROM in a compressed 
format. PEIMs that reside in ROM are execute-in-place modules that may 
consist of either position-independent code or position-dependent code with 
relocation information.

PEI Services

The PEI Foundation establishes a system table named the PEI Services Table 
that is visible to all PEIMs in the system. A PEI service is defined as a function, 
command, or other capability that is manifested by the PEI Foundation when 
that service’s initialization requirements are met. Because the PEI phase has no 
permanent memory available until nearly the end of the phase, the range of 
services created during the PEI phase cannot be as rich as those created during 
later phases. Because the location of the PEI Foundation and its temporary 
RAM is not known at build time, a pointer to the PEI Services Table is passed 
into each PEIM’s entry point and also to part of each PPI. The PEI Foundation 
provides the following classes of services:

 n PPI Services: Manages PPIs to facilitate intermodule calls between 
PEIMs. Interfaces are installed and tracked on a database maintained 
in temporary RAM.

 n Boot Mode Services: Manages the boot mode (S3, S5, normal boot, 
diagnostics, and so on) of the system.

 n HOB Services: Creates data structures called Hand-Off Blocks (HOBs) 
that are used to pass information to the next phase of the UEFI PI.

 n Firmware Volume Services: Scans the FFS in firmware volumes to find 
PEIMs and other firmware files in the flash device.



  Chapter 13:  Pre-EFI Initialization (PEI)  n  277

 n PEI Memory Services: Provides a collection of memory management 
services for use both before and after permanent memory has been 
discovered.

 n Status Code Services: Common progress and error code reporting 
services, that is, port 080h or a serial port for simple text output for 
debug.

 n Reset Services: Provides a common means by which to initiate a restart 
of the system.

PEIM-to-PEIM Interfaces (PPIs)

PEIMs may invoke other PEIMs through interfaces named PEIM-to-PEIM 
Interfaces (PPIs). The interfaces themselves are named using Globally Unique 
Identifiers (GUIDs) to allow the independent development of modules and 
their defined interfaces without naming collision. A GUID is a 128 bit value 
used to differentiate services and structures in the boot services. The PPIs are 
defined as structures that may contain functions, data, or a combination of the 
two. PEIMs must register their PPIs with the PEI Foundation, which manages 
a database of registered PPIs. A PEIM that wants to use a specific PPI can then 
query the PEI Foundation to find the interface it needs. The two types of PPIs 
are: 

 n Services 

 n Notifications
PPI services allow a PEIM to provide functions or data for another PEIM to 
use. PPI notifications allow a PEIM to register for a callback when another PPI 
is registered with the PEI Foundation. 

Simple Heap

The PEI Foundation uses temporary RAM to provide a simple heap store 
before permanent system memory is installed. PEIMs may request allocations 
from the heap, but no mechanism exists to free memory from the heap. Once 
permanent memory is installed, the heap is relocated to permanent system 
memory, but the PEI Foundation does not fix up existing data within the heap. 



278  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Therefore, a PEIM cannot store pointers in the heap when the target is other 
data within the heap, such as linked lists.

Hand-Off Blocks (HOBs)

Hand-Off Blocks (HOBs) are the architectural mechanism for passing system 
state information from the PEI phase to the DXE phase in the UEFI PI 
architecture. A HOB is simply a data structure (cell) in memory that contains 
a header and data section. The header definition is common for all HOBs and 
allows any code using this definition to know two items: 

 n The format of the data section 

 n The total size of the HOB
HOBs are allocated sequentially in the memory that is available to PEIMs after 
permanent memory has been installed. A series of core services facilitate the 
creation and addition of HOBs during PEI. This sequential list of HOBs in 
memory is referred to as the HOB list. The first HOB in the HOB list must be 
the Phase Handoff Information Table (PHIT) HOB that describes the physical 
memory used by the PEI phase and the boot mode discovered during the PEI 
phase, as illustrated in Figure 13.5. 
 

System
Memory 

PHIT
HOB HOB HOB HOB HOB ..... HOB

I/O
Resources 

MMIO
Resources 

Firmware
Devices 

Firmware
Volumes 

DXE
Drivers 

DXE
Drivers 

Figure 13.5 The HOB List



  Chapter 13:  Pre-EFI Initialization (PEI)  n  279

Only PEI components are allowed to make additions or changes to HOBs. 
Once the HOB list is passed into DXE, it is effectively read-only for DXE 
components. The ramifications of a read-only HOB list for DXE is that handoff 
information, such as boot mode, must be handled in a unique fashion; if DXE 
were to engender a recovery condition, it would not update the boot mode but 
instead would implement the action using a special type of reset call. The HOB 
list contains system state data at the time of PEI-to-DXE handoff and does 
not represent the current system state during DXE. DXE components should 
use services that are defined for DXE to get the current system state instead of 
parsing the HOB list.

As a guideline, it is expected that HOBs passed between PEI and DXE 
will follow a one producer–to–one consumer model. In other words, a PEIM 
will produce a HOB in PEI, and a DXE Driver will consume that HOB and 
pass information associated with that HOB to other DXE components that 
need the information. The methods that the DXE Driver uses to provide that 
information to other DXE components should follow mechanisms defined by 
the DXE architecture.

Operation
PEI phase operation consists of invoking the PEI Foundation, dispatching all 
PEIMs in an orderly manner, and discovering and invoking the next phase, 
as illustrated in Figure 13.6. During PEI Foundation initialization, the PEI 
Foundation initializes the internal data areas and functions that are needed to 
provide the common PEI services to PEIMs. During PEIM dispatch, the PEI 
Dispatcher traverses the firmware volume(s) and discovers PEIMs according to 
the flash file system definition. The PEI Dispatcher then dispatches PEIMs if 
the following criteria are met:

 n The PEIM has not already been invoked.

 n The PEIM file is correctly formatted.

 n The PEIM is trustworthy.

 n The PEIM’s dependency requirements have been met.



280  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

After dispatching a PEIM, the PEI Dispatcher continues traversing the firmware 
volume(s) until either all discovered PEIMs have been invoked or no more 
PEIMs can be invoked because the requirements listed above cannot be met for 
any PEIMs. Once this condition has been reached, the PEI Dispatcher’s job is 
complete and it invokes an architectural PPI for starting the next phase of the 
UEFI PI, the DXE Initial Program Load (IPL) PPI.
 

Entry

System
Memory

FV(s)

BFV

T-RAM

Memory Maps

Core Services

Initialization

SEC

PEI
Core

S
tatus C

ode

H
andoff B

locks

M
em

ory S
ervices

R
/O

 FW
 V

ol

B
oot M

ode

P
P

I D
atabaseCore Dispatcher

PPI(s)

PEIM

Entry

PPI(s)

PEIM

Entry

PPI(s)

PEIM

Entry

PEIM

IPL

DXE

Entry

PPI(s)

PEIM

Figure 13.6 PEI Boot Flow

Dependency Expressions

The sequencing of PEIMs is determined by evaluating a dependency expression 
associated with each PEIM. This Boolean expression describes the requirements 
that are necessary for that PEIM to run, which imposes a weak ordering on 



  Chapter 13:  Pre-EFI Initialization (PEI)  n  281

the PEIMs. Within this weak ordering, the PEIMs may be initialized in any 
order. The GUIDs of PPIs and the GUIDs of file names are referenced in the 
dependency expression. The dependency expression is a representative syntax of 
operations that can be performed on a plurality of dependencies to determine 
whether the PEIM can be run. The PEI Foundation evaluates this dependency 
expression against an internal database of run PEIMs and registered PPIs. 
Operations that may be performed on dependencies are the logical operators 
AND, OR, and NOT and the sequencing operators BEFORE and AFTER.

Verification/Authentication

The PEI Foundation is stateless with respect to security. Instead, security 
decisions are assigned to platform-specific components. The two components 
of interest that abstract security include the Security PPI and a Verification 
PPI. The purpose of the Verification PPI is to check the authentication status 
of a given PEIM. The mechanism used therein may include digital signature 
verification, a simple checksum, or some other OEM-specific mechanism. The 
result of this verification is returned to the PEI Foundation, which in turn 
conveys the result to the Security PPI. The Security PPI decides whether to 
defer execution of the PEIM or to let the execution occur. In addition, the 
Security PPI provider may choose to generate an attestation log entry of the 
dispatched PEIM or provide some other security exception. 

PEIM Execution

PEIMs run to completion when invoked by the PEI Foundation. Each PEIM 
is invoked only once and must perform its job with that invocation and install 
other PPIs to allow other PEIMs to call it as necessary. PEIMs may also register 
for a notification callback if it is necessary for the PEIM to get control again 
after another PEIM has run.

Memory Discovery

Memory discovery is an important architectural event during the PEI phase. 
When a PEIM has successfully discovered, initialized, and tested a contiguous 
range of system RAM, it reports this RAM to the PEI Foundation. When that 
PEIM exits, the PEI Foundation migrates PEI usage of the temporary RAM to 
real system RAM, which involves the following two tasks:



282  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n The PEI Foundation must switch PEI stack usage from temporary 
RAM to permanent system memory. 

 n The PEI Foundation must migrate the simple heap allocated by 
PEIMs (including HOBs) to real system RAM. 

Once this process is complete, the PEI Foundation installs an architectural PPI 
to notify any interested PEIMs that real system memory has been installed. 
This notification allows PEIMs that ran before memory was installed to be 
called back so that they can complete necessary tasks—such as building HOBs 
for the next phase of DXE—in real system memory.

Intel® Itanium® Processor MP Considerations 

This section gives special consideration to the PEI phase operation in Intel 
Itanium processor family multiprocessor (MP) systems. In Itanium-based 
systems, all of the processors in the system start up simultaneously and execute 
the PAL initialization code that is provided by the processor vendor. Then all 
the processors call into the UEFI PI start-up code with a request for recovery 
check. The start-up code allocates different chunks of temporary memory for 
each of the active processors and sets up stack and backing store pointers in 
the allocated temporary memory. The temporary memory could be a part of 
the processor cache (cache as RAM), which can be configured by invoking a 
PAL call. The start-up code then starts dispatching PEIMs on each of these 
processors. One of the early PEIMs that runs in MP mode is the PEIM that 
selects one of the processors as the boot-strap processor (BSP) for running the 
PEIM stage of the booting. 

This BSP continues to run PEIMs until it finds permanent memory and 
installs the memory with the PEI Foundation. Then the BSP wakes up all the 
processors to determine their health and PAL compatibility status. If none of 
these checks warrants a recovery of the firmware, the processors are returned to 
the PAL for more processor initialization and a normal boot. 

The UEFI PI start-up code also gets triggered in an Itanium-based system 
whenever an INIT or a Machine Check Architecture (MCA) event occurs in 
the system. Under such conditions, the PAL code outputs status codes and a 
buffer called the minimum state buffer. A UEFI PI-specific data pointer that 
points to the INIT and MCA code data area is attached to this minimum state 
buffer, which contains details of the code to be executed upon INIT and MCA 



  Chapter 13:  Pre-EFI Initialization (PEI)  n  283

events. The buffer also holds some important variables needed by the start-up 
code to make decisions during these special hardware events.

Recovery

Recovery is the process of reconstituting a system’s firmware devices when they 
have become corrupted. The corruption can be caused by various mechanisms. 
Most firmware volumes on nonvolatile storage devices are managed as blocks. 
If the system loses power while a block or semantically bound blocks are being 
updated, the storage might become invalid. On the other hand, the device 
might become corrupted by an errant program or by errant hardware. Assuming 
PEI lives in a fault-tolerant block, it can support a recovery mode dispatch. 

A PEIM or the PEI Foundation itself can discover the need to do recovery. 
A PEIM can check a “force recovery” jumper, for example, to detect a need for 
recovery. The PEI Foundation might discover that a particular PEIM does not 
validate correctly or that an entire firmware volume has become corrupted.

The concept behind recovery is that enough of the system firmware is 
preserved so that the system can boot to a point that it can read a copy of the 
data that was lost from chosen peripherals and then reprogram the firmware 
volume with that data.

Preservation of the recovery firmware is a function of the way the firmware 
volume store is managed. In the UEFI PI flash file system, PEIMs required 
for recovery are marked as such. The firmware volume store architecture must 
then preserve marked items, either by making them unalterable (possibly with 
hardware support) or protect them using a fault-tolerant update process.

Until recovery mode has been discovered, the PEI Dispatcher proceeds as 
normal. If the PEI Dispatcher encounters PEIMs that have been corrupted 
(for example, by receiving an incorrect hash value), it must change the boot 
mode to recovery. Once set to recovery, other PEIMs must not change it to one 
of the other states. After the PEI Dispatcher has discovered that the system is 
in recovery mode, it will restart itself, dispatching only those PEIMs that are 
required for recovery. It is also possible for a PEIM to detect a catastrophic 
condition or to be a forced-recovery detect PEIM and to inform the PEI 
Dispatcher that it needs to proceed with a recovery dispatch. The recovery 
dispatch is completed when a PEIM finds a recovery firmware volume on a 
recovery media and the DXE Foundation is started from that firmware volume. 
Drivers within that DXE firmware volume can perform the recovery process.



284  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

S3 Resume

The PEI phase on S3 resume (save-to-RAM resume) differs in several 
fundamental ways from the PEI phase on a normal boot. The differences are 
as follows:

 n The memory subsection is restored to its presleep state rather than 
initialized. 

 n System memory owned by the OS is not used by either the PEI 
Foundation or the PEIMs.

 n The DXE phase is not dispatched on a resume because it would 
corrupt memory.

 n The PEIM that would normally dispatch the DXE phase instead uses 
a special Hardware Save Table to restore fundamental hardware back 
to a boot configuration. After restoring the hardware, the PEIM passes 
control to the OS-supplied resume vector.

 n The DXE and later phases during a normal boot save enough 
information in the UEFI PI reserved memory or a firmware volume 
area for hardware to be restored to a state that the OS can use to restore 
devices. This saved information is located in the Hardware Save Table.

The “Terse Executable” and Cache-as-RAM

The flash storage where the PEI modules and core execute has several constraints. 
The first is that the amount of flash allocated for PEI is limited. This stems both 
from the economics of system board design and from the fact that the PEI 
phase supports critical operations, such as crisis recovery and early memory 
initialization. These robustness requirements mean that many systems have 
two instances of PEI: a backup and/or truly read-only one that never changes 
and may only be used for recovery and a security root-of-trust, and a second 
PEI block used for normal boots that is the dual of the former one. Also, the 
execute-in-place (XIP) nature of code-fetches from flash means that PEI is not 
as performant as DXE modules that are loaded into host memory. In order to 
minimize the amount of space occupied by the PEI firmware volume (FV), 



  Chapter 13:  Pre-EFI Initialization (PEI)  n  285

the Terse Executable (TE) image format was designed. The TE image format 
is a strict subset of the Portable Executable/Common File Format (PE/COFF) 
image used by UEFI applications, UEFI drivers, and DXE drivers.

The advantages of having TE as a subset of PE include the ability to 
use standard, available tools, such as linkers, which can be used during the 
development process. Only during the final phases of the FV image creation 
does the tool chain need to convert the PE image into a TE. This similarity 
extends to the headers and the relocation records. In order to have an in-situ 
agent, such as a debugger nub, distinguish between the PE and TE images, the 
signature field has been slightly modified. For the PE the signature is “MZ” for 
Mark Zbikowski, the designer of the Microsoft DOS† image format, the origin 
of the PE/COFF image. For the TE image, the signature is “VZ”, as found at 
the end of Volume 1 of the UEFI PI specification:
#define EFI_TE_IMAGE_HEADER_SIGNATURE 0x5A56 // “VZ”
This one character difference allows for sharing of debug scripts and code that 
only need to distinguish between the PE and TE via this one character of 
the signature field. Although the development and design team eschewed use 
of proper names in code or the resultant binaries, the “VZ” and “Vincent 
Zimmer” association appeared harmless, especially given the interoperability 
advantages.

In addition to the TE image, the “temporary memory” used during PEI is 
another innovation on Intel architecture platforms. Recall that the goal of PEI 
is to provide a basic system fabric initialization and some subset of memory that 
will be available throughout DXE, UEFI, and the operating system runtime. 
In order to program a modern CPU, memory controller, and interconnect, 
thousands of lines of C code may be required. In the spirit of using standard 
tools to write this code, though, some memory store prior to the permanent 
Dynamic RAM (DRAM) needed to be found.

Other approaches to this challenge in the past include the Coreboot use of 
the read-only-memory C compiler (romcc), or a compiler that uses processor 
registers as the “temporary memory.” This approach has proven difficult to 
maintain and entails a custom compiler. The other approach is to have dedicated 
memory on the platform immediately available after reset. Given the economics 
of modern systems and the transitory usage of this store, the use of discrete 
memory as a scratchpad has proven difficult to provide in anything other 
than the high-end system or extremely low-end, nontraditional systems. The 
approach taken for the bulk of Intel architecture systems is to use the processor 



286  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

cache as a memory store, or cache-as-RAM (CAR). Although the initialization 
sequence is unique per architecture instance (for example, Itanium® versus 
Core2® versus Core i7®), the end result is some directly addressable memory 
after exiting the SEC phase and entering PEI. As a result, PEIMs and a PEI 
core can be written in C using commonly available C compilers, such as 
Microsoft cl.exe in Visual Studio† and the GNU C compiler (GCC) available 
in the open source community. The UEFI Developer Kit, such as the PEI core 
in the Module Development Environment (MDE) module package at www.
tianocore.org, provides such as example of a generic PEI Core source collection.

Example System

All of the concepts regarding PEI can be synthesized when reviewing a 
specific platform. The following list represents an 865 system with all of the 
associated system components. This same system is also shown in Figure 
13.7, which includes the actual silicon components. Figure 13.8 provides an 
idealized version of this same system. The components in the latter figure have 
corresponding PEIMs to abstract both the initialization of and services by the 
components. For each of these components, one to several PEI Modules can be 
delivered that abstract the specific component’s behavior. An example of these 
components can include: 

 n Pentium® 4 processor PEIM: Initialization and CPU I/O service

 n PCI Configuration PEIM: PCI Configuration PPI

 n ICH PEIM: ICH initialization and the SMBUS PPI

 n Memory initialization PEIM: Reading SPD through the SMBUS 
PPI, initialization of the memory controller, and reporting memory 
available to the PEI core

 n Platform PEIM: Creation of the flash mode, detection of boot mode

 n DXE IPL: Generic services to launch DXE, invoke S3 or recovery 
flow



  Chapter 13:  Pre-EFI Initialization (PEI)  n  287

 

Modem Codec

Audio Codec

LAN

Hub
Interface

ICH5

82865
GMCH

AGP Graphics
Card

Processor

FWH

DDR

KBC/SIO

Front-Side Bus

AGP

DAC Out
TV Out

Video Capture

USB
IDE PCI Bus

SMBus

PCI Slots

AC97 LPC I/F

Figure 13.7 Specific System



288  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

PCI Slots

AGV Video Memory Modules

AGP Slot

PCI Bus

LPC Bus

SM Bus

IDE

USB

LAN

Audio

Processor

North
Bridge

Super I/O FLASH

South
Bridge

Figure 13.8 Idealization of Actual System

 

typedef
EFI_STATUS
(EFIAPI *PEI_SMBUS_PPI_EXECUTE_OPERATION) (
  IN      EFI_PEI_SERVICE           **PeiServices,
  IN      struct EFI_PEI_SMBUS_PPI  *This,
  IN      EFI_SMBUS_DEVICE_ADDRESS  SlaveAddress,
  IN      EFI_SMBUS_DEVICE_COMMAND  Command,
  IN      EFI_SMBUS_OPERATION       Operation,
  IN      BOOLEAN                   PecCheck,
  IN OUT  UINTN                     *Length,
  IN OUT  VOID                      *Buffer
  );

typedef struct {
  PEI_SMBUS_PPI_EXECUTE_OPERATION  Execute;
  PEI_SMBUS_PPI_ARP_DEVICE         ArpDevice;
} EFI_PEI_SMBUS_PPI;

Figure 13.9 Instance of a PPI



  Chapter 13:  Pre-EFI Initialization (PEI)  n  289

What is notable about a PPI is that it is like an EFI protocol in that it has 
member services and/or static data. The PPI is named by a GUID and can 
have several instances. The SMBUS PPI, for example, could be implemented 
for SMBUS controllers in the ICH, in another vendor’s integrated Super I/O 
(SIO), or other component. Figure 13.10 illustrates an instance of an SMBUS 
PPI for an Intel ICH.
 

#define SMBUS_R_HD0  0xEFA5
#define SMBUS_R_HBD  0xEFA7

EFI_PEI_SERVICES          *PeiServices;
SMBUS_PRIVATE_DATA        *Private;
UINT8  Index, BlockCount  *Length; 
UINT8                     *Buffer;

BlockCount = Private->CpuIo.IoRead8 (
               *PeiServices,Private->CpuIo,SMBUS_R_HD0);
if (*Length < BlockCount) {
  return EFI_BUFFER_TOO_SMALL;
} else {
  for (Index = 0; Index < BlockCount; Index++) {
    Buffer[Index] = Private->CpuIo.IoRead8 (
                      *PeiServices,Private->CpuIo,SMBUS_R_HBD);
  }
}

Figure 13.10 Code that Supports a PPI Service

Summary
This chapter has provided an overview of the PEI phase of the UEFI PI 
environment. PEI provides a unique combination of software modularity so 
that various business interests can provide modules, while at the same time have 
purpose-built technologies to support the robustness and resource constraints 
of such an early phase of machine execution. Aspects of PEI discussed in this 
chapter include the concept of temporary memory, the PEI Core services, 
PEI relative to other UEFI PI components, recovery, and some sample PEI 
modules.



290  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 291

Chapter 14
Putting It All Together—

Firmware Emulation 
An expert is a man who has made all the mistakes which can be made in 
a very narrow field.

—Niels Bohr

In the preceding chapters, various stages of the firmware initialization 
process have been described. In addition, various possible usage models 

have been described that can be implemented on a target hardware platform. 
In addition, by now it should have become evident that many of the UEFI 
firmware interfaces do not in and of themselves directly talk to hardware; 
instead they actually talk to underlying components that are responsible 
for talking to hardware. Traditionally, firmware development has not been 
an activity that could be performed without an in-circuit emulator (ICE) 
or other hardware debug facility. Taking into consideration UEFI’s design 
and the fact that very few components in the firmware actually have direct 
interaction with hardware devices, it is possible to introduce a mechanism 
that allows the emulation of vast amounts of the firmware in a standard 
deployment operation system environment.

In the UEFI sample implementation, a new target platform was 
introduced called NT32. This environment features the ability to run 
much of the firmware code as an application running from the operating 
system, and provides the ability to establish a robust development and debug 
environment. Much of the firmware codebase was developed initially using 
the emulation environment with off-the-shelf compilers and debuggers, and 



292  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

without the need of a real hardware debugger. Of course, this emulation has 
its limitations, since some components of the firmware must talk to hardware. 
It is much more difficult to emulate such components, though later in this 
chapter, some possibilities are discussed to alleviate some of this issue. Figure 
14.1 shows an example of a firmware emulation environment running the 
UEFI shell within an operating system context.
 

Figure 14.1 An Emulation Environment Contained within an Operating System 
Environment

Virtual Platform
This NT32 platform can be described as a hardware-agnostic platform in that 
it uses operating system APIs for its primary hardware abstractions. Figure 
14.2 shows how the firmware emulation environment gets launched. It is part 
of a normal boot process, and will essentially launch a firmware emulation 
environment as an application running from the operating system. For 
most developers, this simply means launching a standard platform, loading 
an operating system, and then building and executing the NT32 emulation 
environment as a native operating system application. This application 
effectively executes the firmware that was built, and emulates the launch of a 
new system.



 Chapter 14:  Putting It All Together—Firmware Emulation  n  293

 

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Boot Services
Runtime Services

DXE Services

OS-Absent
App

Transient OS
Environment

DXE
Dispatcher

Boot
Dispatcher

Exposed
API

Previously
Exposed

Framework
APIs Now

Limited

Security

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment ?

OS-Present
App

Emulation
Environment 

Figure 14.2 The Normal Boot Process Launching an Operating System that Will 
Launch the Emulation Environment

In Figure 14.3, the timeline is actually intended to illustrate the emulated 
firmware timeline. It has the capability of processing all of the firmware 
evolution stages, yet of course certain operations are emulated due to lack of 
direct hardware initialization. An example would be the direct initialization of 
memory, which would be somewhat different in this environment, whereas in 
a real platform, this process would be much more involved.



294  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Pre
Verifier 

CPU
Init 
PEI

Core 
CPU
Init 

Chipset
Init

Board
Init

Boot Services
Runtime Services

DXE Services

OS-Absent
App

Transient OS
Environment

DXE
Dispatcher

Boot
Dispatcher

Exposed
API

V
er

ify

Device,
Bus, or
Service
Driver

Security
(SEC)

Pre-EFI
Initialization

(PEI) 

Driver
Execution

Environment
(DXE) 

Boot
Device

Selection
(BDS) 

After-
life

(AL)

Transient
System Load

(TSL) 
Runtime

(RT) 

Shutdown Power On [..Platform Initialization..] [........OS Boot........] 

Transient OS
Boot Loader

Final OS
Boot Loader

Cannot Load
Conventional
O/S Targets

in an
Emulated

Environment

Figure 14.3 The Firmware Emulation Environment Itself

Emulation Firmware Phases

It should be noted that the emulation environment has several distinct phases:

 n Establishing a WinNtThunk capability for the emulation environment.
This phase constructs a means by which firmware components can 
make reference to some “hardware” components. This is done by 
associating firmware-visible constructs that will then be associated 
with operating system native API calls.
Figure 14.4 is an example where several firmware constructs are 
being associated with operating system native APIs. For example, 
to create a file, we establish a firmware calling mechanism (such as 
WinNtCreateFile) to call an operating system API known as CreateFile. 



 Chapter 14:  Putting It All Together—Firmware Emulation  n  295

The following examples illustrate a mechanism of associating firmware 
calls to Windows APIs, but this could just as easily happen for any 
underlying operation system.

 

typedef struct {
  UINT64                              Signature;

  //
  // Win32 Process APIs
  //
  WinNtGetProcAddress                 GetProcAddress;
  WinNtGetTickCount                   GetTickCount;
  WinNtLoadLibraryEx                  LoadLibraryEx;
  WinNtFreeLibrary                    FreeLibrary;
  WinNtSetPriorityClass               SetPriorityClass;
  WinNtSetThreadPriority              SetThreadPriority;
  WinNtSleep                          Sleep;
  WinNtSuspendThread                  SuspendThread;
  WinNtGetCurrentThread               GetCurrentThread;
  WinNtGetCurrentThreadId             GetCurrentThreadId;
  WinNtGetCurrentProcess              GetCurrentProcess;
  WinNtCreateThread                   CreateThread;
  WinNtTerminateThread                TerminateThread;
  WinNtSendMessage                    SendMessage;
  WinNtExitThread                     ExitThread;
  WinNtResumeThread                   ResumeThread;
  WinNtDuplicateHandle                DuplicateHandle;

  //
  // Wint32 Mutex primitive
  //
  WinNtInitializeCriticalSection      InitializeCriticalSection;
  WinNtEnterCriticalSection           EnterCriticalSection;
  WinNtLeaveCriticalSection           LeaveCriticalSection;
WinNtDeleteCriticalSection          DeleteCriticalSection;
WinNtTlsAlloc                       TlsAlloc;
WinNtTlsFree                        TlsFree;
WinNtTlsSetValue                    TlsSetValue;
WinNtTlsGetValue                    TlsGetValue;
WinNtCreateSemaphore                CreateSemaphore;
WinNtWaitForSingleObject            WaitForSingleObject;
WinNtReleaseSemaphore               ReleaseSemaphore;

//
// Win32 Console APIs
//
WinNtCreateConsoleScreenBuffer      CreateConsoleScreenBuffer;
WinNtFillConsoleOutputAttribute     FillConsoleOutputAttribute;
WinNtFillConsoleOutputCharacter     FillConsoleOutputCharacter;



296  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

WinNtGetConsoleCursorInfo           GetConsoleCursorInfo;
WinNtGetNumberOfConsoleInputEvents  GetNumberOfConsoleInputEvents;
WinNtPeekConsoleInput               PeekConsoleInput;
WinNtScrollConsoleScreenBuffer      ScrollConsoleScreenBuffer;
WinNtReadConsoleInput               ReadConsoleInput;
WinNtSetConsoleActiveScreenBuffer   SetConsoleActiveScreenBuffer;
WinNtSetConsoleCursorInfo           SetConsoleCursorInfo;
WinNtSetConsoleCursorPosition       SetConsoleCursorPosition;
WinNtSetConsoleScreenBufferSize     SetConsoleScreenBufferSize;
WinNtSetConsoleTitleW               SetConsoleTitleW;
WinNtWriteConsoleInput              WriteConsoleInput;
WinNtWriteConsoleOutput             WriteConsoleOutput;

//
// Win32 File APIs
//
WinNtCreateFile                     CreateFile;
WinNtDeviceIoControl                DeviceIoControl;
WinNtCreateDirectory                CreateDirectory;
WinNtRemoveDirectory                RemoveDirectory;
WinNtGetFileAttributes              GetFileAttributes;
WinNtSetFileAttributes              SetFileAttributes;
WinNtCreateFileMapping              CreateFileMapping;
WinNtCloseHandle                    CloseHandle;
WinNtDeleteFile                     DeleteFile;
WinNtFindFirstFile                  FindFirstFile;
WinNtFindNextFile                   FindNextFile;
WinNtFindClose                      FindClose;
WinNtFlushFileBuffers               FlushFileBuffers;
WinNtGetEnvironmentVariable         GetEnvironmentVariable;
WinNtGetLastError                   GetLastError;
WinNtSetErrorMode                   SetErrorMode;
WinNtGetStdHandle                   GetStdHandle;
WinNtMapViewOfFileEx                MapViewOfFileEx;
WinNtReadFile                       ReadFile;
WinNtSetEndOfFile                   SetEndOfFile;
WinNtSetFilePointer                 SetFilePointer;
WinNtWriteFile                      WriteFile;
WinNtGetFileInformationByHandle     GetFileInformationByHandle;
WinNtGetDiskFreeSpace               GetDiskFreeSpace;
WinNtGetDiskFreeSpaceEx             GetDiskFreeSpaceEx;
WinNtMoveFile                       MoveFile;
WinNtSetFileTime                    SetFileTime;
WinNtSystemTimeToFileTime           SystemTimeToFileTime;

//
// Win32 Time APIs
//
WinNtFileTimeToLocalFileTime        FileTimeToLocalFileTime;
WinNtFileTimeToSystemTime           FileTimeToSystemTime;



 Chapter 14:  Putting It All Together—Firmware Emulation  n  297

WinNtGetSystemTime                  GetSystemTime;
WinNtSetSystemTime                  SetSystemTime;
WinNtGetLocalTime                   GetLocalTime;
WinNtSetLocalTime                   SetLocalTime;
WinNtGetTimeZoneInformation         GetTimeZoneInformation;
WinNtSetTimeZoneInformation         SetTimeZoneInformation;
WinNttimeSetEvent                   timeSetEvent;
WinNttimeKillEvent                  timeKillEvent;

//
// Win32 Serial APIs
//
WinNtClearCommError                 ClearCommError;
WinNtEscapeCommFunction             EscapeCommFunction;
WinNtGetCommModemStatus             GetCommModemStatus;
WinNtGetCommState                   GetCommState;
WinNtSetCommState                   SetCommState;
WinNtPurgeComm                      PurgeComm;
WinNtSetCommTimeouts                SetCommTimeouts;

WinNtExitProcess                    ExitProcess;
WinNtSprintf                        SPrintf;
WinNtGetDesktopWindow               GetDesktopWindow;
WinNtGetForegroundWindow            GetForegroundWindow;
WinNtCreateWindowEx                 CreateWindowEx;
WinNtShowWindow                     ShowWindow;
WinNtUpdateWindow                   UpdateWindow;
WinNtDestroyWindow                  DestroyWindow;
WinNtInvalidateRect                 InvalidateRect;
WinNtGetWindowDC                    GetWindowDC;
WinNtGetClientRect                  GetClientRect;
WinNtAdjustWindowRect               AdjustWindowRect;
WinNtSetDIBitsToDevice              SetDIBitsToDevice;
WinNtBitBlt                         BitBlt;
WinNtGetDC                          GetDC;
WinNtReleaseDC                      ReleaseDC;
WinNtRegisterClassEx                RegisterClassEx;
WinNtUnregisterClass                UnregisterClass;

WinNtBeginPaint                     BeginPaint;
WinNtEndPaint                       EndPaint;
WinNtPostQuitMessage                PostQuitMessage;
WinNtDefWindowProc                  DefWindowProc;
WinNtLoadIcon                       LoadIcon;
WinNtLoadCursor                     LoadCursor;
  WinNtGetStockObject                 GetStockObject;
  WinNtSetViewportOrgEx               SetViewportOrgEx;
  WinNtSetWindowOrgEx                 SetWindowOrgEx;
  WinNtMoveWindow                     MoveWindow;
  WinNtGetWindowRect                  GetWindowRect;



298  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

  WinNtGetMessage                     GetMessage;
  WinNtTranslateMessage               TranslateMessage;
  WinNtDispatchMessage                DispatchMessage;
  WinNtGetProcessHeap                 GetProcessHeap;
  WinNtHeapAlloc                      HeapAlloc;
  WinNtHeapFree                       HeapFree;
} EFI_WIN_NT_THUNK_PROTOCOL;

Figure 14.4 Thunk Protocol that Associates Some Firmware Names with Operating 
System APIs

 n Construct a UEFI hardware API handler that will be specific to the 
emulation platform.

In Figure 14.5, the EFI_SERIAL_IO_PROTOCOL interface is being seeded 
with a variety of information associated with platform specific function data. 
In this case, these platform-specific functions are tuned to the emulation 
environment.
 

SerialIo.Revision      = SERIAL_IO_INTERFACE_REVISION;
SerialIo.Reset         = WinNtSerialIoReset;
SerialIo.SetAttributes = WinNtSerialIoSetAttributes;
SerialIo.SetControl    = WinNtSerialIoSetControl;
SerialIo.GetControl    = WinNtSerialIoGetControl;
SerialIo.Write         = WinNtSerialIoWrite;
SerialIo.Read          = WinNtSerialIoRead;
SerialIo.Mode          = SerialIoMode;

Figure 14.5 Establishing a UEFI API to Call Platform-Specific Operations

Platform-specific functions (such as emulation platform) that are handling the 
calls to UEFI interfaces and in turn will call the established WinNtThunk APIs 
that will end up making operating specific API calls.

In Figure 14.6 are illustrated several calls that could occur from within 
an API handler to accomplish several tasks. 



 Chapter 14:  Putting It All Together—Firmware Emulation  n  299

//
// Example of reading from a file
//
Result = WinNtThunk->ReadFile (
                     NtHandle, 
                     Buffer, 
                     (DWORD)*BufferSize, 
                     &BytesRead, 
                     NULL
                     );

//
// Example of resetting a serial device
//
WinNtThunk->PurgeComm (
              NtHandle, 
              PURGE_TXCLEAR | PURGE_RXCLEAR
              );
//
// Example of getting local time components
//
WinNtThunk->GetLocalTime (&SystemTime);
WinNtThunk->GetTimeZoneInformation (&TimeZone);

Figure 14.6 Example Calls to the WinNtThunk Protocol

In summary, Figure 14.7 shows the software logic contained within the 
operating system, firmware emulation component, and their associated 
interaction logic. It should be noted that this logical software flow has three 
primary components:

 n Firmware component under development

 n Basic firmware codebase

 n Firmware-to-Operating System thunk code



300  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Firmware Driver Under Development
(Option ROM or Firmware Base Driver)

Firmware Environment
(EFI or Framework Code-Base)

Firmware -> O/S Thunk Code 

O
perating System

 

Hardware

Operating System
User-Mode APIs

Operating System
Kernel-Mode APIs

Figure 14.7 Firmware Emulation Software Logic Flow

Hardware Pass-Through
As is evident through the previous examples, the underlying firmware can 
enable calling to several operating system APIs. However, since the firmware 
emulation environment is essentially an operating system application, certain 
functions are not going to be available. This is true since most operating systems 
have the concept of separating a user space from a more privileged kernel space 
to prevent applications from inadvertently crashing the entire operating system. 
Using this type of separation allows for the operating system to detect an error 



 Chapter 14:  Putting It All Together—Firmware Emulation  n  301

and simply kill the user session without perturbing the remaining portions of 
the operating system. 

It is possible to introduce several extensions to what is currently defined in 
the sample implementations that enable even further capabilities. An operating 
system kernel driver could be constructed to facilitate access to even more 
functions than would otherwise be available. This of course circumvents some 
of the inherent safety of the operating system and can introduce inadvertent 
crashes when care is not taken. By constructing a kernel driver that can 
reserve certain hardware resources and is able to advertise an interface that the 
emulation environment can call, the emulation environment can allow for an 
enhanced penetration into the hardware.

Figure 14.8 shows the logic flow associated with the various components 
and how they interact. 



302  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Firmware Driver Under Development
(Option ROM or Firmware Base Driver)

Firmware Environment
(EFI or Converted Legacy Code-Base)

O
perating System

 

Operating System
User-Mode APIs

Operating System
Kernel-Mode APIs

Allows for Added Hardware Interaction

Hardware

Firmware -> O/S
Thunk Code

O/S Emulation
Kernel Driver

Figure 14.8 Software Flow for Hardware Enhanced Firmware Emulation

Summary
This chapter shows how the majority of the UEFI code can be run in an 
emulated environment so that development can occur on some modules even 
in absence of physical hardware that would otherwise have been necessary. This 
emulation, which is publicly available, advances the accessibility of the overall 
UEFI programming infrastructure. It can also facilitate a wider distribution 
of its use due to the relative simplicity of establishing such a development 
environment.



 303

Chapter 15
Reducing Platform 

 Boot Times 
All problems are either kernel or BIOS problems depending on which  
context you are running in!

—Rothman’s Axiom

This chapter presents a series of methods that should enable a BIOS 
engineer to optimize the underlying platform firmware so that it can 

reduce a platform’s boot speed. However, it should be noted that the intent 
of this chapter is to illustrate how various, seemingly unrelated, product 
requirements can greatly affect the resulting platform boot performance. 
That being said, this section also illustrates how the platform design based 
on marketing requirements, coupled with a properly constructed UEFI-
compliant firmware, can greatly affect the performance characteristics of a 
platform. Some of the key points are:

 n How specific marketing requirements affect boot performance.

 n Suggestions on what firmware engineering choices can be made to 
optimize for a given platform requirement.

 n Provide a realistic view of what performance enhancements can be 
done in a production firmware.

 n Establish viable next steps.



304  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

This chapter focuses on specific aspects of a platform’s pre-O/S boot behavior 
and leverages concepts that are based on the UEFI firmware architecture.

Some of the fundamental things that need to be understood are different 
phases of platform initialization and how they are exercised as part of the 
platform boot process. The following flow diagrams, Figure 15.1, 15.2, and 
15.3, illustrate the evolution of the platform initialization from the first 
moment that power is applied until the point where the BIOS hands-off to 
the target O/S:



 Chapter 15:  Reducing Platform Boot Times  n  305

 

Reset Vector
Flush cache and jump into main initialization

routine in the ROM.

Hand-off to PEI entry point.

Switch to Protected Mode 
Transition to a non-paged flat-model

protected mode.

Initialize MTRRs for BSP 
Set cache states for various memory

ranges to a known state.

Microcode Patch Update 
Execute Microcode Patch Update for all of the present CPUs.

(Common process, but an optional behavior in closed-box
controlled configuration systems.)

Initialize No-Eviction Mode (NEM) 
Prior to the discovery of memory on the platform, a data area

will be established within the CPU cache so that a
stack-based programming language can be

used early in the initialization.

Various Early BSP/AP Interactions  
A series of standard steps which contain some fixed delay

events such as: Send INIT IPI to all APs,
Send Start-up IPI (SIPI) to all APs
Collect BIST data from the APs.

Figure 15.1 SEC Phase



306  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Transfer services from being ROM-based to data running from
early memory (e.g. CPU cache). This includes the presence of PEI

services such as memory, PEI module interfaces, and security.

Hand-off SEC to PEI Core 

Hand-off to DXE
entry point.

O/S Resume
Vector

Dashed  boxes or lines
are informational. 

Are We in an
S3 Boot Mode? No

Establish use of “memory”

Programs
some key
aspects of
the MCH
such as
the base

address of 
several key

components.

MCH Init
Do absolute
minimal ICH

programming.
This includes

basic
AC PI/GPIO
initialization,

and
programming

Flash map
access

into ICH.

ICH Init
Module which exposes a series of CPU-related functions. Some of

these functions are CPU Cache interface (Set/Reset), and CPU
Frequency Select Interface.

CPU PEIM

Executes the S3 Boot Script
to re-establish hardware
programming in a very
low-overhead manner.

S3 Boot Script Executor

Execute Memory Initialization for the platform. Assign memory for
remainder of PEI and subsequent boot phases. In this case, some

optimizations are enabled for performance such as eliminating
memory test during S3 resume or re-programming captured

memory reference code state in S3 resume mode.

Memory Initialization PEIM

Initializes a variety of components
within the CPU domain with

optimizations associated with S3.
Basic initialization of CPU

to establish various CPU-specific
settings (e.g. VMX, SMRR, Thermal

Throttling settings,
MTRR Synchronization, etc.).

Multiprocessor CPU PEIM
for S3 Boot Mode

Executes a series of early hardware initialization such as memory
controller hub (MCH) init, I/O controller hub (ICH), init, initialize

built-in platform interfaces (e.g. Stall, SMBUS Policy, Reset, etc.)
Also determines what the boot mode is we are currently booting

with (e.g. Normal, Recovery, S3, etc.). This is also where the
platform exposes the boot mode so that subsequent modules

con potentially have boot mode based behavior.

Miscellaneous Platform PEIM

Loads a series of PEI modules (PEIM) based on a series of criterion. Dispatching starts
with modules which have no prerequisites and proceed through other modules which have more

complex dependencies. This is typically a loop which is exhausted when there are no further
modules that need dispatching and there are no newly discovered modules.

PEI Dispatcher

Yes

Figure 15.2 PEI Phase



 Chapter 15:  Reducing Platform Boot Times  n  307

 

The Driver eXecution Environment (DXE) is established based on
the discovered resources described by the prior PEI phase of
operations. This includes DXE core callable interfaces, event

services, and eventual launch of the DXE dispatcher.

Hand-off from PEI to DXE Core 
Dashed  boxes or lines

are informational. 

Can the boot
target be
 loaded?

Have we made
progress since last

attempt?

Are there
more boot options

to try?

No

Establish DXE Infrastructure

Based on the programmed boot variable, the Boot Device Select
(BDS) phase ultimately will attempt to connect the boot devices
required to load and invoke the selected boot target (e.g. O/S).

This usually encompasses a recursive search for additional
FVs and content to dispatch from them.

Boot Device Select Phase

The dispatcher is tasked with the job of discovering the FV
(firmware volume) components that are available and processing
them. Each of the discovered drivers within the FV is scheduled
to be launched if and when their dependencies are met. Once

a driver is scheduled to run, the dispatcher 
will proceed to launch the scheduled drivers and continue to do so

until there are no more scheduled drivers.

DXE Dispatcher

Dispatch content from
discovered FVs

Dispatch New DXE Drivers

Load new boot option

Hand-off to the Boot Target

When no viable boot options exist, the platform will
have some built-in boot behavior that is specific

to the manufacturer of the platform.

Platform Policy

Yes

Yes

No

Some of the key
drivers needed for

the core to operate.
Some of these are

the BDS, CPU,
Timer, etc.

Architectural
Protocols

During the search
for FVs, various
drivers can be
discovered and

potentially launched.
Some of these

drivers are
components such
as network drivers,

I/O drivers
(e.g. USB/PCI),
and any OEM

or platform
specific drivers.

Discovered
Components

Yes

Yes

Figure 15.3 DXE and BDS Phase



308  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Given the above information, the remainder of the chapter focuses on 
the important elements when considering how to best optimize some of the 
aforementioned behavior so a platform meets both its technical and marketing 
requirements yet achieves an optimal boot speed.

Proof of Concept
In the proof of concept for this chapter, the overall performance numbers used 
are measured in microseconds and the total boot time is described in seconds. 
Total boot time is measured as the time between the CPU first having power 
applied and the transferring of control to the boot target (which is typically 
the OS). This chapter does not focus on the specifics of the hardware design 
itself since the steps that are described are intended to be platform-agnostic. 
However, for those who absolutely must know from what type of platform 
some of the numbers are derived, they are:

 n 1.8-GHz Intel® Atom™-based netbook design

 n 1 GB DDR2 memory 

 n 2 MB flash

 n Western Digital† 80-GB Scorpio Blue 5400-RPM drive (normal 
configuration)

 n Intel® Solid State Drive X25-E (Intel® X25E SSD) (in optimized 
configuration)

It should also be noted that this proof of concept was intended to emulate 
real-world expectations of a BIOS, meaning that nothing was done to achieve 
results that could not reasonably be expected in a mass-market product design. 
The steps that were taken for this effort should be easily portable to other 
designs and should largely be codebase-independent . 

Figure 15.4 shows the performance numbers achieved while maintaining 
all of the various platform/marketing requirements for this particular system.



 Chapter 15:  Reducing Platform Boot Times  n  309

 

SEC  Phase Duration:

PEI    Phase Duration:

DXE  Phase Duration:

BDS  Phase Duration:

Total             Duration:

26342 (us)

1230905 (us)

998234 (us)

7396050 (us)

9.651531 (s)  

Normal Boot

SEC  Phase Duration:

PEI    Phase Duration:

DXE  Phase Duration:

BDS  Phase Duration:

Total             Duration:

26419 (us)

763315 (us)

443021 (us)

766778 (us)

1.999533 (s)  

Optimized Boot

Figure 15.4 Performance Measurement Results (Before/After)

The next several sections detail the various decisions that were made for 
this proof of concept and how they improved the boot performance.

Marketing Requirements
Admittedly, marketing requirements are not the first thing that comes to mind 
when an engineer sits down to optimize a BIOS’s performance. However, the 
reality is that marketing requirements form the practical limits for how the 
technical solution can be adjusted.

The highlighted requirements are the pivot points in which an engineer can 
make decisions that ultimately affect performance characteristics of the system. 
Since this section details the engineering responses to marketing-oriented 
requirements, it does not provide a vast array of code optimization “tricks.” 
Unless there is a serious set of implementation bugs in a given codebase, 
the majority of boot speed improvements are achieved from following the 
guidelines provided in this section. Not to worry though, there are codebase 
independent “tricks” included that provide additional help.

What Are the Design Goals?

How does the user need to use the platform? Is it a “closed box” system? Is it 
a traditional desktop? Is it a server? How the platform is thought of ultimately 
affects what the user expects. Making conscious design choices to either enable 



310  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

or limit some of these expectations is where the platform policy can greatly 
affect the resulting performance characteristics. 

Platform Policy

One of the first considerations when looking at a BIOS and the corresponding 
requirements are whether or not an engineer can limit the number of variables 
associated with what the user can do “to” the system. For instance, it might be 
reasonable to presume that in a platform with no add-in slots, a user will not 
be able to boot from a RAID controller since the user cannot physically plug 
one in. 

This is where a designer enters the zone of platform policy. Even though a 
platform may not expose a slot, the platform might expose a USB connection. 
A conscious decision needs to be made for how and when these components 
are used. A good general performance optimization statement would be:

“If you can put off doing something in BIOS that the OS can do—then put 
it off!”

Since a user can connect anything from a record player to a RAID chassis 
via USB, the user might think that they would be able to boot from a USB-
connected device if physically possible. Though this is physically possible, it is 
within the purview of the platform design to enable or disable such a behavior. 

In this particular platform, the decision was made to not support booting 
from USB media and to not support the user interrupting the boot process. 
This means that during the DXE/BDS phase, the BIOS was able to avoid 
initializing the USB infrastructure to get keystrokes and this resulted in a 
savings of nearly 0.5 second in boot time. 

Note Even though 0.5 second of boot time was saved by eliminating late 
BIOS USB initialization, upon launching the platform OS, the OS 
was able to interact with plugged-in USB devices without a problem.

Platform policy ultimately affects how an engineer responds to the 
remaining questions. 



 Chapter 15:  Reducing Platform Boot Times  n  311

What Are the Supported OS Targets?

Understanding the requirements of a particular platform-supported OS greatly 
affects what optimization paths can be taken in the BIOS. Since many “open” 
platforms (platforms without a fixed software or hardware configuration) have 
a wide variety of operating systems that they choose to support, this limits 
some of the choices available. In the case of the proof-of-concept platform, 
only two main operating systems were required to be supported. This enabled 
the author to make a few choices that allowed the codebase to save roughly 
400 ms of boot time by avoiding the reading of some of the DIMM SPD 
data for creating certain SMBIOS records since they weren’t used by the target 
operating systems.

Note Changes in the BIOS codebase that avoided the unnecessary creation 
of certain tables saved roughly 400 ms in the boot time.

Do We Have to Support Legacy Operating Systems?

The main consideration was whether a particular OS target was UEFI-compliant 
or not. If all the OS targets were UEFI-compliant, then the platform could have 
saved roughly 0.5 second in the underlying initialization of the video option 
ROM. In this case, we had conflicting requirements: one was UEFI-compliant 
and one was not. There are a variety of tricks that could have been achieved by 
the platform BIOS when booting the UEFI-compliant OS but for purposes of 
keeping fair measurement numbers, the overall boot speed numbers reflect the 
overhead of supporting legacy operating systems as well.

To save an additional 0.5 second or more of boot time when booting a 
UEFI-compliant OS, the BDS could analyze the target BOOT#### variable 
to determine if the target were associated with an OS loader and thus it is a 
UEFI target. The platform in this case at least has the option to avoid some of 
the overhead associated with the legacy compatibility support infrastructure.

Do We Have to Support Legacy Option ROMs?

Whether or not to launch a legacy option ROM depends on several possible 
variables:



312  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Does the motherboard have any devices built in that have a legacy 
option ROM?

 n Does the platform support adding a device that requires the launch of 
a legacy option ROM?

 n If any of the first two are true, does the platform need to initialize the 
device associated with that option ROM?

One reason why launching legacy option ROMs is fraught with peril for boot 
performance is that there are no rules associated with what a legacy option 
ROM will do while it has control of the system. In some cases, the option 
ROM may be rather innocuous regarding boot performance, but not always. 
For example, the legacy option ROM could attempt to interact with the user 
during launch. This normally involves advertising a hot-key or two for the user 
to press, which would delay the BIOS in finishing its job for however long the 
option ROM pauses waiting for a keystroke.

For this particular situation, we avoided the launching of all of the drivers 
in a particular BIOS and instead opted to launch only the drivers necessary 
for reaching the boot target itself. Since the device we were booting from was 
a SATA device for which the BIOS had a native UEFI driver, there was no 
need to launch an option ROM. This action alone saved approximately three 
seconds on the platform. More details associated with this trick and others are 
in the section “Additional Details.”

Are We Required to Display an OEM Splash Screen?

This is often a crucial element for many platforms, especially from a marketing 
point of view. The display of the splash screen itself typically does not take 
that much time. Usually initializing the video device to enable such a display 
takes a sizable amount of time. On the proof-of-concept platform, it would 
typically take 300 ms. An important question is how long does marketing 
want the logo to be displayed? The answer to this question will focus on what 
is most important for the OEM delivering the platform. Sometimes speed is 
paramount (as it was with this proof of concept), and the splash screen can be 
eliminated completely. Other times, the display of the logo is deemed much 
more important and all things stop while the logo is displayed. An engineer’s 
hands are usually tied by the decisions of the marketing infrastructure. 



 Chapter 15:  Reducing Platform Boot Times  n  313

One could leverage the UEFI event services to take advantage of the 
marketing-driven delay to accomplish other things, which effectively parallelizes 
some of the initialization. 

What Type of Boot Media Is Supported?

In the proof of concept platform description, one element was a bit unusual. 
There was a performance and a standard configuration associated with the 
drive attached to the system. Though it may not be obvious, the choice of boot 
media can be a significant element in the boot time when you consider that 
some drives require 1–5 seconds (or much more) to spin up. The characteristics 
of the boot media are very important since, regardless of whatever else you 
might do to optimize the boot process, the platform still has to read from 
the boot media and there are some inherent tasks associated with doing that. 
Spin-up delays are one of those tasks that are unavoidable in today’s rotating 
magnetic media.

For the proof of concept, the boot media of choice was one which incurs 
no spin-up penalty; thus a solid state drive (SSD) was chosen. This saved about 
two seconds from the boot time.

What Is the BIOS Recovery/Update Strategy?

How a platform handles a BIOS update or recovery can affect the performance 
of a platform. Since this task may be accomplished in many ways, this may 
inevitably be one of those mechanisms that has significant platform variability. 
There are a few very common ways a BIOS update is achieved from a user’s 
perspective:

 n A user executes an OS application, which they likely downloaded 
from the OEM’s Web site. This will eventually cause the machine to 
reboot.

 n A user downloads a special file from an OEM’s Web site and puts 
it on a USB dongle and reboots the platform with the USB dongle 
connected.



314  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n A user receives or creates a CD or floppy with a special file and reboots 
the platform to launch the BIOS update utility contained within that 
special file.

These user scenarios usually resolve into the BIOS, during the initialization 
caused by the reboot, reading the update/recovery file from a particular 
location. Where that update/recovery file is stored and when it is processed is 
really what affects performance. 

When Processing Things Early

Frequently during recovery one cannot presume that the target OS is working. 
For a reasonable platform design, someone would need to design a means by 
which to update or recover the BIOS without the assistance of the OS. This 
would lead to user scenarios #2 or #3 listed above.

The question an engineer should ask themselves is, how do you notify the 
BIOS that the platform is in recovery mode? Depending on what the platform 
policy prescribes, this method can vary greatly. One option is to always probe 
a given set of possible data repositories (such as USB media, a CD, or maybe 
even the network) for recovery content. The act of always probing is typically a 
time-consuming effort and not conducive to quick boot times.

There is definitely the option of having a platform-specific action, which 
is easy and quick to probe that “turns on” the recovery mode. How to turn on 
the recovery mode (if such a concept exists for the platform) is very platform-
specific. Examples of this are holding down a particular key (maybe associated 
with a GPIO), flipping a switch (equivalent of moving a jumper), which can 
be probed for, and so on. These methods are highly preferable since they allow 
a platform to run without much burden (no extensive probing for update/
recovery.)

Is There a Need for Pre-OS User Interaction?

Normally the overall goal is to boot the target OS as quickly as possible and 
the only expected user interaction is with the OS. That being said, the main 
reason for people today to interact with the BIOS is to launch the BIOS setup. 
Admittedly, some settings are within this environment that are unique and 
cannot be properly configured outside of the BIOS. However at least one 
major OEM (if not more) has chosen to ship millions of UEFI-based units 
without exposing what is considered a BIOS setup. It might be reasonable to 



 Chapter 15:  Reducing Platform Boot Times  n  315

presume for some platforms that the established factory default settings are 
sufficient and require no user adjustments. Most OEMs do not go this route. 
However, it is certainly possible for an OEM to expose “applets” within the OS 
to provide some of the configurability that would have otherwise been exposed 
in the pre-OS timeframe.

With the advent of UEFI 2.1, and more specifically the HII (Human 
Interface Infrastructure) content in that specification, the ability for 
configuration data in the BIOS to be exposed to the OS was made possible. 
This makes it possible for many of the BIOS settings to have methods exposed 
and configured in what are not traditional (pre-OS) ways.

If it is deemed unnecessary to interact with the BIOS, there is very little 
reason (except as noted in prior sections) for the BIOS to probe for a hot key. 
This only takes time from a platform boot without being a useful feature of the 
platform.

Additional Details
When it comes time to address some codebase issues, the marketing requirements 
clearly define the problem space an engineer has to design around. With that 
information, several methods can help that are fairly typical of a UEFI-based 
platform. These are not the only methods, but they are the ones that most any 
UEFI codebase can use. 

Adjusting the BIOS to Avoid Unnecessary Drivers

It is useful to understand the details of how we avoided executing some of 
the extra drivers in our platform. It is also useful to reference the appropriate 
sections in the UEFI specification to better understand some of the underlying 
parts that cannot, for conciseness, be covered in this chapter.

The BDS phase of operations is where various decisions are made regarding 
what gets launched and what platform policy is enacted. That being said, this 
is the code (regardless of which UEFI codebase you use) that will frequently 
get the most attention in the optimizations. If we refer again to the boot 
times for our proof of concept, it should be noted that the BDS phase was 
where the majority of time was reduced. Most of the reduction had to do with 
optimizations as well as some of the design choices that were made and the 
phase of initialization where that activity often takes place.



316  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

At its simplest, the BDS phase is the means by which the BIOS completes 
any required hardware initialization so that it can launch the boot target. At its 
most complex, you can add a series of platform-specific, extensive, value-added 
hardware initialization that is not required for launching the boot target.

What Is the Boot Target?

The boot target is defined by something known as an EFI device path (see UEFI 
specification). This device path is a binary description of where the required 
boot target is physically located. This gives the BIOS sufficient information to 
understand what components of the platform need to be initialized to launch 
the boot target.

Below is an example of just such a boot target: 
Acpi(PNP0A03,0)/Pci(1F|1)/Ata(Primary,Master)/
HD(Part3,Sig00110011)/”\EFI\Boot”/”OSLoader.efi”

Steps Taken in a Normal and Optimized Boot

Figure 15.5 indicates that between the non-optimized boot and an optimized 
boot, there are no design differences from a UEFI architecture point of view. 
In addition, Figure 15.6 shows how significantly the behavior of the platform 
might be in each of the contrasting scenarios, however optimizing a platform’s 
boot performance does not mean that one has to violate any of the design 
specifications.



 Chapter 15:  Reducing Platform Boot Times  n  317

 

Normal Boot 

DXE + BDS Phase 
Discover all Drivers Available to the Platform.

Dispatch all Drivers Encountered. 

O/S Resume Vector 

Are We in an
S3 Boot Mode? 

PEI Phase 
Dispatch Various PEI Drivers. Pre-memory

Early Initialization, Microcode Patching,
and MTRR Programming.

Yes 

SEC Phase 
Pre-memory Early Initialization, Microcode

Patching, and MTRR Programming.

No 

Optimized Boot 

DXE + BDS Phase 
Discover the Drivers Available to the Platform.
Dispatch only the Minimal Drivers Required

to Boot the Target. 

O/S Resume Vector 

Are We in an
S3 Boot Mode? 

PEI Phase 
Dispatches Only Minimal PEI Drivers.

Pre-memory Early Initialization, Microcode
Patching, and MTRR Programming.

Yes 

SEC Phase 
Pre-memory Early Initialization, Microcode

Patching, and MTRR Programming.

No 

Figure 15.5 Architectural Boot Flow Comparison



318  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

 Find VGA Device

Connect Consoles

Connect All Drivers

Diagnostics

FrontPage

Enumerate BootOption

Boot

Connect PCI Root Bridge
and Install OpRom

Connect Consoles

Diagnostics

Boot

For a normal boot, the diagram on
the left illustrates a common set of
operations during the boot.
The diagram above shows an
optimized boot.
Both are accomplishing the same
basic goal - launching the boot target.

Figure 15.6 Functional Boot Flow Comparison

Loading a Boot Target

The logic associated with the BDS optimization focuses solely on what is the 
minimal behavior associated with initializing the platform and launching 
the OS loader. When customizing the platform BDS, you can avoid calling 
routines that attempt to connect all drivers to all devices recursively, such as 
BdsConnectAll(), and instead only connect the devices directly associated 
with the boot target. Figure 15.7 illustrates an example of that logic.



 Chapter 15:  Reducing Platform Boot Times  n  319

 

Initialize the
PCI Device

Initialize the
ATA Device

Initialize the
PCI Root Bridge

Initialize the
Partition Driver

Initialize the
File System Driver

Launch
O/S Loader

Acpi(PNP0A03,0)/ Pci(1F|1)/ Ata(Primary,Master) HD(Part3, Sig00110011)/ “\EFI\Boot”/”OSLoader.efi”

Connect PCI Root Bridge
and Install OpRom

Connect Consoles

Diagnostics

Boot

Figure 15.7 Deconstructing the BDS launch of the Boot Target

Organizing the Flash Effectively

In a BIOS that complies with the PI specification, there is a flash component 
concept known as a firmware volume (FV). This is typically an accumulation 
of BIOS drivers. It would be reasonable to expect that these FVs are organized 
into several logical collections that may or may not be associated with their 
phase of operations or functions. There are two major actions that the core 
initiates associated with drivers. The first one is when a driver is dispatched 



320  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

(loaded into memory from flash), and the second one is when a driver is 
connected to a device. Platform policy could dictate that the DXE core avoids 
finding unnecessary drivers. For instance, if the USB device boot is not needed, 
the USB-related drivers could be segregated to a specific FV, and material 
associated with that FV would not be dispatched. 

Minimize the Files Needed

Since one of the slowest I/O resources in a platform is normally the flash part 
on which the BIOS is stored, it is a very prudent idea to minimize the amount 
of space that a BIOS occupies. The less space a BIOS occupies, the shorter the 
time is for routines within the BIOS to read content into faster areas of the 
platform (such as memory). This can be done by minimizing the drivers that 
are required by the platform, and pruning can typically be accomplished by a 
proper study of the marketing requirements.

Summary
Ultimately, the level of performance optimization that is achievable is largely 
subject to the requirements of the platform. Given sufficient probing, there are 
almost always methods to achieve boot speed gains using some of the techniques 
highlighted in this chapter. Here are some of the highlights of items to focus on 
and areas within each BIOS codebase that deserve further investigation.

The Primary Adjustments

Based on various conditions in a platform, the boot behavior can be adjusted 
to speed up the boot process. Much of this occurs in the BDS, but some areas 
of optimization may vary per each individual codebase.

 n Focus on the marketing requirements

 – Based on the marketing requirements, many decisions that affect 
boot performance can be made. Open dialog between marketing 
and engineering helps with this.

 n Minimize the use of slow media 



 Chapter 15:  Reducing Platform Boot Times  n  321

 – Scanning for firmware component in a flash device can be very 
slow. Optimize routines that touch slow media.

 n No need to poll for setup pages or even initialize a console in some 
cases. 

 – Polling for keys or user interaction can be minimized in the BDS.

 n Not all hardware needs to be initialized. Often only the hardware 
directly associated with the valid boot target needs to be initialized.

 n Tweaks

 – Only initiate activity that the BIOS must do; the OS is often 
going to repeat what the BIOS just did.

 – If no hardware changes are detected there is no need to re-
enumerate various subcomponents.

 – It may not be a need to probe boot options if we cache the last 
known valid boot option.

Suggested Next Steps

Some common procedures can be applied to all platforms:

 n Make full use of platform cache 

 – Especially in PEI phase where the code is XIP (eXecute-In-Place), 
caching the flash region can contribute significantly to code fetch 
and execution improvements.

 n Minimize the use of slow media 

 – Scanning for a firmware component in a flash device can be very 
slow. Optimize routines that touch slow media. For instance, the 
variable region is normally stored in flash and it is very time-
consuming to traverse the whole flash region for each variable 
search. It would be a reasonable optimization to use memory-
based cache to store the whole variable region or just the variable 
index to speed up the variable search time. 



322  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Analyze drivers that spend time blocking the boot progress. More 
often than not, these drivers can gain improvements in performance 
with minor adjustments. 

 – If hard disk spin-up time is a blocking factor in the platform boot 
times, the BIOS owner could adjust some of the logic to initiate 
the disk spin-up in an earlier stage of the boot logic to mitigate 
some of this slow-down and avoid a blocking behavior. Using an 
EFI event for such an optimization may be very reasonable.

 n First focus optimization work on the components that the BIOS 
spends the most time on. Usually more optimization results can be 
achieved in these components.



 323

Chapter 16
Embedded Boot 

Solution
Unless you try to do something beyond what you have already mastered, you 
will never grow.

—Ralph Waldo Emerson 

The expected market segment opportunity beyond 2012 for embedded 
systems will be over USD 10 billion. Some examples of this focused 

segment, as shown in Figure 16.1, include: in-vehicle infotainment (IVI) 
for automotive use, print imaging (enterprise printing solutions), industrial 
control, residential or premise service gateways (PSG), home control, media 
phones (MPs), set top boxes, mobile Internet devices (MIDs) and physical 
security/digital security and surveillance (video analytics systems and IP 
cameras). 



324  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Print Imaging

Industrial Voice

Routers

Example
6 Segments

Infotainment

Figure 16.1 Embedded Usage Examples

This chapter describes the boot firmware challenges and solutions for these 
market segments. The primary focus is to cover the platform boot solution, 
which includes standard PC BIOS, bootloaders (also known as steploaders), 
initial program loaders (IPLs, also known as second-stage bootloaders), and OS 
boot driver components for running a shrinkwrap and/or industry standard 
embedded OS.

CE Device Landscape
The Intel® Atom™ processor family of low power embedded processors are 
making their way into many lower power platforms, the key being MIDs 
(mobile Internet devices), netbooks and a variety of embedded markets as 
enumerated above. Some of these segments are targeted towards consumers, 
following the Consumer Electronics (CE) device model paradigm. One of the 



 Chapter 16:  Embedded Boot Solution  n  325

key attributes of a CE device is the positive end-user experience, which is of 
paramount importance. The user experience is based on such factors as: 

 n Battery life/low thermal dissipation for fanless device operation

 n Small device form factor/footprint for portability

 n Ease of use

 n Low bill of material (BOM) resulting in lower end-user cost

 n Interoperability with other CE devices

 n The time between power-on and the user interface becoming active, 
also known as boot latency to user interface/human machine interface 
(UI/HMI)

CE Device Boot Challenges
Traditional CE devices from OEMs were fully customized solutions with 
OEM specific hardware and software components that were uniquely tuned 
for a particular use model such as smart phones or MIDs. In this case, custom 
platforms were developed top-down from scratch for pre-determined usage 
models with customized applications, middleware, device drivers, OS, system 
boot firmware and tightly coupled companion boot devices/hardware. With 
each new platform development, the software solution had to be recreated.

The use of Intel® architecture would help reduce this re-development, 
reducing time to market and cost. One of the value propositions and advantages 
of using both Intel architecture based processor family System on a Chip (SoC) 
solutions and platforms is the wide availability of standard platform building 
blocks from Intel and external ecosystem suppliers providing hardware, 
software, BIOS, applications, development tools and so on. 

As many of these platform building blocks migrated from a standard PC 
to embedded SoC segments, they posed some interesting challenges to directly 
map to the top-down CE device use model. It takes optimization of more than 
a dozen system hardware and software components across the system stack to 
achieve the desired CE goals, with the boot firmware being a key component 



326  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

of it. Figure 16.2 identifies some of the components in the boot path that 
contribute to the overall system boot latency as needed for the CE devices.

The following is a short list of some key components that contribute to the 
overall boot latency to UI active time.

 n Platform power sequencing latencies, such as stabilization of PLL/
Clocks, voltage regulators, and power rails

 n Speed of bus interface to boot device, such as Serial Peripheral Interface 
(SPI) and Low Pin Count (LPC)

 n Access latency of storage device for firmware, such as NOR/NAND 
Flash

 n Access latency of mass storage device, such as HDD, SSD, MMC/SD

 n Splash screen latency

 n Latencies associated with boot firmware or bootloader execution

 n Initial program load latencies, such as second stage OS boot loader 
(also known as IPL)

 n Partitioning of the firmware and OS boot components across the 
storage device, such as NOR, SDD, HD, and MMC

 n Use of file system type for storing the boot image, such as ROM, FAT, 
and EXT3

 n Latency of graphics and audio device startup if required
Figure 16.2 shows various boot components across the system stack that 
need to be optimized and aligned to get to the end goal of low boot latency 
as desired by a CE device user. Moreover, many of these components have 
interdependencies for them to function effectively. For example: the fast splash 
screen needs to provide a seamless handoff to the graphics driver, and the block 
storage device must power-on early in firmware before a handoff to IPL.



 Chapter 16:  Embedded Boot Solution  n  327

 

Flash Storage
NOR/NAND

IPL Loader
(Stage-2)

BootLoader
(Firmware)

Fast Splash
Screen

Early Wave
Device Audio
(PDC/Radio)

Power
Sequencing
Hardware

Block
Storage Device

SSD/HD

Pre-Boot
Rear

Camera

Root File
System

Staged OS
Loading

Power
Management

Graphics

Kernel (OS)

Figure 16.2 End-to-End Boot Latency Dependency Components



328  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

A case study of one of the CE device usages for IVI with typical boot 
requirements follows. The fast boot requirements for most other CE segments 
are considered to be a subset of IVI, which has the most stringent requirements 
of all.

In-Vehicle Infotainment
An IVI user expects an instant power-on experience, similar to that of most 
consumer appliances like TVs. To meet this same expectation, one of the key 
requirements of the IVI platform is the sub-second cold boot time, which helps 
facilitate the user experience when the ignition key/button is turned on. The 
typical boot latency requirements are as illustrated in Figure 16.3.



 Chapter 16:  Embedded Boot Solution  n  329

 

CAN
Operable < 100 ms

Power On
 to CPU Reset < 20 ms**

Human Machine Interface
(UI) < 5000 - 6000 ms

Navigation
On < 8000 to 15000 ms

Splash
Screen < 500 ms

 OS Hand Off < 1000 ms

Rear View
Camera < 1000 ms (OEM)

MOST
Operable < 500 ms

FM Radio  < 550 ms

Bootloader Dependency

OS Dependency

OEM Hardware Dependency

Main Boot Path

OEM Software Path

**RTCRST:5ms; RSMRST:5ms; p-Unit M0-M5; IA RST Deassert:1.42 ms; Total=~16.2ms

Legend:

Rear View
Camera  < 1000 ms

PDC,
Beep < 2000 ms

Display Driver
Dependency

Key
Milestone

Hardware
Self Init

Figure 16.3 Typical CE Device Boot Latency Requirements

Within the requirements highlighted above, there are multiple key latency 
checkpoints where the boot firmware plays a key role. These include:

 n Power-on to splash screen active. The time between hardware power-
on and splash screen active is key because it helps improve the user 



330  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

perception with an early audio/visual experience. This is accomplished 
by displaying a static image bitmap or a logo on the display device. 
The pre-OS boot environment is where this typically gets activated, 
immediately after the memory initialization is done. Several of the 
initialization functions are needed to enable the display to occur in 
parallel while the boot firmware is busy performing its other unrelated 
boot functions in the background, such as memory and chipset 
initialization. Once the splash screen is enabled, the firmware typically 
does a handshake with the OS environment for a seamless handoff of 
the splash screen display status and related information, such as frame 
buffer physical address and display mode. If the firmware can hand-off 
to the OS in less than 50–100 ms, it is possible to leave this function 
for the OS to enable, thereby making it a post-OS boot feature.

 n Power-on to rear view camera active. This is another operation that 
may have to get activated in the background and be presented to the 
user with a motion image from the rear view camera. This function 
is typically used when backing up an automobile and the function 
needs to be activated upon entering reverse (“R” gear). In some use 
cases, video from an embedded camera may be preferred in place 
of a static splash screen image. The initialization and activation of 
the camera interface can be done in parallel with bootloader flows 
through hardware state machine assist. The event generation and 
notification mechanism (“R”) also need to be enabled early on in the 
boot sequence.

 n Power-on to the boot storage device active. The time between these 
functions impacts the speed at which the OS can be shadowed and 
launched by the Initial Program Load. This is typically done in the 
early firmware boot sequence as part of the chipset initialization, to 
hide the boot device ready latency such as hard disk spin-up, eMMC/
SD device ready, and so on.

 n Power-on to OS handoff (IPL). This function is done in the background 
and is a measure of overall firmware latency of the boot firmware. 
All actions beyond this fall into the OS boot domain for a typical 
bootloader.



 Chapter 16:  Embedded Boot Solution  n  331

 n OEM-specific functions. Other OEM device-specific functions such as 
Controller Area Network (CAN)/Media Oriented Systems Transport 
(MOST) interface activation, FM radio activation, and TPM 
measured boot, are orthogonal to the core platform functions and are 
managed by OEM-specific hardware/firmware. Typically the events 
from CAN and data over MOST can be used as trigger events for 
operation of functions such as rear view camera activation.

All other boot latency checkpoints illustrated are outside the scope of the boot 
firmware and have a dependency on the kernel components and device drivers 
that are associated with the key boot devices: storage (such as NAND), audio, 
graphics, video, and so on.

Other Embedded Platforms
As noted above, IVI is just one of the many embedded segments with rapid boot 
time requirements. The interesting thing to note is that when all the segments 
are taken into consideration, the fundamental common denominator across all 
of them is the boot firmware, that needs to work with a variety of operating 
systems including Fedora Linux†, QNX†, Microsoft XP Embedded†, Microsoft 
WinCE†, WindRiver Automotive Grade Linux†, Microsoft Automotive† (based 
on Win CE), WindRiver VxWorks†, Microsoft Windows XP†, Microsoft Vista 
Embedded†, 4690/DOS†, MeeGo†, SuSe†, Microsoft Windows for Point-of-
Sales (WEPOS) †, Win7e†, and Win8.

For a typical CE platform, the boot firmware must support interoperability 
with multiple types of OS IPLs as follows:

 n ACPI-compliant UEFI BIOS with a UEFI OS IPL (such as eLilo): this 
is typically used with aftermarket products that may run an embedded 
version of a shrinkwrap OS such as Standard Embedded Linux or 
Window XPe that requires PC compatibility and is readily available 
from the BIOS vendors or original device manufacturers (ODM).

 n Embedded OS IPL: this solution is meant to work with an OS that 
does not rely on the PC BIOS compatibility such as an embedded OS 
and some variants of Linux. This approach requires specialized IPL 
that is customized for the platform topology and the nonstandard 



332  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

secondary storage device such as managed NAND (also known as an 
eMMC device).

Note Reducing the bill of material cost of a CE platform is quite critical, 
hence consolidating the SPI Flash (NOR) and NAND storage to 
one device like eMMC is beneficial. However, this comes with some 
challenges for Intel boot architecture and the firmware flow that 
depends on various aspects such as execute in place ROM (XIP), 
secure and write-protected regions offered by SPI flash controllers, 
and so on.

Generic Requirements
Traditional platforms typically have boot latencies to UI active times that 
average 10–40 seconds. Getting this UI active latency down to below 5–6 
seconds, with an active splash screen in less than 500 ms is a big challenge. 
To reduce time to market and product development costs, it is highly desired 
to develop one boot firmware and OS solution that can scale across different 
CE device platforms from each of the OEMs with varying topologies, but 
based on the same SoC core. Many optimizations were done to both the 
BIOS and bootloader solutions to fit into the IVI platform and the same can 
be easily extended to any CE device. The key being the reordering and early 
initialization of user-visible I/O like display activation, initial program load 
(IPL) boot menus, enabling processor cache usage at boot as high speed RAM 
(CAR), and so on.

The basic or generic bootloader for any CE device model requires the 
following attributes:

 n Low Boot Latency. The generic boot requirements for a CE device can 
be summarized as: power-on to OS handoff in less than one second 
and splash screen in less than 500 ms.

 n Footprint. The firmware code size needs to be small, reusable, and 
portable across all platforms using the same SoC without modifications, 
such as a size of less than 384 KB.



 Chapter 16:  Embedded Boot Solution  n  333

 n Reliability. The bootloader must provide interoperability across a 
variety of operating systems, including shrinkwrap, embedded real-
time operating systems, and so on.

 n Cost optimization. The solution must minimize the platform bill of 
material cost through consolidation of multiple storage devices like 
SPI Flash and Secure Digital Input Output (SDIO) managed NAND.

 n Lifecycle. The bootloader should have a typical lifecycle of 5 years.
Figure 16.4 illustrates the common initialization flows encountered in a typical 
platform initialization.



334  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 

Reset Vector
F000:FFF0

Clear
Legacy RAM

Board Specific
Pre-Initialization

Upload CPU
Microcode

Initialize and
Enable Interrupts

Initialize
Application
Processors

Set Up
Interrupt Mode

Advanced Cache
Initialization

Shadow ROM
to RAM

Miscellaneous
Device

Initialization

Configure SIO,
Enable Serial
Con - Optional

Initialize
kdb/Mouse - 

Optional

Start
System Timers

Initialize
SMRAM

Configure
PCI Resources

Initialize SATA
- Optional

Find and
Initialize Video

OPROM
- Optional

Find and
Initialize

Expansion ROMs

Initialize
Memory Map

Initialize Legacy
Services

 - Optional

Initialize
MP Tables

Call User
Init Functions

CRTM OS
Measurement

Boot to OS
or RTOS

SMM

Services

Switch to 
Protected Mode

Memory
Configuration

CPU Basic
Initialization

Chipset Basic
Initialization

Initialize Stack,
Jump to

Advanced
Initialization

CRTM FW
Measurement

RuntimeAdvanced InitBasic InitStart

Figure 16.4 Typical Intel® Architecture CE Device Firmware Boot Flow



 Chapter 16:  Embedded Boot Solution  n  335

Boot Strategies
To fit most of the usage models described above, different CE device boot 
strategies are adopted, namely Fixed Topology Systems, Binary Modules model 
and Simplified bootloader, as described below:

 n Fixed Topology Systems. This strategy uses standard ACPI-compliant 
UEFI BIOS with a fixed platform topology and a compliant IPL, 
such as eLilo. This is typically used with aftermarket products that 
may run an embedded version of a shrinkwrap OS, but with varying 
I/O devices that are chosen by the end customer (such as Standard 
Embedded Linux or Window XPe). The BIOS is required to provide 
PC compatibility and is readily available from the independent BIOS 
vendors (IBV) or Original Device Manufacturers (ODM). This 
solution provides the most flexibility for seamless addition of I/O for 
each of the OEM machine topologies, but at the expense of higher 
boot latencies. Many of the initialization sequences in the boot path 
are optimized to reduce the latencies significantly in the order of 5–10 
seconds. Some of the noncritical PC BIOS functions such as PCIe 
device enumeration, OptionROM scanning, memory testing, POST, 
and video BIOS usage may be eliminated or simplified during the 
boot sequence. Disabling of these and other functions help reduce 
the boot latencies significantly. Refer to the white paper on one such 
implementation and the optimizations done for it:
http://download.intel.com/design/intarch/papers/320497.pdf

 n Binary Modules with Configuration. This is the most highly optimized 
solution for the CE platform for low boot latencies and is tightly 
coupled to the functions on the SoC. Since the functions of the 
SoC do not change across different OEM implementations, one 
single firmware image compiled from a set of object libraries would 
suffice to boot all platforms built around the SoC. The OEM may 
use a development kit, which would allow customization facilitated 
through a set of exposed application programming interfaces (APIs) 
in the objects. These object APIs could perform basic and advanced 
initialization and control tasks like the following:

 – Processor initialization (including multiprocessor support, cache 
configuration, and control)



336  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 – Chipset and memory initialization
 – Core libraries for I/O initialization such as PCI resource 

allocation, and IDE HD initialization
 – Flash Storage (NOR, NAND), Super I/O support
 – Pre-boot graphics (splash screen) support where available

This solution is primarily meant to work with an OS, which does not 
rely on the PC BIOS compatibility, such as an embedded OS and some 
variants of Linux. The boot latencies achieved are deterministically 
optimized for a fixed CE device model built around the same SoC. 
The goal of this approach is to allow the OS to enable other standard 
non-boot and OEM-specific I/O device enabling through the use of 
loadable device drivers in the OS. Refer to the white paper on one 
such approach and the optimizations done for it:
http://download.intel.com/design/intarch/papers/323246.pdf

 n Simplified Bootloader. This is the third category of firmware bootloader 
that has a subset of functionality of the above two mechanisms. In 
this type of implementation, the bootloader firmware consists of the 
basic initialization functionality of the CPU, flash, and the DRAM 
subsystem. The subsequent portion of chipset hardware and I/O device 
initialization is left for the OS hardware abstraction layer (HAL) to deal 
with, essentially moving much of the firmware platform initialization 
function to the OS. This gives the OS more control to optimize 
the boot latencies by allowing it to touch or initialize devices on a 
demand basis, thereby eliminating the latency associated with non-
boot related platform device initialization. The major disadvantage of 
this approach is that for every new SoC and platform topology, the 
HAL component for each OS needs to be rewritten and this is a major 
undertaking.



 Chapter 16:  Embedded Boot Solution  n  337

Power Management
Traditional Intel architecture platforms support various power management 
capabilities to conserve power of battery powered devices and to reduce 
thermal dissipation for AC powered devices. The CE device will leverage from 
the same power states as defined in the ACPI specification (Sx) and (Dx), but 
with or without ACPI support in the firmware. A simplified ACPI table or its 
equivalent, with a capability to communicate standby (S3) state wake-up vector 
information between the OS and the firmware is the minimum requirement 
for this usage model.

As highlighted earlier, one of the key design goals of the CE device is a 
fast boot in the order of seconds. Typically, any resumption from Suspend/
Hibernate back to active state involves restoring the previous state. In certain 
CE device use cases, the Resume from Sleep (suspend to RAM) could be used 
for sub-second fast boot purposes. However, Sleep mode is undesirable for 
some CE device use cases like IVI, due to the battery drain from DRAM leakage 
current in an extended park scenario or a need to avoid inadvertently restoring 
one user context for another for a rental car scenario. This makes the fast cold 
boot with a completely fresh state on every power-on a key requirement for the 
CE device architecture. 

Boot Storage Devices
Another factor that plays a significant role in helping reduce the overall boot 
latency is the choice of the boot storage device and the system interconnect to 
it, such as LPC and IDE.

Firmware is typically stored on a flash device, which can take the form of 
NOR, Raw NAND or Managed NAND (MMC-NAND). Each of these is 
connected through different system interfaces like LPC/SPI, Open NAND 
Flash Interface (ONFI), or SDIO. Depending on the combination of the bus 
interface and storage device used, the read throughputs can vary anywhere 
from 1.5 MB/s to 52 MB/s at the time of writing of this book. It is to be 
noted that to satisfy the Intel architecture platform boot sequence and legacy 
compatibility, XIP flash (NOR) is best. NAND is a block storage device and 
does not lend itself very well as the XIP memory. The mitigation to overcome 
this NAND limitation is to use SRAM caches in the path to the processor or 
the NAND accesses redirected in hardware to DRAM, where the firmware 



338  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

is shadowed ahead of time. The look-ahead shadowing of NAND content to 
DRAM does introduce additional latencies in the boot path.

In the case of software partitioning, an IPL which is part of the OS 
and includes the kernel may be stored on a secondary block storage device, 
such as a hard disk (HD), solid state drive (SSD) or a managed/unmanaged 
NAND. There are spin-up times associated with HD and power-on to device 
ready latencies associated with SSD/NAND and these contribute to the boot 
latencies as well.

To help keep the platform BOM cost low, it is highly desirable to consolidate 
the storage device used for the boot firmware, OS, and user applications/
data. While NOR flash does offer some speed advantages, the NAND flash 
offers both a cost and performance advantage that is well balanced. The latest 
managed NAND version based on the MMC 4.4 specification offers quite a 
few capabilities to allow the unified storage use case, such as boot block for 
firmware storage, user Storage, and security features. It is quite possible to 
achieve this unified boot storage CE device use model with some changes in the 
Intel architecture platform hardware and firmware flows. This is as illustrated 
in Figure 16.5.



 Chapter 16:  Embedded Boot Solution  n  339

CRT M

Top 1MB
Boot Partition

(NOR Latencies)

User
NAND

(eMMC)

1-32GB

0xFFFFFFFF

Flash with Boot Partition

0xFFF80000

0xFFF20000

0xFFF00000

Boot FW

CMC

Empty

ROMBoot
Loader

Descriptor

e•MMC 4.3 e•MMC 4.4

Partitioning Differences

SPI Legacy
Address Range

(XIP)

Boot Code

Partition 1
(High Performance)

User Area
Partition 2
(High Performance)

OS Partition

User Area
(High Density)

Boot Code
Partitions

Write Protected

Unprotected

SDIO
Block Storage

Device

SPI Legacy
Address Range

(XIP)

SDIO
Block Storage

Device

Figure 16.5 Typical Intel® Architecture Storage Device Consolidation Model



340  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Security
Different embedded segments have varying security requirements collectively 
categorized as Security. These security requirements apply to two different 
usage models, which are orthogonal to each other:

 n Security as it relates to platform defense against attacks from hackers 
and malware.

 n Security as it relates to encryption/decryption of network packets 
(example: IPSec/SSL, Voice SRTP).

SoC based embedded platforms are targeted to support “open and closed 
device” usage models. This means that the user will be able to download and 
install any native application on the device. This puts these devices on par with 
the standard PC as far as threats from viruses and malware are concerned. This 
is where the security for defense against attacks becomes a key platform feature, 
with the boot firmware playing a key role in establishing a chain of trust.

Since the CE platforms are targeted to support “open and closed device” 
usage models, it requires special attention for two key aspects of security. First, 
the system must have a tamper-resistant software environment to protect 
against malicious attacks and second, it must offer the ability to playback 
DRM protected content such as Blu-ray† without being compromised. Table 
16.1 shows the usage and threat model of a typical CE device.

Table 16.1 Usage Model and Security Threats

CE Usage Model Threats

Internet Connectivity Malware attack, DoS Attacks, packet replay/reuse, etc.

Secure Internet Transaction Steal privacy sensitive data

DRM Content Usage Steal DRM protected content

Browser Usage Malware attack, phishing

Software Downloads/Updates Change OS/software stack

Device Management DoS attack, Illegal device connections

ID Management Dictionary attacks, stolen privacy data

One Time Provisioning Steal OEM data, unauthorized activation

Full Featured OS All of the above

Biometrics (Finger print sensor) Steal user data, authentication credentials



 Chapter 16:  Embedded Boot Solution  n  341

Based on the usage model described in Table 16.1, the assets on the platform 
that need to be protected from a hacker are as follows:

 n Platform resources including: CPU, memory, and network (3G, 
WiMax, Wi-Fi)

 n Privacy sensitive data including: ID, address book, location, e-mails, 
DRM protected copyrighted content such as music and video

 n Trusted services including: financial, device management and 
provisioning, trusted kernel components

Based on the techniques needed for threat mitigation, one of the fundamental 
mechanisms to achieve security is to make the software tamper-resistant (TRS). 
TRS goal is achieved by having platform and software mechanisms in place to 
check for software integrity, both at system boot and runtime. The high level 
overview of this is as follows:

 n Boot Time. This is typically accomplished through a mechanism 
called measured boot, where the core platform software components 
(firmware or OS) are checked for unauthorized changes. 

 n Runtime. This runtime security protection is typically achieved by 
having software agents monitoring the system against attacks (for 
example, anti-virus software) and also by securing through application 
sandboxing, which restricts the application accesses to limited resources 
and contains the malware attack impact to the restricted domain.

In addition, any runtime software updates or patching will be limited to trusted 
software from trusted entities, which may be digitally signed for authenticity.

The mitigation against the security threats requires the embedded platform 
security architecture to use a combination of hardware and software security 
ingredients such as:

 n Measured boot with TPM coupled with appropriate hardware based 
Root of Trust (RoT); examples: Intel® Trusted Execution Technology 
(Intel® TXT) or BootROM as Root of Trust

 n DRM content protection based on commercial media players 
executing on Intel architecture



342  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Application isolation through OS-based mechanisms

 n Trusted domains and isolation through OS-based mechanism

 n OEM/OSV trusted binaries, which are digitally signed by an authentic 
source

 n Secure storage and key management through TPM assist

 n Anti-virus through third party software libraries and application 
design

 n Device management/provisioning through industry standard 
mechanisms

BootROM RoT: To provide Measured Boot functionality, an embedded 
platform can support BootROM as hardware RoT and a trusted platform 
module (TPM) can be used to securely store measurements. Some SPI-Flash 
controllers support write-protection of the flash device at reset through hardware 
based auto configuration. Additionally, SPI Flash devices from various vendors 
allow for boot block write protection through strap pin configuration. Any of 
these techniques can be used to protect the firmware boot block from being 
tampered by malware.

In compliance with the TCG specification, the boot firmware is divided 
into two parts. The first part is the boot block, which is a very small firmware 
component that includes the minimal platform initialization firmware and 
TPM driver. The rest of the boot firmware is contained in the subsequent 
portions of the flash.

The Intel architecture CE device can include other platform-specific 
firmware that is outside the context of the core BIOS or firmware. An example 
of this is the p-Unit (microcontroller) that is used for smart power management 
for the SoC device. This is configured as the first entity where the platform 
execution begins after reset. Other CE devices may have similar processing 
elements. Any measured boot mechanism must assure the integrity of such 
firmware and make it part of the overall trust chain. Figure 16.6 is an example 
of the trust boundary for a typical Intel architecture CE device.



 Chapter 16:  Embedded Boot Solution  n  343

Trust Boundary

p-Unit

CRTM in
BootROM
(HW RoT)

BIOS OS
Loader OS App

Figure 16.6 Typical Intel® Architecture CE Device Trust Boundary

The BootBlock can be burned into ROM so that it can not be modified 
and hence can act as a hardware RoT. Core Root of Trust for Measurement 
(CRTM) is the root of trust from which integrity measurements begin within a 
trusted CE device platform. The platform manufacturer provides CRTM logic 
for each trusted platform. The CRTM logic can be changed, but only under 
controlled conditions by the OEM.

The OS loader, kernel, and drivers will be measured as part of the CE device 
measured boot flow. The details of a typical chain of trust for measurement 
with a TPM device and PCRx are outlined as follows:

 n CRTM measures firmware (bootloader or BIOS)

 – Stores the measurement in PCR-0
 – Standard OS handoff tables like ACPI, E820, and EFI 

measurements are stored in PCR-1
 – Any option ROM measurements are stored in PCR-2

 n Bootloader/BIOS measures OS Initial Program Load (IPL)

 – Stores the measurement in PCR-4



344  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n OS loader measures kernel, including kernel command line and 
drivers

 – Stores the measurement in PCR-8
 – Each OS can use different implementations
 – If the measurements are changed, the OS may fail to boot or alert 

the user
Measured Boot Latency: Measured boot introduces latencies in the boot path 
of a CE device due to the following:

 n TPM initialization

 n Calculation of SHA1 checksum of various binaries

 n Appending the checksum in TPM PCR
The measure boot components of the TPM are distributed across the standard 
firmware boot flow The CRTM algorithm would play a key role in optimizing 
for the CE device fast boot. It is beyond the scope of this chapter to describe the 
various techniques that can be used for this optimization. However, a carefully 
designed CRTM might use a combination of the following:

 n Execute-in-place (out of flash) with processor caches enabled

 n Measure only portions of firmware after it is shadowed into memory 
or before

Manageability
The manageability framework, also known as the Device Management (DM) 
framework, provides services on the client platform for use by IT personnel 
remotely. These services facilitate key device management functions such as 
provisioning, platform configuration changes, system logs, event management, 
software inventory, and software/firmware updates. The actual services enabled 
on a particular platform are a CE OEM choice. The following sections describe 
the two key frameworks in use for a CE device, namely OMA-DM and AMT.

Open Mobile Alliance - Device Management (OMA-DM) is one of 
the popular protocols that would allow manufacturers to cleanly build 



 Chapter 16:  Embedded Boot Solution  n  345

DM applications that fit well into the CE device usage model. Many of 
the standard operating systems support OMA-DM or a variation of it with 
enhanced security. The data transport for OMA-DM is typically over a wireless 
connectivity such as WiMax, 3G/4G, and so on. This protocol can run well on 
top of the transport layers such as HTTPS, OBEX, and WAP-WSP. The CE 
device platform would be able to support this, as long as the OEM supports 
the connectivity and the client services. 

The other possible framework for manageability is Intel® Active Management 
Technology (Intel® AMT). Intel AMT provides a full featured DASH-compliant 
manageability solution that can discover failures, proactively alert, remotely 
heal-recover, and protect. Intel AMT Out of Band (OOB) device management 
allows remote management regardless of device power or OS state. Remote 
troubleshooting and recovery could significantly reduce OEM service calls. 
Proactive alerting decreases downtime and minimizes time to repair. 

In the manageability space, making DASH-compliant manageability on 
CE platform is opportunity that allows OEM differentiation and provides a 
much richer manageability features. 

Summary
The need for a boot solution that is low cost, has a small footprint, offers low 
boot latencies, and is platform-agnostic provides an exciting opportunity to ISVs 
and OSVs to develop and deliver such tool kits. This also creates opportunities 
for CE device OEMs to provide creative solutions of their own, making their 
products more competitive and unique. In addition, device vendors can take 
advantage of opportunities to provide hardware IP (Intellectual Property) that 
are self initializing, thereby relieving the boot software from doing the same 
and giving back some time to improve latencies. 

The challenge that remains to be addressed is a single boot firmware 
solution that can boot both shrinkwrap operating systems that require PC 
compatibility and embedded operating systems. There are multiple challenges 
to be addressed with innovative solutions like supporting security features, 
manageability, and a unified storage device like an eMMC, all with the key 
low boot latency attribute. Finally, there are opportunities for the OS vendors 
to come up with innovative optimizations within the OS boot flows to achieve 
faster boots.



346  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 347

Chapter 17
Manageability

I came, I saw, and I conquered.
—Julius Caesar

RAS is a critical requirement for enterprise class servers, which includes 
high availability server platforms. System uptime is measured against 

the goal of “five nines,” which represents 99.999 percent availability. One 
of the key aims of manageability software is to help achieve this goal, by 
implementing functions like dynamic error detection, correction, hardware 
failure prediction, and the taking of corrective actions like replacing or 
turning off failing components before the failure actually happens. In 
addition, other noncritical manageability functions enable IT personal to 
remotely manage a system by performing such operations as remote power 
up/down, diagnostics, and inventory management. Manageability software 
can be part of the inline system software (the SMI handler in BIOS and OS) 
or inline OS user-level application software running on the local processor 
or on a remote system.

This chapter describes the enhanced Intel® architecture platform dynamic 
error handling framework, a system level error management infrastructure 
that is now an integral part of most industry standard server class operating 
systems. In addition to the above framework, different remote manageability 
standards are introduced, by comparing and contrasting various aspects and 
their interoperability at a platform level in achieving the five nines goal. 



348  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Overall Management Framework
A robust reporting of platform errors to the OS and a remote management of 
the platform are considered as fundamental building blocks that enable OS 
level decision making for various error types and possible actions by remote 
IT personnel upon notification of the associated events. The framework 
encompasses a collection of components internal to the OS, platform chipset 
fabric, and more specifically an enhanced firmware interface for communicating 
hardware error information between the OS and the platform. 

By standardizing the interfaces and error reporting through which 
hardware errors are presented to, configured for, signaled to, and reported 
through the framework, the management software would be presented with 
a myriad of opportunities. The two categories of error/event types that need 
active management in a platform are illustrated in Figure 17.1 and can be 
enumerated as in-band and out-of-band mechanisms.   

Operating System

Local Manageability Application Remote Manageability Application

In-Band Errors

Standard IA Platform HW

Out-of-Band Errors

Manageability HW

WHEA

UEFI AMT IPMI

WS-MAN

Figure 17.1 Manageability Domains



 Chapter 17:  Manageability  n  349

The various classes of manageability implementations handling these two 
classes of errors/events are as follows:

 n Traditional UEFI/BIOS power-on self tests/diagnostics (POST)

 n UEFI/BIOS based dynamic error functions coupled with SMI/PMI1 
for dynamic error management

 n Server baseboard management controllers (BMC) Out-Of-
Band (OOB) Intelligent Platform Management Interface (IPMI) 
implementations

 n Client/Mobile Intel® Active Management Technology (Intel AMT) 
OOB implementations

 n OS based dynamic error management
Dynamic in-band errors like 1xECC, 2xECC on memory or PCIe† corrected/
uncorrected impact the running system and its uptime attribute in the near 
to immediate future depending on the severity, while out-of-band errors due 
to peripheral system components like fan failure, thermal trips, intrusion 
detection, and so on are not fatal. While in-band errors need immediate system 
attention and error handling to maintain the uptime, most out-of-band errors 
would need the attention of manageability software for deferred handling. 
However, over a period time both categories of errors/events if not handled 
properly will impact the system uptime.

Dynamic In-Band

In-Band error management is typically handled by software that is part of 
the standard system software stack consisting of system BIOS (SMI/PMI), 
operating system, device drivers/ACPI control methods, and user mode 
manageability applications running on the target system. The key technologies 
that are covered in this context are as follows:

 n Standardized UEFI error format

1 SMI: System Management Interrupt of x86 processor; PMI: Platform Management Interrupt of Itanium® processor



350  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Various platform error detection, reporting, and handling mechanisms

 n Windows Hardware Error Architecture (WHEA) as an example that 
leverages UEFI standards

Out-of-Band

Out-of-band error management is handled by out-of-band firmware such as, 
for example, firmware running on BMCs conforming to IPMI standards. The 
key technologies that are covered in this space are:

 n IPMI

 n Intel AMT

 n DMTF and DASH as they relate to IPMI and Intel AMT
IPMI is prevalent on server class platforms through the use of an industry 
standard management framework or protocol like WS-MAN. The following 
section focuses more on the in-band error domain and the most recent 
advancements, followed by out-of-band error management technology 
domain(s) and a way to bridge the two in a seamless way at the target platform 
level: servers, desktop client, mobile, and so on. 

The other domain of management for client and mobile systems is through 
the Intel AMT feature, which allows IT to better discover, heal, and protect 
their networked client and desktop computing assets using built-in platform 
capabilities and popular third-party management and security applications. 
Intel AMT today is primarily based on the out-of-band implementations as 
explained above and allows access to information on a central repository stored 
in the platform nonvolatile memory (NVM).

Distributed Management Task Force (DMTF)

The DMTF is an industry organization that is leading the development, 
adoption, and promotion of interoperable management initiatives and 
standards. Further details on this will be covered later in this chapter.



 Chapter 17:  Manageability  n  351

UEFI Error Format Standardization
In this section, we delve into the first level details of the in-band errors and 

their handling based on the UEFI standard. 
On most platforms, standard higher level system software like shrink-

wrap operating systems directly log available in-band system dynamic error 
information from the processor and chipset architectural error registers to 
a nonvolatile storage. These errors are signaled at system runtime through 
various event notification mechanisms like machine check exception on 
Intel® architecture processors (example: int-18) or NMI, system management 
interrupt (SMI) or standard interrupts like ACPI defined SCI. The challenge 
is and always has been to get non-architectural information from the platform, 
which is typically not visible to a standard OS, but to the system specific 
firmware only. Partial platform error information from the architectural 
sources (such as Machine Check Bank machine specific registers (MSR) as 
in x86 processor or as returned by the processor firmware PAL on Itanium®) 
alone is not sufficient for detailed and meaningful error analysis or corrective 
action. Moreover, neither the OS nor other third party manageability software 
has knowledge about how to deal with raw information from the platform, or 
how to parse and interpret it for meaningful error recovery or manageability 
healing actions. 

The Figure 17.2 illustrates a typical dynamic error handling on most 
platforms with shrink-wrap OS implementations, for two different error 
handling components of notification/signaling and logging. In this model, 
a component of the OS kernel directly logged the error information from 
the processor architectural registers, while platform firmware logged non-
architectural error information to a nonvolatile storage for its private usage, 
with no way to communicate this back to the OS and vice versa. Both the 
platform events (SMI) and processor events (MCE) are decoupled from each 
other.



352  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

OS Error Handling Components

Machine Check
Exception

OS Legacy
Interface (MCE)

SMI
IPMI
Error

HandlerFirmware

Native OS
MSR

Access

Processor Platform

Figure 17.2 Traditional OS Error Reporting Stack 

To make the system error reporting solution complete, the manageability 
software will have to be provided with the following:

 n Processor error logs

 n Implementation-specific hardware error logs, such as from platform 
chipset

 n Industry Standard Architecture hardware error logs, such as PCIe 
Advance Error Reporting registers (AER)

 n System event logs (SELs) as logged by BMC-IPMI implementations
As can be seen in Figure 17.3, there is a coordination challenge between 

different system software components managing errors for different platform 
hardware functions. Some of the error events (such as interrupts, for example) 
managed by platform entities not visible to the OS may eventually get 



 Chapter 17:  Manageability  n  353

propagated to the OS level, but with no associated information. Therefore, 
an OS is also expected to handle an assortment of hardware error events from 
several different sources, with limited information and knowledge of their 
control path, configuration, signaling, error log information, and so on. This 
created synchronization challenges across the platform software components 
when accessing the error resources, especially when they are shared between 
firmware and OS, such as in the case of I/O devices like PCI or PCIe. For 
example when the OS does receive a platform-specific error event/interrupt 
like NMI, it would have no clue about what caused it and how to deal with it.

Platform
Errors

F/W Controlled
Signaling-Settings

E
rr

 S
ig

na
l M

ux

SMI Enable

MCERR En
CPEI Enable

0

F/W Controlled
Logging-Settings

Error Detection Enable
Uncore MC Banks Logging Disable

E
rr

 D
et

ec
tio

n 
M

ux

0 E
rr

 L
og

 M
ux

0

F/W Error Logs (H/W)
CSRs:
  - Corrected Errors
  - Uncorrected Errors

Operating System
S/W

Firmware/BIOS
S/W

SMI Interrupt
CPEI, MCERR Interrupts

S/W CSR Reads

H/W
Writes

Configurable Platform Hardware

Figure 17.3 Traditional OS Error Reporting Stack 



354  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Based on this state of OS error handling and the identified needs for future 
enhancements, a new architecture framework has been defined. This framework 
is based on the top-down approach, with the OS usage model driving various 
lower level system component behaviors and interfaces. 

Error management includes two different components, namely error 
notification/signaling and error logging/reporting, for all system errors. The 
fundamental component of this architecture is a model for error management, 
which includes an architected platform firmware interface to the OS. This 
interface was defined to facilitate the platform to provide error information to 
the OS in a standardized format. This firmware-based enhanced error reporting 
will coexist with legacy OS implementations, which are based on direct OS 
access to the architected processor hardware error control and status registers, 
such as the processor machine check (MC) Banks.

The architected interface also gives the OS an ability to discover the 
platform’s error management capabilities and a way to configure it for the 
chosen usage model with the help of standardized error objects. This enables 
the OS to make the overall system error handling policy management decisions 
through appropriate system configuration and settings.

To facilitate abstracted error signaling and reporting for most common 
platform in-band errors, namely those emanating from the processor and 
chipset, a new UEFI/ACPI Error Interface extension was defined with the 
following goals:

 n Achieve error reporting abstraction for architectural and non-
architectural platform functional hardware

 n An access mechanism for storage/retrieval of error records to the 
platform NVM, for manageability software use

 n Allowing freedom of platform implementation, including firmware 
based preprocessing of errors

 n Allow discovery of platform error sources, its capabilities and 
configurability through firmware assist

 n Standardized error log formats for key hardware
Figure 17.4 illustrates various components with UEFI extensions to satisfy the 
above goals.



 Chapter 17:  Manageability  n  355

OS Error Handling Components

Machine Check
Exception

SMI
IPMI
Error

HandlerFirmware

Processor Platform

UEFI

Interface
AMT

Industry Standard Technology Interface (API)

Manageability
Software

Figure 17.4 OS Error Reporting Stack with UEFI Standardization

Non-Goals: The UEFI specification did not cover the following:

 n Details of the platform hardware design or signal routing

 n OS or other system software error handling implementations or error 
handling policies

 n Usage model of this interface

 n Standardized error log formats for all hardware



356  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

UEFI Error Format Overview

The error interface consists of a set of OS runtime APIs implemented by system 
firmware accessed through UEFI or SMI runtime interface mechanisms. These 
standardized APIs will provide the following capabilities:

 n Error reporting to OS through standardized error log formats as 
defined by other specifications

 n The ability to store OS and OEM specific records to the platform 
nonvolatile storage in a standardized way and manage these records 
based on an implementation-specific usage model

 n Ability to discover platform implementation capabilities and their 
configuration through standardized platform specific capability record 
representation

This specification only covers the runtime API details. It is based on coordination 
between different system stack components through architected interfaces and 
flows. It requires cooperation between system hardware, firmware, and software 
components. The platform nonvolatile storage services are the minimum 
required features for this error model.

Error Record Types

The API provides services to support different predefined record types. Each 
record type being accessed is identified by an architected unique Record ID, 
which is managed by the interface. The Record format will remain constant 
across all implementations, allowing different software implementations to 
interoperate in a seamless way. Record types can include GUIDs representing 
records belonging to different categories as follows:

1. Notification Types. Standard GUIDs as defined in the common error 
record format for each of the error record types, which are associated 
with information returned for different event notification types 
(examples: NMI, MCE, and so on).

2. Creator Identifier. This can correspond to the CreatorID GUID as 
specified in the common error record format or other additional 
vendor defined GUID.



 Chapter 17:  Manageability  n  357

3. Error Capability. This is a GUID as defined by the platform vendor 
for platform implemented error feature capability discovery and 
configuration record types.

Error Notification Type

Error notification type records are based on notification types that are associated 
with standard event signaling/interrupts, each of which is identified by an 
architecturally assigned GUID and are as defined below:

 n Corrected Machine Check (CMC) 

 n Corrected Platform Error (CPE)

 n Machine Check Exception (MCE) 

 n PCI Express error notification (PCIe)

 n Initilization (INIT)

 n Non-Maskable Interrupt (NMI)

 n Boot

 n DMAr

Creator Identifier

Creator ID record types are associated with event notification types, but the 
actual creator of the error record can be one of the system software entities. 
This creator ID is a GUID value pre-assigned by the system software vendor. 
This value may be overwritten in the error record by subsequent owners of the 
record than the actual creators, if it is manipulated. The standard creator IDs 
defined are as follows:

 n Platform Firmware as defined by the firmware vendor

 n OS vendor



358  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n OEM
An OS saved record to the platform nonvolatile storage will have an ID created 
by the OS, while platform-generated records will have a firmware creator ID. 
The creator ID has to be specified during retrival of the error record from 
platform storage. Other system software vendors (OS or OEM) must define a 
valid GUID. 

Error Capability

The error capability record type is associated with platform error capability 
reporting and configuration. Error capability is reserved for discovering 
platform capabilities and its configuration.

For further details on the APIs to get/set/clear error records from the non-
volatile storage on the platform through UEFI, refer to the UEFI 2.3 or above 
specification.

Windows Hardware Error Architecture and the Role of UEFI
Prior to the UEFI common error format standardization, most of the operating 
systems supported several unrelated mechanisms for reporting hardware errors. 
The ability to determine the root cause of hardware errors was hindered by the 
limited amount of error information logged in the OS system event log. These 
mechanisms provided little support for error recovery and graceful handing of 
uncorrected errors.

The fundamental basis for this architecture is the reporting of platform 
error log information to the OS in a standardized format, so that it is made 
available to manageability software. In addition, a standard access mechanism 
to this error information through UEFI and ACPI has also been defined, 
both for Itanium and x86 platforms as a runtime UEFI API Get/Set Variable. 
This enabled all OS implementations such as Windows, Linux, HP-UX 
and platform BIOS implementations to conform to one standard for easier 
coordination and synchronization during an error condition. This is the 
fundamental building block that has enabled interoperability across different 
manageability software, written either by the OS vendors, BIOS vendors, or 
third party application vendors by allowing them to understand and speak the 
same language to communicate error source discovery, configuration, and data 
format representation.



 Chapter 17:  Manageability  n  359

The Windows Hardware Error Architecture (WHEA), introduced with 
Windows Vista, extends the previous hardware error reporting mechanisms and 
brings them together as components of a coherent hardware error infrastructure. 
WHEA takes advantage of the additional hardware error information available 
in today’s hardware devices and integrates much more closely with the system 
firmware, namely the UEFI standardized error formats.

WHEA can be summarized in a nutshell as:

 n UEFI Standardized Common error record format

 – Management applications benefit
 – Pre-boot and out-of-band applications
 – Architecturally defined for processor, memory, PCIe, and so on

 n Error source discovery

 – Fine-grained control of error sources

 n Common error handling flow

 – All hardware errors processed by same code path

 n Hardware error abstractions became operating system first-class 
citizens

 – Enables error source management

 n Firmware first error model

 – Some errors may be handled in firmware before the OS is given 
control, like errata management and error containment

As a result, WHEA provides the following benefits:

 n Allows for more extensive error data to be made available in a standard 
error record format for determining the root cause of hardware errors. 

 n Provides mechanisms for recovering from hardware errors to avoid 
bugchecking the system when a hardware error is nonfatal. 



360  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Supports user-mode error management applications and enables 
advanced computer health monitoring by reporting hardware errors 
via Event Tracing for Windows (ETW) and by providing an API for 
error management and control.

 n Is extensible, so that as hardware vendors add new and better hardware 
error reporting mechanisms to their devices, WHEA allows the 
operating system to gracefully accommodate the new mechanisms.

The UEFI standard has now defined error log formats for the most common 
platform components like processor, memory, PCIe, and so on, in addition 
to error source based discovery and configuration through ACPI tables. These 
error formats provide a higher level of abstraction. It is beyond the scope of this 
book to get into the details, but an overview of error log format is illustrated in 
Figure 17.6. Each of the error events is associated with a record, consisting of 
multiple error sections, where the sections conforms to standard platform error 
types like processor, memory, PCIe, and so on, identified by a pre-assigned 
GUID. The definition of the format is scalable and allows for the support 
of other nonstandard OEM-specific formats, including the IPMI SEL event 
section.



 Chapter 17:  Manageability  n  361

Management/Reporting Applications

WMI Management
Interface ETW Error

Notifications

Kernel

HAL PCI.SYS

Platform-Specific Hardware Error Driver

Hardware/Firmware (UEFI/ACPI)

LLHEH

Plug-in

LLHEH

Provided by:

Microsoft ISV/IHV Code Gen

Figure 17.5 WHEA Overview

The layout of the UEFI standardized error record format used by WHEA 
is illustrated in Figure 17.6.



362  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Processor Error

Memory Error

PCIe Error

OEM Specific

Record Header

Section Descriptor
Section Descriptor
Section Descriptor

Section

Section

Section

Figure 17.6 UEFI Standard Error Record Format

Some of the standard error sources and global controls covered by WHEA/
UEFI are as described in Table 17.1.

Table 17.1 Standard Error Sources and Global Controls Covered by WHEA/UEFI

Error Sources System Interrupts and Exceptions: NMI, MCE, MCA, CMCI, 
PCIe, CPEI, SCI, INTx, BOOT

Standard Error Formats Processor, Platform Memory, PCIe, PCI/PCI-X Bus, PCI 
Component

It is beyond the scope of this chapter to go into the details of the dynamic 
error handling flow. However, Figure 17.7 provides an overview of the error 
handling involving the firmware and OS components.



 Chapter 17:  Manageability  n  363

 

Uncorrected/Corrected
Hardware Error Event

Running OS OS Logs Errors
& Continues

Error Event
Polling

No Error Event
Valid

Error Interrupt Handler
Invoked

Poll For
Corrected Errors
in Hardware or

Firmware

Errors
Found

OS Error
Handler

Error Logging?
Hardware Access

Policy Enabled
Firmware API

Interface Enabled

Firmware
Error Handler

Interface

Through Direct
Architectural

Register Access

OS Error
Handling

Successful

Reboot

No

Yes

Processing Options:
1. Error Collection 
from platform
2. Error Correction 
Attempt (ex: Memory 
Migration, Mirroring)
3. Error Recovery 
Attempt
4. Predictive Failure 
Analysis
5. Messaging to 
Management Console
6. Other OEM actions

Figure 17.7 Generic Error Handling Flow



364  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Technology Intercepts: UEFI, IPMI, Intel® AMT, WS-MAN
The following sections delve into various other management technologies that 
relate to UEFI and how these all can interoperate.

Intelligent Platform Management Interface (IPMI)

IPMI is a hardware level interface specification that is “management software 
neutral” providing monitoring and control functions for Server platforms, 
that can be exposed through standard management software interfaces such 
as DMI, WMI, CIM, SNMP, and HPI. IPMI defines common, abstracted, 
message-based interfaces between diverse hardware devices and the CPU. IPMI 
also defines common sensors for describing the characteristics of such devices, 
which are used to monitor out-of-band functions like fan/heat sink failures, 
and intrusion detection. Each platform vendor offers differentiation through 
their own platform hardware implementation to support IPMI, typically 
implemented with an embedded baseboard microcontroller (BMC) and the 
associated firmware with a set of event sensors, as shown in Figure 17.8.



 Chapter 17:  Manageability  n  365

 

Modem

Serial
Connector

LAN
Connector

Network
(LAN)

Controller

LAN

Serial
Port

Sharing

Motherboard
Serial

Controller

REMOTE
MANAGEMENT CARD

ICMB
(Intelligent Chassis Management Bus)

PCI Management
Bus IPMB

Non-volatile Storage

Sensors & Control Circuitry

Private Management Busses

IPMI
Messages

MOTHERBOARD

CHASSIS BOARD

REDUNDANT
POWER BOARD

MEMORY
BOARD

PROCESSOR
BOARD

System Bus

Chassis
Sensors

BASEBOARD
MANAGEMENT
CONTROLLER

(BMC)

CHASSIS
MANAGEMENT

(SATELLITE
CONTROLLER)

System Interface

Side-band
Interface
to NIC,

e.g.
SMBus

RS-485
Transceivers

Serial
Controller

ICMB
BRIDGE
(optional)

Aux. IPMB
Connector

Aux. IPMB
Connector

FRU
SEEPROM

FRU
SEEPROM

FRU
SEEPROM

FRU
SEEPROM

Temperature
Sensor

e.g. Voltages,
Temperatures, Fans,

Power & Reset Control, etc.

e.g. Fans,
Temperatures,
Power Supplies

• System Event Log (SEL)
• Sensor Data Record (SDR)
  Repository
• Baseboard Field-Replaceable
  Unit (FRU) Info

Serial
Controller

Figure 17.8 Typical IPMI Platform Implementation

IPMI has defined a set of standard sensors, which would monitor different 
platform functions and generate events and report them through the system 
event log interface (SEL) as 16-byte error log entries. Each of the sensors 
in turn is associated with Senor Data Record (SDR), which describes the 
properties of the sensor, to let the manageability software discover its capability, 
configurability and controllability and the error record associated with it. A set 
of predefined controls for use by manageability software is also defined by 
the IPMI specification, in addition to other OEM-defined controls through 
SDR. The standard sensors along with the standard controls do allow a level of 
standardization for managing these out-of-band errors. Some of the standard 
sensor and global controls are as described captured below in Table 17.2.



366  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 17.2 IPMI Standard Sensor and Global Controls

Sensors Temp, Voltage, Current, Processor, Physical Security, Platform Security, 
Processor, Power Supply, Power Unit, Cooling, Memory, Drive Slot, BIOS 
POST, Watch Dog, System Event, Critical Interrupt, Button/Switch, Add in 
Card, Chassis, Chipset, FRU, Cable, System Reboot, Boot Error, OS Boot, 
OS Crash, ACPI Power State, LAN, Platform Alert, Battery, Session Audit

Global Control Cold Reset, Warm Reset, Set ACPI State

Intel® Active Management Technology (Intel AMT)

Intel AMT can be viewed as an orthogonal solution to IPMI and was originally 
developed with capabilities for client system manageability by IT personnel in 
mind, as opposed to server manageability. However, Intel AMT is making its 
way into the embedded and network appliance market segments like point of 
sale terminals, print imaging, and digital signage. Intel AMT is a hardware- 
and firmware-based solution connected to the system’s auxiliary power plane, 
providing IT administrators with “any platform state” access. Figure 17.9 
provides an illustration of Intel AMT’s architecture. Intel AMT enables secure, 
remote management of systems through unique built-in capabilities, including:

 n OOB management that provides a direct connection to the Intel AMT 
subsystem, either through the operating system’s network connection 
or via its TCP/IP firmware stack.

 n Nonvolatile memory that stores hardware and software information, 
so IT staff can discover assets even when end-user systems are powered 
off, using the OOB channel.

 n System defense featuring inbound and outbound filters, combined 
with presence detection of critical software agents, protects against 
malware attacks, and so on.

The most recent versions of the Intel AMT are DASH-compliant and facilitate 
interoperability with remote management consoles that are DASH-compliant.



 Chapter 17:  Manageability  n  367

 

Architecture Stack of Intel® AMT
Managed Components

Intel AMT Services

WSDL Description of Intel AMT Services

Serialization (SOAP)

Transport (HTTP)

Connection (TLS)

Security
Administration

Service

Network
Administration

Service

Storage
Administration

Service
Storage
Service

Event-
Manager
Service

Hardware-
Asset

Service

Remote-
Control
Service

Local Agent
Presence
Service

Remote Agent
Presence
Service

NOC
Service

Figure 17.9 Intel® AMT Architecture Stack

Intel AMT offering includes Manageability Engine hardware with the 
associated firmware, which is integrated onto silicon as building blocks such as 
IOH or PCH. Intel AMT allows users to remotely perform power functions, 
launch a serial over LAN session to access a system’s BIOS and enable IDE-
Redirect to boot a system from a floppy, image, or CD/DVD device installed 
within the central monitor. Some of the key services provided through Intel 
AMT are as shown in Table 17.3.



368  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Table 17.3 Key Services Provided through Intel® AMT

Services Security Administration Interface, Network Administration Interface, 
Hardware Asset Interface, Remote Control Interface, Storage Interface, 
Event Management Interface, Storage Administration Interface, 
Redirection Interface, Local Agent Presence Interface, Circuit Breaker 
Interface, Network Time Interface, General Info. Interface, Firmware 
Update Interface

Global Control Cold Reset, Warm Reset, Power Up and Down, Set Power/ACPI State, 
Change ACL, Retrieve Hardware/Software Inventory, Firmware Update, 
Set Clock, Set Firewall Configuration, Configure Platform Events for Alert 
and Logging

Like IPMI, one of the key interfaces of Intel AMT is event management, 
which allows configuring hardware and software events to generate alerts and 
to send them to a remote console and/or log them locally. 

Web Services Management Protocol (WS-MAN)

The growth and success of enterprise businesses hinges heavily on the ability 
to control costs while expanding IT resources. WS-Management addresses 
the cost and complexity of IT management by providing a common way for 
systems to access and exchange management information across the entire 
IT infrastructure. By using Web services to manage IT systems, deployments 
that support WS-Management will enable IT managers to remotely access 
devices on their networks—everything from silicon components and handheld 
devices to PCs, servers, and large-scale data centers. WS-Management is an 
open standard defining a SOAP-based protocol for the management of remote 
systems, as illustrated in Figure 17.10.



 Chapter 17:  Manageability  n  369

 

Instrumentation Provider

WS-MAN Interface

Management
Applications XML/SOAP

XML/SOAP

WS-MAN
Interface

Management
Applications

IPMI/AMT Driver

IPMI/AMT HW Interface

BMC/ME
and Monitoring H/W

Local Management Access
Remote

Management Access

WS-MAN
Over LAN

WS-MAN Local
M

an
ag

em
en

t S
/W

St
ac

ks
IP

M
I/M

EI

Figure 17.10 WS-MAN Management Build Blocks Overview

All desktop, mobile, and server implementations that are compliant 
with DASH and support WS-MAN can be remotely managed over the same 
infrastructure like the management console applications.

Other Industry Initiatives

The Distributed Management Task Force, Inc. (DMTF) is the industry 
organization leading the development, adoption, and promotion of interoperable 
management initiatives and standards. DMTF management technologies 
include the Common Diagnostic Model (CDM) initiative, the Desktop 
Management Interface (DMI), the System Management BIOS (SMBIOS), the 
Systems Management Architecture for Server Hardware (SMASH) initiative, 
Web-Based Enterprise Management (WBEM)—including protocols such as 
CIM-XML and Web Services for Management (WS-Management)—which 
are all based on the Common Information Model (CIM). Information about 
the DMTF technologies and activities can be found at www.dmtf.org.



370  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

The UEFI/IPMI/Intel® AMT/WS-MAN Bridge
This part of the analysis brings out the way these different management 

technologies and interfaces can be bridged together, either with the already 
available hooks in them or with some yet-to-be-defined extensions, as illustrated 
in Figure 17.11.

The previous section discussed the UEFI industry standard specification 
covering the common error formats for in-band errors and how manageability 
software running on top of the OS can take immediate corrective action 
through the abstracted interface. However, the common event log format for 
out-of-band errors is not covered by UEFI, but is left to the individual platform 
vendors to implement through either IPMI or Intel AMT interfaces. 
 

Core building blocks simplify and integrate in-band and remote 
out-of-band management.

• IPMI is the platform 
instrumentation solution.

• UEFI is the preferred platform 
provisioning and virtualization 
solution.

• CIM is the preferred in-band 
management framework.

• BMC/MMC is the central point 
of managing the server as a 
single unit.

• WS-MAN is the platform 
management API.

In-Band
Management

Software
Out-of-Band
Management

Software
Operating System

CIM

WS-MAN

UEFI
IPMI

Hardware
and Firmware

Compute Node
Hardware

Baseboard/
Modular

Management
Controller

Figure 17.11 Management Build Blocks Linking IPMI, HPI, UEFI, and WHEA

IPMI Error Records to UEFI

UEFI can act as a conduit for all the SEL event log information for out-of-
band errors logged by IPMI and provide it to UEFI, encapsulated as a UEFI 
standardized OEM-specific error format to the OS. This requires a private 



 Chapter 17:  Manageability  n  371

platform-specific interface between UEFI and the IPMI firmware layers for 
exchange of this information. It is also possible for the UEFI to extend and 
define yet another error format for IPMI SEL logs identified with a new GUID. 
This way, an OS or manageability application would be able to get complete 
platform errors for in-band and out-of-band errors in a standardized format 
through one single UEFI-based interface. UEFI can intercept the IPMI sensor 
events through the firmware first model as defined by Microsoft WHEA and 
provide the SEL logs to the OS. This type of extension can be modeled along 
the Itanium Processor Machine Check Architecture specification for IPMI 
error logging and is an area of opportunity of future standardization effort.

UEFI Error Records to IPMI

The IPMI has already defined standard event sensors like Processor, Memory, 
System Event, Chipset and Platform Alert. It is also possible to define a new 
UEFI or WHEA sensor type for IPMI and channel the UEFI defined standard 
error formatted information over to IPMI, encapsulated as OEM-specific data 
of a variable size. IPMI SEL log size is currently defined to be 16-bytes and 
hence would require a change in IPMI specification to support variable size 
SEL log size. This way, a remote or local manageability application would be 
able to get complete in-band and out-of-band error information through one 
single IPMI.

Intel® AMT and IPMI

These two interfaces, which were defined with different usage models in mind, 
do have an overlap in functionality. Intel AMT defines an entire hardware 
and firmware framework for client system management, while IPMI only 
defined the firmware interface without any hardware support for server system 
manageability.

Future Work

Table 17.4 shows the four areas of potential work for standardization that offers 
interesting possibilities:

 n Bridge over the Intel AMT/IPMI functionality over to the UEFI-OS 
error reporting



372  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

 n Bridge over of the OS-UEFI error management over to the Intel 
AMT/IPMI functionality

 n Manageability application leveraging from WS-MAN or other similar 
abstracted interfaces with a unified error reporting and management 
for the entire platform, either obtained through the OS or Intel AMT/
IPMI.

Table 17.4 Manageability and error management standards and possible future 
work.

Error Management Feature UEFI/WHEA IPMI AMT WS-MAN

Bridging Over Possibilities IPMI/AMT AMT IPMI UEFI/WHEA

Summary
In the case of manageability, the UEFI framework will help make platforms 
more robust and reliable through remote management interfaces like Intel 
AMT, and WS-MAN, to meet the RAS goal of five nines. This unified approach 
would be a win-win to all (OEM, IBV, OSV), to deliver a great end user value 
and experience with a complete solution for in-band and out-of-band error 
and event management.

The net result of the level of abstraction provided by UEFI/WHEA and 
Intel AMT/IPMI technologies in security and manageability space will now 
enable many vendors to develop OS-agnostic unified tools and application 
software for all embedded/client/server platforms. This would allow them to 
spend their efforts on innovation with a rich set of features at the platform level 
rather than on developing multiple platform-specific implementations for the 
same manageability functionality. 



 373

Appendix A
Data Types

Table A.1 contains the set of base types that are used in all UEFI 
applications and EFI drivers. Use these base types to build more complex 

unions and structures. The file EFIBIND.H in the UDK 2010 located on 
www.tianocore.org contains the code required to map compiler-specific data 
types to the UEFI data types. If you are using a new compiler, update only 
this one file; all other EFI related sources should compile unmodified. Table 
A.2 contains the modifiers you can use in conjunction with the UEFI data 
types.

Table A.1 Common EFI Data Types

Mnemonic Description

BOOLEAN Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. 
Other values are undefined.

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium®-
based operations)

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium®-
based operations)

INT8 1-byte signed value.

UINT8 1-byte unsigned value.

INT16 2-byte signed value.

UINT16 2-byte unsigned value.

INT32 4-byte signed value.

UINT32 4-byte unsigned value.

INT64 8-byte signed value.



374  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

UINT64 8-byte unsigned value.

CHAR8 1-byte Character.

CHAR16 2-byte Character. Unless otherwise specified all strings are stored in the 
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 
standards.

VOID Undeclared type.

EFI_GUID 128-bit buffer containing a unique identifier value. Unless otherwise 
specified, aligned on a 64-bit boundary.

EFI_STATUS Status code. Type INTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure. Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN. 

EFI_MAC_
ADDRESS

32-byte buffer containing a network Media Access Control address.

EFI_IPv4_
ADDRESS

4-byte buffer. An IPv4 Internet protocol address. 

EFI_IPv6_
ADDRESS

16-byte buffer. An IPv6 Iinternet protocol address.

EFI_IP_ADDRESS 16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 Internet 
protocol address.  

<Enumerated 
Type>

Element of an enumeration. Type INTN. 

sizeof (VOID *) 4 bytes on supported 32-bit processor instructions. 

8 bytes on supported 64-bit processor instructions.



 Appendix A:  Data Types  n  375

Table A.2 Modifiers for Common EFI Data Types

Mnemonic Description

IN Datum is passed to the function.

OUT Datum is returned from the function.

OPTIONAL Datum is passed to the function is optional, and a NULL may be passed if 
the value is not supplied.

STATIC The function has local scope. This replaces the standard C static key word, 
so it can be overloaded for debugging.

VOLATILE Declare a variable to be volatile and thus exempt from optimization to 
remove redundant or unneeded accesses. Any variable that represents a 
hardware device should be declared as VOLATILE.

CONST Declare a variable to be of type const. This is a hint to the compiler to 
enable optimization and stronger type checking at compile time.

EFIAPI Defines the calling convention for EFI interfaces. All EFI intrinsic services 
and any member function of a protocol must use this modifier in the 
function definition.



376  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 377

Appendix B
Status Codes

Most UEFI interfaces return an EFI_STATUS code. Table B.1 lists the 
status code ranges. Tables B.2, B.3, and B.4 list these codes for success, 

errors, and warnings, respectively. Error codes also have their highest bit set, 
so all error codes have negative values. The range of status codes that have the 
highest bit set and the next to highest bit clear are reserved for use by UEFI. 
The range of status codes that have both the highest bit set and the next to 
highest bit set are reserved for use by OEMs. Success and warning codes have 
their highest bit clear, so all success and warning codes have positive values. 
The range of status codes that have both the highest bit clear and the next to 
highest bit clear are reserved for use by UEFI. The range of status code that 
have the highest bit clear and the next to highest bit set are reserved for use 
by OEMs.

Table B.1 EFI_STATUS Code Ranges

IA-32 Range Intel® Itanium®  
Architecture Range 

Description

0x00000000-
0x1fffffff

0x0000000000000000-
0x1fffffffffffffff

Success and warning codes reserved 
for use by UEFI main specification. 
See Tables B.2 and B.4 for valid 
values in this range.

0x20000000-
0x3fffffff

0x2000000000000000-
0x3fffffffffffffff

Success and warning codes reserved 
for use by the Platform Initialization 
Architecture Specification.

0x40000000- 
0x7fffffff

0x4000000000000000-
0x7fffffffffffffff

Success and warning codes reserved 
for use by OEMs.



378  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

0x80000000-
0x9fffffff

0x8000000000000000-
0x9fffffffffffffff

Error codes reserved for use by the 
UEFI main specification. See Table 
B.3 for valid values for this range.

0xa0000000- 
0xbfffffff

0xafffffffffffffff-
0xbfffffffffffffff

Error codes reserved for use by the 
Platform Initialization Architecture 
Specification.

0xc0000000-
0xffffffff

0xc000000000000000-
0xffffffffffffffff

Error codes reserved for use by 
OEMs.

Table B.2 EFI_STATUS Success Codes (High Bit Clear)

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Table B.3 EFI_STATUS Error Codes (High Bit Set)

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested 
data. The required buffer size is returned in the 
appropriate parameter when this error occurs.

EFI_NOT_READY 6 There is no data pending upon return.

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting 
the operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconsistency was detected on the file system 
causing the operation to fail.

EFI_VOLUME_FULL 11 The file system has no more space.

EFI_NO_MEDIA 12 The device does not contain any medium to perform 
the operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last 
access.

EFI_NOT_FOUND 14 The item was not found.



 Appendix B:  Status Codes  n  379

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the 
request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network 
operation.

EFI_INCOMPATIBLE_
VERSION

25 The function encountered an internal version that was 
incompatible with a version requested by the caller.

EFI_SECURITY_VIOLATION 26 The function was not performed due to a security 
violation.

EFI_CRC_ERROR 27 A CRC error was detected.

EFI_END_OF_MEDIA 28 Beginning or end of media was reached.

EFI_END_OF_FILE 31 The end of the file was reached.

EFI_INVALID_LANGUAGE 32 The language specified was invalid.

Table B.4 EFI_STATUS Warning Codes (High Bit Clear)

Mnemonic Value Description

EFI_WARN_UNKNOWN_GLYPH 1 The Unicode string contained one or more 
characters that the device could not render and 
were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not 
deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file 
was not flushed properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data 
was truncated to the buffer size.



380  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 381

Index
A

ACPI  331, 335, 337, 343, 349, 351, 354
states

G2/S5  99
G3  99
S1–S3  87

tables  86
Advanced RISC Computing (ARC)  6
AllocateBuffer  184, 187
AMT. See Intel® Active Management Technology 

(Intel AMT)
API  112, 335
Application

Hello world  69–71
Application-Specific Integrated Circuit (ASIC)  

137
ARC. See Advanced RISC Computing (ARC)
Architectural Boot Mode

PEIM-to_PEIM interface (PPI)  264
Architectural Protocols (APs)  129, 131–132, 

168–175
Boot Device Selection Architectural Protocol  

147, 158, 163, 174–175
CPU Architectural Protocol  147, 150, 170–

173
Driver Execution Environment (DXE) 

Architectural Protocol  144–152, 162, 176

Metronome Architectural Protocol  129, 147, 
150

Monotonic Counter Architectural Protocol  
129, 148

Real Time Clock Architectural Protocol  148, 
172

Reset Architectural Protocol  148, 174
Runtime Architectural Protocol  147, 152
Security Architectural Protocol  147, 151
Status Code Architectural Protocol  148, 152
Timer Architectural Protocol  129, 147, 173
Variable Architectural Protocol  147, 175
Watchdog Timer Architectural Protocol  147, 

176
architecture

security  207
Unified Extensible Firmware Interface (UEFI)  

21
ASCII  104, 109, 113, 244
Attributes

Firmware Boot Manager  241
PCI I/O Protocol  187

Authenticode  64, 222

B

Base Address Register (BAR)  185–188



382  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Baseboard Management Controllers (BMC)  349, 
350, 352

BDS. See Boot-Device Selection (BDS)
BFV. See Boot Firmware Volume (BFV)
BIOS

and legacy-option ROM  312
BootBlock  343
evolution  6
fixed topology  335
in embedded systems  324–325, 331
infrastructure elements  195–197
limitations  44, 342
marketing requirements  309
platform policy  310
real-world expectations  308
terminology  5

Bit Field  94
Block I/O Protocol  49, 76–77, 168, 188–191
Boolean Expression  280
Boot

devices  165
embedded systems  17, 323
firmware  268, 325
firmware volume (FV)  319
flow  18, 249, 261, 270, 272, 280
latency

boot storage devices  337
definition  325
flash storage access  326, 331, 332, 333, 336, 

337, 338
OEM splash screen  326
optimized components  326
requirements  328
to active user interface time  332
to active User Interface time  326

loader  324, 326, 330, 332, 335, 336, 343
manager

firmware. See Firmware Boot Manager
Unified Extensible Firmware Interface (UEFI)  

237
mechanisms  246

media  248
mode  278–279

defined  250
detection  286
PEIM-to-PEIM interface (PPI)  264
priority  251–253
register  263
sleep state  252

network booting  248
performance

architectural flow comparison  317
BIOS interaction  314
boot media  313
functional flow comparison  318
legacy option ROMs, perils of  312
marketing requirements  308, 309, 312
measurement results  309
non-optimized  316, 317
OEM splash screen  312, 329
optimized  316, 317, 320
requirements  303
time (total boot time)  308
unnecessary drivers, BIOS adjustment  315, 

320
platform phase  141, 304
pre-boot phase  103, 169
Pre-EFI Initialization (PEI) phase  269
services

EFI Boot Services Table  150
in the UEFI Driver Model  52
terminating  165

system boot path  267
target  308, 316, 318, 319
time (total boot time)  313
variables  245

Boot Device Selection (BDS)  133, 140, 148, 169
optimization  318
phase  163–166, 237, 307, 310, 311, 315, 317, 

319
protocol  147, 158, 163, 174–175

Boot Firmware Volume (BFV)  273–274



 Index  n  383

Processor Abstraction Layer (PAL)  253
UEFI PI architecture  262

Boot Mode
priority  251
register  255, 263
sleep state  252

Boot Path
normal  254–256
recovery  257–259
reset  253
S0  255–256
special  259–260
S-State  256

Boot Strap Processor (BSP)  282
bridge  47
Brook’s Law  83
BS. See Unicode Characters: backspace
Bus

driver  48, 50–54
PCI  47

Bus Specific Driver Override Protocol  51

C

Cache-as-RAM (CAR)  284–286
CAR. See Cache-as-RAM (CAR)
Central Processing Unit (CPU)  21, 122, 178, 285, 

308
Certificate Authorities (CAs)  64
CLI. See Command Line Interface (CLI)
Command Line Interface (CLI)  133
Configuration Access Protocol  196–198
Configuration Table  149
console

devices  164
services  77, 103, 132
splitter  116–118
stack  133

Consumer Electronics (CE) Device
boot challenges  325
boot strategies  335
firmware  342

firmware flow  334
generic requirements  332
interoperability  331
landscape  324
manageability framework  344
measured boot latency  344
platform  345
power management  337
security  340
storage devices  338
trust boundary  342

control center, smart home. See smart home control 
center

Controlled Data Items (CDIs)  232
Controllers

Host Bus Controllers  46–49
control sequence  113
Coreboot  285
CPU. See Central Processing Unit (CPU)
CPU Architectural Protocol  147, 171
CRC  174, 176

D

Denial of Service  231
Dependency Expression  160, 275

supported op codes  161
Device Drivers  48–51, 53, 56
Device Handle  48–50
Device Path Protocol  47, 48, 74, 76, 183
Disk I/O Protocol  168, 190
Distributed Management Task Force (DMTF)  

350, 369
DMA Operations  171
DMTF. See Distributed Management Task Force 

(DMTF)
DRAM. See Dynamic RAM (DRAM)
Driver Binding Protocol  43, 45, 49–51
Driver Execution Environment (DXE)

applications  169, 216
architectural protocols (APs)  144–152, 162, 

176, 267



384  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

architecture  279
components  134, 279–280
core  139, 141–154, 231

and GCD memory space map  154
EFI System Table  143
handle database  143
handoff between PEI and DXE  142
Hand-Off Block (HOB)  141, 145
portability  141

dispatcher  139, 143, 145, 157–162, 230
dependency expression  160
handshake with components  159
priori file  160
services  152

drivers  128, 135, 139, 144, 162–163, 172, 173, 
231, 269, 275, 279, 285

execution order  162
Portable Executable/Common File Format 

(PE/COFF)  143
subclasses  162

EFI Services  143, 144, 162
Foundation  129–131, 172, 283
handoff with Pre-EFI Initialization (PEI)  218
initial program load (IPL)  286, 324, 326, 330, 

331, 338, 343
phase  139–141, 146, 255, 267–268, 278, 284, 

310
services table  146, 152
specification  169

Driver Health Protocol  64
Driver Image Handle  45–47
Drivers  52, 118, 176, 183–185, 195–198

boot service  86, 170, 173
console  113–114
device  48–51, 185, 196
DXE  125, 128, 135, 169–170, 172–175, 173, 

176
file system (FS)  193
initialization  44
model interactions  197
PCI  48, 177, 186, 188

runtime  86, 172
security  64
software  115
UEFI  26, 30, 46, 183, 197
video  112

Driver Support Services  151
Dual-Inline Memory Module (DIMM)  126, 311
DXE Foundation  170–171, 174, 175, 267
Dynamic RAM (DRAM)  285

E

EBC. See EFI Byte Code (EBC)
EDK. See EFI Developer Kit
EDK I. See EFI Developer Kit
EFI. See Extensible Firmware Interface (EFI)
EFI Boot Services  145

table  150–151
EFI Byte Code (EBC)  31
EFI Configuration Table  149
EFI Developer Kit  5–6
EFI File Handle  168, 192
EFI Not Ready error  109
EFI Runtime Services Table  151–152, 172, 174
EFI Status Codes

code ranges  377
error codes  378
warning codes  379

Elevation of Privilege  231
El Torito logical block devices  191
Embedded Operating Systems  125, 331
Embedded Systems

booting  17
emulation firmware phases  294
Environment Variables  79
errors  103

EFI Not Ready error  109
error console device  105–106
UEFI Not Ready error  107

Event and Timer Services  150
Events

Hot Plug  53–63



 Index  n  385

INIT  282
machine check architecture (MCA)  282
Unified Extensible Firmware Interface (UEFI)  

37
Execute-In-Place (XIP)  284
Extensible Firmware Interface (EFI)  1, 2, 5, 6, 7, 8

boot services  168
and Driver Execution Environment (DXE)  

143, 162
table  146, 150

components  1
configuration table  149
device path  196, 316
handle  196
history  6–7
OS loaders  71–75
protocol  289
runtime services

and Driver Execution Environment  162
table  151

system table  143, 148–151
components  149

F

FFS  274, 276
File Allocation Table (FAT)  136
FilePath  246
File System (FS)  136

types  191
File System Protocol  75
Firmware  116, 180–183, 267–268

APIs  88
design, early  236
GUID  240
platform  104
platform initialization (PI) design  237
stack  84

Firmware Boot Manager  238–243
variables  238

Firmware Interface Table (FIT)  262
Firmware Volume File Format  143

Firmware Volume (FV)  220, 265, 284, 319
FIT. See Firmware Interface Table (FIT)
Floating-Point Software Assist (FPSWA) driver  36
Flush  184, 187, 190, 193
FPSWA driver. See Floating-Point Software Assist 

(FPSWA) driver
Framework

boot flow  13
components  2
definition  6
evolution to Platform Initialization (PI)  3

Front Side Bus (FSB)  273
FS. See File System (FS)
Function Call Definitions  103
Function Prototype  88–89, 93
Functions

AllocateBuffer  184, 187
Attributes  187
Close  193, 194
Configuration  185
CopyMem  184, 187
Delete  194
DisableInterrupt  171
DmaBufferAlignment  172
EnableInterrupt  171
Entry  175
ExitBootServices  30, 36
Flush  184, 187, 190, 193
FlushBlocks  190
FlushDataCache  171
FreeBuffer  184, 187
GenerateSoftInterrupt  174
GetAttributes  184
GetBarAttributes  187
GetInfo  194
GetInterruptState  171
GetLocation  187
GetMemorySpaceMap  170
GetNextVariableName  175
GetPosition  194
GetTime  172



386  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

GetTimerPeriod  173, 177
GetTimerValue  172
GetVariable  175
GetWakeupTime  172
Init  171
Io  184, 187
LoadImage  240
Map  184, 187
Media  190
Mem  184, 187
NewPackageList  199
NumberOfTimers  172
Open  194
OpenVolume  193
OS loader  34
ParentHandle  184
Pci  184, 187
PollIo  184, 186
PollMem  184, 186
RaiseTPL  171
Read  194
ReadBlocks  190
ReadDisk  191
RegisterHandler  173, 177
RegisterInterruptHandler  172
Reset  190
ResetSystem  174, 176
RestoreTPL  171
Revision  189, 191, 193, 194
RomImage  188
RomSize  188
SegmentNumber  185
SetAttributes  184
SetBarAttributes  187
SetInfo  194
SetMemoryAttributes  170, 172
SetMemorySpaceAttributes  170
SetPosition  194
SetTime  172
SetTimer  173
SetTimerPeriod  173, 177

SetVariable  176, 239
SetWakeupTime  172
SetWatchdogTimer  176
Unmap  184, 187
Write  194
WriteBlocks  190
WriteDisk  191

G

GCD. See Global Coherency Domain Services
Global Coherency Domain Services  152

I/O resources  156
map

memory space  152
space  152

memory resources  153
and Driver Execution Environment (DXE) 

core  154
Hand-Off Block (HOB)  154

memory state transitions  155
Global Variable Definitions  105
GNU C compiler (GCC)  286
GUID  193, 240, 277, 281, 289, 371

and Driver Execution Environment (DXE) core  
143

extension
Hand-Off Block (HOB)  144

protocol naming  29
tag  31
Unified Extensible Firmware Interface (UEFI) 

protocol  26

H

HAL. See Hardware Abstraction Layer (HAL)
Handle  23

and protocols  30
Block I/O  76–77
child  51
component representations  24
device  48–49
driver image  45–47



 Index  n  387

image  44
types  26

Handle Database  23–26
Driver Execution Environment (DXE) drivers  

143
Hand-Off Block (HOB)  139, 154, 276, 278–280, 

282
GUID extension  144
list  141, 144, 170, 278

and Pre-EFI Initialization (PEI)  143
PEI-to DXE handoff  279
Phase Handoff Information Table (PHIT)  143

Hardware Abstraction Layer (HAL)  336
Hardware Security Module (HSM)  211
healthcare, intelligent home environment. 

See intelligent home environment: healthcare
HMI. See human machine interface (HMI)
Host Bridge  47
Host-Bus Adapter (HBA)  64, 223
Host Bus Controllers  46–49
Hot Plug Events  53–63
HSM. See Hardware Security Module (HSM)
Human Interface Infrastructure (HII)  194–195

I

IA-32  31
IBM

CMOS directives  90
IBVs. See Independent BIOS Vendors (IBVs)
ICE. See In-Circuit Emulator (ICE)
IDE. See Integrated Device Electronics (IDE)
IHV. See Independent Hardware Vendors (IHVs)
Image Handle  44, 45, 74
Images  31
Image Services  151
In-Circuit Emulator (ICE)  291
Independent BIOS Vendors (IBVs)  4, 43
Independent Hardware Vendors (IHVs)  43
Information Disclosure  231
Input/Output (I/O)  106

text I/O  113, 115, 116, 118

in-situ agents
debugger nub  285

Integrated Device Electronics (IDE)  135–137
Integrated Memory Controller (IMC)  122
Integrated Timer-Counter (ITC)  129
Integrity Model

roots of trust/guards  232
Intel® Active Management Technology (Intel AMT)  

349, 350, 370, 371
Intel® Architecture Platforms  285

dynamic error handling framework  347, 348, 
349, 351

Intel® Atom™ processor  130
and smart home control center. See smart home 

control center
and smart TV. See also smart TV
System on a Chip (SoC)  124, 325, 332, 335, 

336, 340, 342
Intel® Core i7™ processor  122, 125
Intel® HT Technology. See Intel® Hyper-Threading 

Technology (Intel® HT Technology)
Intel® Itanium®  282–283

architecture range  377
boot flow  260–262
boot path, reset  253, 260

non-power-on  254
PowerGood  253
processor abstraction layer (PAL)  282

boot path, special
boot after INIT  259
boot after MCA  259
System Abstraction Layer entry point  259

UEFI PI architecture  262
Boot Firmware Volume (BFV)  262
Pre-EFI Initialization modules (PEIMs)  262

versus other Intel® processors  286
Intelligent Platform Management Interface (IPMI)  

349, 350, 370, 371
Intel® Pentium® 4 processor  286
Internet Protocol (IP)

IPv6  224



388  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Internet Small Computer Systems Interface (iSCSI)  
65, 224, 225

In-Vehicle Infotainment (IVI)  323, 328, 332, 337
I/O. See Input/Output (I/O)
I/O Abstraction  46, 48–49, 171

protocols  172
I/O Protocol  48
I/O Resources  156

space map  156
IPMI. See Intelligent Platform Management 

Interface (IPMI)
iSCSI. See Internet Small Computer Systems 

Interface (iSCSI)
Itanium®  4, 6, 31, 127
IVI systems. See In-Vehicle Infotainment (IVI)

J

K

Key/Value Pairs  94

L

Lakeport  125

M

MAC. See Medium Access Layer (MAC)
Manageability. See Intel® Architecture Platforms: 

dynamic error handling framework
Map  184, 187
Master Boot Record (MBR)  73

BIOS boot limitations  3
MBR. See Master Boot Record (MBR)
MDE. See Module Development Environment 

(MDE)
Measured Boot  209
measurements  219
Memory Controller Hub Memory Controller  125
Memory Map  183

GCD memory space map  170
retrieving  78

Memory Services  150
Metronome  147
Microsoft

C compilers  286
DOS image format  285

Miscellaneous Services  98–101
Module Development Environment (MDE)  286
Monotonic Counter  148
MP. See Multiprocessor
MPS

tables  88
Multiprocessor  282

N

Network Boot  248
Network Console  118–120
Networking

UEFI drivers  65–66
Network Interface Controller  118
non-PCs  124
Nonvolatile Storage (NVS)  265
NT32 Platform  291

emulation  292–294
firmware  294
firmware emulation software logic flow  300
hardware pass-through  300

software flow  302
limitations  292, 300, 301
native API  294
WinNtThunk capability  294, 298, 299

NULL Interface Pointer  173, 174, 176
Null Unicode string  96
NVRAM Variable  238

O

Occam’s Razor  267
OEM. See Original Equipment Manufacturers 

(OEMs)
Open Firmware  6



 Index  n  389

Original Equipment Manufacturers (OEMs)  43, 
281, 377

OS Kernel  72, 77, 78, 351
transitioning  80

OS Loader  84–86, 92–93
accessing files  75
Extensible Firmware Interface  71–75
memory map  78
requirements for  71–72

OS Partition  76–77
boot sequence  238

Out-Of-Band (OOB)  349
Output Devices  111–112
Output Strings  111

P

ParentHandle  184
Partition  76–77
PC  268

PEI components  125
system address map  122

PC ANSI  113
PCI. See Peripheral Component Interconnect 

(PCI)
PCI Bus  47, 51
PCI Device Drivers  48
PCI Express  4
PCI Protocols  168, 177–186

PCI Host Bridge Resource Allocation Protocol  
177–183

PCI I/O Protocol  30, 185–188
PCI Root Bridge I/O Protocol  183–185

PE/COFF. See Portable Executable/Common File 
Format (PE/COFF)

PEI Foundation  250
PEI Modules  121
PEIM-to-PEIM interface (PPI). See Pre-EFI 

Initialization (PEI): PEIM-to-PEIM interface 
(PPI)

Peripheral Component Interconnect (PCI)  43, 353
base address registers  186

bus drivers  177, 188
buses  168, 177–190, 179
bus numbers  186
configuration header  185
device numbers  186
device path protocol  183
function number  186
host bridges  177
host bus controllers  178–180
host buses  179–180, 186
I/O space  180–182
memory space  180–182
n host bridges  178
option ROM  186
PCI root bridge I/O protocols  180–182
prefetchable memory space  180–181, 183
root bridge protocol  133
root bridges  177–185, 178
segments  181, 186

Phase Handoff Information Table (PHIT)
Hand-Off Block (HOB)  143

PHIT. See Phase Handoff Information Table 
(PHIT)

PI. See Platform Initialization (PI)
PIC. See Programmable Interrupt Controller (PIC)
PIWG. See Platform Initialization Working Group 

(PIWG)
Platform

boot phase  141
components  52–53

Platform Controller Hub (PCH)  125, 127, 131, 
136–137

Platform Driver Override Protocol  53
Platform Error Reporting  348, 351, 354

in-band errors  348, 349
standardization  351

intelligent platform management interface 
(IPMI)  371

management model  354
OS reporting stack  352, 353
out-of-band errors  348, 350



390  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

Platform Firmware  303
initialization  304
recovery  265, 313

Platform Initialization (PI)  121, 276
architecture specification  377
boot flow  13, 305
components  2, 219
evolution of Framework  3
implementation

security elements  16
layering  11
protocols  4
security  205, 229
Specification  139, 167–168
System Management Mode (SMM)  4
Unified Extensible Firmware Interface (UEFI)  

278, 282
Platform Initialization Working Group (PIWG)  

10–14
Platform Manufacturer (PM)  229
Platform Security  206

architecture  207, 208
assurance  209
authenticity  208
availablity  208
confidentiality  208
firmware layer  208
hardware layer  208, 209
integrity  208
trust

definition  206
elements  206
measurement  206
roots of  213
security  206

vulnerability classification  231
Platform Trust  14. See also Security

taxonomy of terms  213
Portable Executable/Common File Format (PE/

COFF)  44, 285
Certificate Authorities (CAs)  64

Driver Execution Environment (DXE) drivers  
143

Preboot eXecution Environment (PXE) BIOS 
Support Specification  248

Pre-EFI Initialization (PEI)  267
components  279
ComponentsDispatcher  306
dispatcher  230, 258, 274–275, 279–280, 283
Foundation  268–269, 273–278, 279–284
Hand-Off Block (HOB) list  143

PEI-to DXE handoff  279, 307
Phase Handoff Information Table (PHIT)  278

handoff with Driver Execution Environment 
(DXE)  218, 307

modules
Hardware Save Table  284

modules (PEIMs)  125, 134, 250, 254, 258–
259, 268–269, 306

dependency expression  280–281
execution  281
Memory Controller Hub Memory Controller  

125
PEIM-to-PEIM interface (PPI)  126, 127
Platform Controller Hub (PCH)  125
security PPI  281
UEFI PI architecture  262
verification/authentication  281
verification PPI  281

notifications  277
operation  279–280
PEIM-to-PEIM interface (PPI)  274, 280–282, 

286, 288–290
architectural boot mode  264

phase  139, 218, 268, 317
design concepts  276–279
memory discovery  281
prerequisites  273–275
recovery  283–284
save-to-RAM resume (S3 resume)  284

services  277
services table  274, 276



 Index  n  391

Pre-operating system (pre-OS) agents  21, 71, 
74–81, 85, 88, 89, 92, 94, 98, 101

Priori File  143, 145, 158, 160
Processor Abstraction Layer (PAL)

Itanium® architecture  262, 351
Programmable Interrupt Controller (PIC)  131
Protocol Handler Services  151
Protocol Interface Structure  27
protocols  26–32

ACPI editing  4
Block I/O Protocol  76–77, 188
Boot Device Selection Architectural Protocol  

174
Bus Specific Driver Override Protocol  51
Configuration Access protocol  196
construction of  28
CPU Architectural Protocol  170
Device Path Protocol  47–48, 74–76
Disk I/O Protocol  190
Driver Binding Protocol  43, 56, 66
Driver Health Protocol  64
EFI Developer Kit II (EDKII)  28
EFI File Protocol  193
PCI Host Bridge Resource Allocation Protocol  

177
PCI I/O Protocol  30, 185
PCI Protocols  176
PCI Root Bridge I/O Protocol  133, 183
Platform Driver Override Protocol  53
protocol interface structure  27
Real Time Clock Architectural Protocol  172
Reset Architectural Protocols  174
Simple File System protocol  192
Simple File System Protocol  136
SIO  4
SMBIOS  4, 311
System Management Mode (SMM)  4
Timer Architectural Protocol  173
Variable Architectural Protocol  175
Watchdog Timer Architectural Protocol  176

PS/2 keys  107, 109

pseudo code  56–57
PXE. See Preboot eXecution Environment (PXE) 

BIOS Support Specification

Q

R

read-only-memory C compiler (romcc)  285
Real Time Clock

architectural protocols (APs)  148
services  151

Recovery
architecture  257–258
platform firmware  265

Remote Console
support  113–116

Remote Graphical Displays  165
Repudiation  231
Reset

architectural protocols (APs)  148
services  151

romcc. See read-only-memory C compiler (romcc)
RTC. See Time: RealTime Clock (RTC)
Runtime

artchitectural protocols (APs)  147
services  151

S

samples
application  69–71
child device handle  52
device handle  47
device path  74
extract environment variables  79
file - open, read, write, close  75
hot plug events  54–55
memory map  78
OS loader  72–74
OS partition  76
pseudo code  61



392  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

system configuration  77
SBP. See Service Binding Protocol (SBP)
Scan Codes  104, 107–109, 113
SCSI

drive  44
Security  14, 281

Architectural Protocols (APs)  147
platform  231
platform initialization (PI)  305
Platform Initialization (PI). See also Platform 

Initialization (PI)
primitives  274
UEFI drivers  64
User Identity (UID) infrastructure  64, 227

Security (SEC) phase  267, 273–275, 286
Serial Presence Detect (SPD)  126
Serial Terminal  164
Service Binding Protocol (SBP)  66
Simple File System Protocol  168, 192–195
Simple Text Input  104
Simple Text Input Ex  110
Smart phone  124
SMBIOS

tables  88
SMBUS. See System Management Bus (SMBUS)
SO Boot Path  255–256
SOC. See system-on-chip (SOC)
Software Handshake  169
Spoofing  231
S-State Boot Path  256
Status Code

architectural protocols (APs)  148
services  152

Steinbach’s Guideline for Systems Programming  
103

Super I/O (SIO)  126, 289
System Address Map  121, 123
System Management BIOS (SMBIOS)  369
System Management Bus (SMBUS)  125–127, 

286, 289
System Management Mode (SMM)  4

System Memory
descriptors  145

System-on-a-Chip (SoC)  124
System Table  22, 92, 104–106, 116

Extensible Firmware Interface (EFI)  148–151

T

Tablet  124
Tag GUID  31
Tampering  231
Task Priority Level (TPL)  39
Task Priority Services  150
TBB. See Trusted Building Block (TBB)
TCG. See Trusted Computing Group (TCG)
TCP/IP stack  118
TE. See Terse Executable
Telnet  165
Telnet daemon  118–119
temporary RAM  273
Terse Executable  284–286
Text Interface  105, 112
Text I/O  106
The “H”  269
Thunk Protocol  298, 299
Tiano  6
Timer Architectural Protocol  129

architectural protocols (APs)  147
NT32  129–130

TLB. See Translation Look-up Blocks (TLB)
TPL. See Task Priority Level (TPL)
TPM. See Trusted Platform Module (TPM)
Transient System Load (TSL)  84
Translation Look-up Blocks (TLB)  37
TRS. See Trusted Platform Module (TPM)
Trusted Building Block (TBB)  211–212
Trusted Computing Group (TCG)  209
Trusted Platform Module (TPM)  135, 341

boot flow  216
boot time line  230
CRTM  213, 218, 220, 343, 344
definition  209



 Index  n  393

DRTM  213, 214, 215, 228
DTRM  228
elements  211
functions  215
measured boot  209, 331, 341, 342
measured launch environment  228
overview diagram  211
PCR  344
physical presence  214
platform configuration registers (PCRs)  213, 

214, 217, 219
point of measurements. See Point of 

Measurements
RTM  213, 215
RTR  213
RTS  213
specification  342
SRTM  214, 215, 219, 222, 228, 233
TCG  217
UEFI APIs  216

layering  217
UEFI platform execution measured objects  218

TSL. See Transient System Load (TSL)

U

UCST – UEFI Configuration Sub-team  9
UDK. See UEFI Development Kit (UDK)
UEFI. See Unified Extensible Firmware Interface 

(UEFI)
UEFI API  72, 226
UEFI Application Toolkit  29, 311, 318
UEFI Boot Manager  46, 52, 221
UEFI Developer Kit

version II (EDKII)  28, 31
UEFI Development Kit (UDK)  6, 286
UEFI Error Format Standardization  348, 349, 351

Windows Hardware Error Architecture (WHEA)  
370

UEFI Events  37–39, 313
UEFI Forum  4–10

development of  7

hierarchy  9
members  8
subteams

UCST – UEFI  9
USST – UEFI Security  10

UEFI Image  31, 216, 222
advantages  32
and applications  35
and boot service  32
and drivers  35–37
and OS loader  35
and start function  32
boot sequence  238
events  37
storage locations  32
types  247

descriptions  34–35
relationships  33

UEFI OS loaders  86
UEFI runtime services table  90
UEFI Secure Boot  221
UEFI Shell  292
UEFI Simple Text Input  104, 106–109
UEFI Simple Text Input Ex  104–105, 109–110
UEFI Simple Text Output  104, 110–112
UEFI Specification  113

2.1  104, 111, 112, 194, 315
2.2  221, 223
2.3  21, 28, 36, 47, 64, 226
history  11–12

UEFI Specification Working Group (USWG)  10
Uncontrolled Data Items (CDIs)  232
UNDI Driver. See Universal Network Driver 

Interface (UNDI): driver
Unicode Characters  104, 107–108, 111–113
Unified Extensible Firmware Interface (UEFI)

applications  104, 105, 118, 167–168, 373
architecture  21, 69, 304
BIOS  196, 331, 335
boot manager  237
boot sequence  238



394  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface

boot services  188, 192, 221
components  1, 167
configuration infrastructure  194–196, 197
configuration table  88–89, 92–93
data types  373–375
driver model  43, 46, 48, 50, 52, 53, 197
drivers  105, 167–168, 183, 312, 373

management  64
networking  65–66
security  64, 219
signing  223

embedded operating system  17
executable verification  222
firmware  191, 224, 291, 303

emulation environment. See NT32 Platform
root-of-trust-for-verification (RTV)  222, 228

GUID  88, 92, 94–95
hardware API handler  298
images  31–39
Input Key  107
interaction with hardware devices  291
IPsec  224, 225
key  107
layering  11
memory  85–88
networking  224
network stack  226
objects managed by firmware  22
OS loaders  104
platform execution measured objects  218
Platform Initialization (PI)  220, 229, 249, 267, 

278, 282, 311
components  219, 269
execution phases  250
flash file system  273–275, 279, 283

pointer pairs  88, 92
pre-operating system (pre-OS) agents  21, 71, 

74–81, 85, 88, 89, 92, 94, 98, 101
protocol definitions  88
protocols  26, 194
runtime  83–87

runtime services table  88–92
secure boot  221
security  14, 205, 229. See also Unified 

Extensible Firmware Interface (UEFI)
services

boot  22, 83–87, 90, 94–99
console  103–120
protocol  23
runtime  23, 97–100

shell command line  71
software  104
software stack  221
specifications  1, 90, 220, 227, 377
SRTM  215
system table  22, 92, 104–106, 116
Task Priority Level (TPL)  40
TCG platform specification  217
trust  221
user identification (UID)  227

Universal Network Driver Interface (UNDI)  24, 
36, 88, 118

Universal Serial Bus (USB)  43, 53, 64, 67, 310, 
313

USB. See Universal Serial Bus (USB)
User Identity (UID) infrastructure  64
USST – UEFI Security Sub-team  10
USWG. See UEFI Specification Working Group 

(USWG)

V

variable
architectural  98
architectural protocols (APs)  147
boot option  245
BS attribute  242
environment  79, 176
firmware boot manager  238
globally-defined  242
load option  241
nonvolatile  242
NVRAM  238



 Index  n  395

services  94–99, 151, 243–245
Variable Write

architectural protocols (APs)  148, 176
Video Adapters  164
Virtual Address  86, 92–94, 100
Virtual Memory Services  88, 92–93, 100, 152
VT-100  113, 120
Vulnerability Classification  231

W

Watchdog Timer
architectural protocols (APs)  147

Web Services Management Protocol  350, 364, 
368–370, 372

WHEA. See Windows Hardware Error Architecture 
(WHEA)

Windows Authenticode Portable Executable 
Signature Format  64

Windows Hardware Error Architecture (WHEA)  
350, 370, 371

WinNtThunk Capability  294, 298, 299
Wired for Management Baseline specification  248
WS-MAN. See Web Services Management Protocol

X

XIP. See Execute-In-Place (XIP)

Y

Z



396  n  Beyond BIOS: Developing with the Unified Extensible Firmware Interface



 
 
 
 
Continuing Education is Essential  
 
It’s a challenge we all face – keeping pace with 
constant change in information technology.  
Whether our formal training was recent or long 
ago, we must all find time to keep ourselves 
educated and up to date in spite of the daily time 
pressures of our profession.  
 
Intel produces technical books to help the 
industry learn about the latest technologies.  The 
focus of these publications spans the basic 
motivation and origin for a technology through 
its practical application.    
 
Right books, right time, from the experts   
 
These technical books are planned to synchronize with roadmaps for technology and 
platforms, in order to give the industry a head-start.  They provide new insights, in an 
engineer-to-engineer voice, from named experts. Sharing proven insights and design 
methods is intended to make it more practical for you to embrace the latest 
technology with greater design freedom and reduced risks. 
 
I encourage you to take full advantage of Intel Press books as a way to dive deeper 
into the latest technologies, as you plan and develop your next generation products. 
They are an essential tool for every practicing engineer or programmer. I hope you 
will make them a part of your continuing education tool box. 
 
 
 
 
 
 
 
 
 
Turn the page to learn about titles  
from Intel Press for system developers 

 

Senior Fellow and Chief Technology Officer Intel 
Corporation  
 

Sincerely, 



E S S E N T I A L  B O O K S  F O R  S Y S T E M  D E V E L O P E R S  

““Harnessing the UEFI Shell is a 
perfect sequel to the Beyond BIOS book. 
If you are still using or shipping DOS-

based solutions, this book is definitely a 
must-read for all software development 

engineers. It provides an important 
bridge between the normative 

specifications and the informative details 
of the development and the insights 

provided by the authors” 
 

Dong Wei 
Vice President and Chief Executive, 

the Unified EFI Forum 
HP Distinguished Technologist 

 
 
 

 

Harnessing the UEFI Shell 
Moving the platform beyond DOS  
By Michael Rothman, Tim Lewis, Vincent Zimmer and Robert Hale  

ISBN  0-9764832-1-1 

The Unified Extensible Firmware Interface (UEFI) 
Shell was designed for programmers who are 
writing automation process software for computer-
based equipment.  

In Harnessing the UEFI Shell the authors describe 
the features and capabilities of the shell for the 
UEFI explaining that the UEFI is not an operating 
system per se, but is instead intended to be a set of 
defined interfaces between the system firmware 
(BIOS), Option ROMs, and operating systems. 
The richness of the interfaces required for this 
main purpose secondarily provides the interfaces 
that can support a rich command line environment, 
the UEFI Shell.  

Included are detailed descriptions of how to use 
the UEFI Shell with many real life examples such 

as specialized memory tests for chip and board 
validation and manufacturing validation tests. Written 
specifically for the practicing software engineer, this 
book enables the reader to quickly become proficient 
in using and exploiting the UEFI Shell. 

The UEFI Shell is, in the end, useful because it is 
small and not intrusive, just as its cousins are useful 
because they are large and all-encompassing.    

  

 

 



E S S E N T I A L  B O O K S  F O R  S Y S T E M  D E V E L O P E R S  

 
 
 

 

 Break Away with Intel® Atom™ 
Processors  
A Guide to Architecture Migration  
By Lori Matassa and Max Domeikai 

The Intel® Atom™ processor enables a broader 
use of Intel® architecture in low power, form 
factor constrained devices such as media phones, 
home energy monitors, and in-vehicle 
infotainment. The challenge for the software 
developer is in understanding how to migrate their 
software from other architectures to Intel® Atom™ 
processor–based systems.  

Break Away with Intel® Atom™ Processors:  A 
Guide to Architecture Migration provides insight 
into architecture migration by addressing real 
world software migration issues, detailing topics 
such as architecture, system initialization, 
operating systems, graphics drivers, software 
tools, and the Intel® Atom™ processor 
capabilities.  

Embedded debugging and performance tuning are 
covered in depth, and guidelines for a migration plan 
are provided. The reality is that architecture migration 
is not a one-size-fits-all activity. The key to a 
successful migration is assessing the situation and 
under-standing decisions that need to be made and 
solution choices that are available. The authors deliver 
this information as a handbook to your software 
migration plan and project activities. 

 

 

"This is an essential guide to 
working with the Intel® Atom™ 

processors that should be read by 
anyone who wants to understand 

how to use the platform effectively. 
The book covers key concepts 

including power management, 
parallel applications, and machine 

virtualization, while providing a 
clear explanation of the system 

architecture and how to use it to its 
fullest advantage." 

 

- Paul Krzyzanowski, CTO, 



E S S E N T I A L  B O O K S  F O R  S Y S T E M  D E V E L O P E R S  

 
 
 

 

The Software Optimization Cookbook,  
Second Edition 
High-Performance Recipes for IA-32 Platforms  
By Richard Gerber, Aart J.C. Bik, Kevin B. Smith, and Xinmin Tian  

ISBN  0-9764832-1-1 

The Software Optimization Cookbook, Second 
Edition, provides updated recipes for high-
performance applications on Intel platforms. 
Through simple explanations and examples, four 
experts show you how to address performance 
issues with algorithms, memory access, branch 
prediction, automatic vectorization, SIMD 
instructions, multiple threads, and floating-point 
calculations.  

Software developers learn how to take advantage 
of Intel® Extended Memory 64 Technology 
(Intel® EM64T), multi-core processing, Hyper-
Threading Technology, OpenMP†, and multimedia 
extensions. This book guides you through the 
growing collection of software tools, compiler 
switches, and coding optimizations, showing you 
efficient ways to improve the performance of software 
applications for Intel platforms.   

 

 

 

  

“This book simplifies the task for 
engineers who strive to develop high-

performance software...” 
 

Lars Petter Endresen,  
Doctor of Engineering, Physics,  

Scandpower Petroleum Technology 



      
 

Special Deals, Special Prices! 

 
To ensure you have all the latest books 
and enjoy aggressively priced discounts, 

please go to this Web site: 
 

www.intel.com/intelpress/bookbundles.htm 
 

Bundles of our books are available, 
selected especially to address the needs 

of the developer. The bundles place 
important complementary topics at 
your fingertips, and the price for a 
bundle is substantially less than 
buying all the books individually. 



 

About Intel Press 
 

Intel Press is the authoritative source of timely, technical books 
to help software and hardware developers speed up their development 
process. We collaborate only with leading industry experts to deliver 

reliable, first-to-market information about the latest 
technologies, processes, and strategies. 

 
Our products are planned with the help of many people in the developer 

community and we encourage you to consider becoming a customer advisor. 
If you would like to help us and gain additional advance insight to the latest 

technologies, we encourage you to consider the Intel Press Customer  
Advisor Program. You can register here: 

 

For information about bulk orders or corporate sales, please send email to 
bulkbooksales@intel.com 

 

Other Developer Resources from Intel  
At these Web sites you can also find valuable technical information 

and resources for developers: 

www.intel.com/technology/rr Recommended Reading list for books of 
interest to developers 

www.intel.com/technology/itj Intel Technology Journal 

www.developer.intel.com General information for developers 

www.intel.com/software Content, tools, training, and the Intel Early 
Access Program for software developers 

www.intel.com/software/products Programming tools to help you develop 
high-performance applications 

www.intel.com/embedded Solutions and resources for embedded and 
communications 

 

www.intel.com/intelpress/register.htm 



Zimmer
Rothman
Marisetty

 

 

Beyond BIOS  

Computer System Design $69.95   USA

Register your book to download the Digital Edition of this book and
receive information about forthcoming books in your area of interest

Visit our Web site at: www.intel.com/intelpress

ABOUT THE AUTHORS

VINCENT ZIMMER is a Principal Engineer 
in the Software and Services Group at 
Intel Corporation and has over 18 years 
experience in embedded software 
development and design, including BIOS, 
firmware, and RAID development.  
Vincent received an Intel Achievement 
Award and holds over 200 patents. He 
has a Bachelor of Science in Electrical 
Engineering degree from Cornell 
University, Ithaca, New York, and a 
Master of Science in Computer Science 
degree from the University of 
Washington, Seattle.

MICHAEL ROTHMAN is a Senior Staff 
Engineer in the Software and Services 
Group at Intel and has more than 20 
years of operating system and 
embedded software development 
experience, Michael holds over 200 
patents and was awarded an Intel 
Achievement Award on some of his 
systems work. He started his career with 
kernel and file system development in 
OS/2 and DOS and eventually migrating 
to embedded operating systems work 
and firmware development.

SURESH MARISETTY is a software & 
systems architect at Intel Corporation 
and has been involved with enabling of 
various end-to-end platform technology 
ingredients across the industry. He has 
been with Intel for over 21 years and 
currently holds two Intel Achievement 
Awards, about 24 patents, a dozen 
internal and external papers on various 
topics and areas of expertise include: 
Security, Manageability/Machine Check 
Architecture, Low Latency Boot 
Solutions, End-to-End 
In-Vehicle-Infotainment platform 
architecture.

Beyond BIOS
Developing with the Unified
Extensible Firmware Interface

Beyond BIO
S 

Cover Design by Ted CyrekPrinted on Recycled Material

Second Edition

Developing with the Unified Extensible Firmware Interface

Vincent Zimmer, Michael Rothman and Suresh Marisetty

In Beyond BIOS Developing with the Unified Extensible Firmware 
Interface the authors have updated the successful first edition to 
include the latest UEFI specifications and have expanded the scope of 
the book to include support of embedded and SOC platform designs.

ISBN 978-1-934053-29-4

35858 21565 7819349 05329477 Books by Engineers, for Engineers

In just a few days, a programmer familiar with C should have a good 
understanding of how to get started writing UEFI drivers and applications.  For 
those who haven’t developed PC BIOS firmware, Beyond BIOS Second Edition 
presents an opportunity to ramp up on the industry standard firmware 
platform for PCs and start writing UEFI apps as they do apps for today’s 
mobile operating systems.”
 — Steve Jones, Chief Technology Officer, Phoenix Technologies Ltd.

“I feel qualified to highly recommend this book as a “deep dive” into the UEFI 
specifications and the flexibility these standards give to those who choose 
them. This publication is full of practical information and real-world examples 
for system designers and can empower them to get and keep a competitive 
edge in their designs. I would like to commend Intel for compiling such a 
valuable resource.”
 — S. Shankar, President and CEO, American Megatrends Inc. (AMI)

"Our customers were able to gain efficiency and time-to-market advantage 
from legacy BIOS to Framework and EFI, we however clearly foresee a broader 
set of benefits with the evolution to UEFI 2.3 and PI 1.2 as they become 
ever-more-widely adopted industry standards. Beyond BIOS Second Edition 
provides an extremely thorough yet lucid explanation of UEFI and PI that 
should be helpful to anyone that wants to understand or use this modern 
firmware environment."
 — Jonathan Joseph, Executive Vice President, lnsyde Software

"For many years, the software engineers working in the area of BIOS were 
dissatisfied by the lack of a good reference book, and could only learn the 
related knowledge through years of hard work. I now require my engineers 
and students to study this book after their initial UEFI firmware training. 
Experienced engineers will also find this book helpful for providing a quick 
overview of firmware architecture."
 — KangKang Shen, CTO, Nanjing Byosoft. Ltd.

D
eveloping w

ith the U
nifi

ed Extensible Firm
w

are Interface


	Intel_EFI2_Book
	InBookMktg_EFI2__final



